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Abstract

Understanding the 3D geometry and semantics of driv-

ing scenes is critical for safe autonomous driving. Re-

cent advances in 3D occupancy prediction have improved

scene representation but often suffer from visual inconsis-

tencies, leading to floating artifacts and poor surface lo-

calization. Existing voxel-wise losses (e.g., cross-entropy)

fail to enforce visible geometric coherence. In this pa-

per, we propose GaussRender, a module that improves 3D

occupancy learning by enforcing projective consistency.

Our key idea is to project both predicted and ground-

truth 3D occupancy into 2D camera views, where we ap-

ply supervision. Our method penalizes 3D configurations

that produce inconsistent 2D projections, thereby enforc-

ing a more coherent 3D structure. To achieve this effi-

ciently, we leverage differentiable rendering with Gaussian

splatting. GaussRender seamlessly integrates with exist-

ing architectures while maintaining efficiency and requir-

ing no inference-time modifications. Extensive evaluations

on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-

nuScenes, SSCBench-KITTI360) demonstrate that Gauss-

Render significantly improves geometric fidelity across var-

ious 3D occupancy models (TPVFormer, SurroundOcc,

Symphonies), achieving state-of-the-art results, particu-

larly on surface-sensitive metrics such as RayIoU. The code

is open-sourced at https://github.com/valeoai/

GaussRender.

1. Introduction

Understanding the 3D geometry and semantics of driving

scenes from multiple cameras is both a fundamental chal-

lenge and a critical requirement for autonomous driving.

This problem is central to perception tasks such as object

detection [21, 29, 32, 35, 38, 63], agent forecasting [6, 8,

25, 44, 45, 56, 57, 60], and scene segmentation [1, 5, 9–

12, 47]. 3D occupancy prediction [15, 19, 33, 52, 54] has

emerged as a task to evaluate how well models capture the

spatial structure and semantics of a scene.

The challenge in 3D occupancy prediction lies in achiev-

ing geometrically coherent reasoning from multi-view im-

Figure 1. Comparison of rendered 3D predictions. Standard 3D

Occupancy models trained on per-voxel losses result in physically

implausible predictions (e.g., floating voxels, poorly localized sur-

faces, highlighted with orange ellipses) that maintain high 3D IoU

but fail to produce visually consistent predictions. GaussRen-

der enforces multi-view consistency, eliminating artifacts through

learning projective constraints.

ages. Existing methods [15, 16, 30, 54] typically opti-

mize per-voxel predictions using standard 3D losses, such

as cross-entropy, Dice [48], or Lovász [2]. However, these

losses treat all voxels equally and do not enforce spatial

consistency between neighboring voxels, leading to visual

artifacts, as noticed in prior works [36] and illustrated in

Fig. 1. Such artifacts (floating voxels, disjoint surfaces,

and misaligned boundaries) have a low impact on voxel-

based segmentation losses, which give the same weight to

all voxels. The consequences extend beyond mere visual ar-

tifacts: poor surface localization and unrealistic floating ob-

jects may significantly undermine downstream tasks such

as free-space estimation or motion planning. The under-

lying issue is that conventional supervision methods lack

mechanisms to penalize unrealistic spatial arrangements, a

deficiency that becomes especially apparent when project-

ing 3D artifacts into 2D views. This observation motivates

our key insight: integrating projective consistency into the

training objective encourages the model to learn consistent,

physically and visually plausible geometries.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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We introduce GaussRender, a module that bridges the

gap through differentiable rendering of 3D occupancy pre-

dictions. Our key idea is to enforce spatial consistency by

projecting both predicted and ground-truth voxels into 2D

camera views using Gaussian splatting [23]. These pro-

jections serve, during training, as a supervision signal, al-

lowing us to penalize 3D configurations that produce poor

2D projections, thereby enforcing a more coherent and ge-

ometrically plausible 3D structure. To achieve this, we ap-

ply two complementary supervision signals: (1) a seman-

tic rendering loss that enforces local semantic coherence,

and (2) a depth rendering loss that penalizes occlusion-

disrupting artifacts. These rendering-based losses are ap-

plied alongside standard 3D supervision, such as cross-

entropy, ensuring compatibility with existing occupancy

learning frameworks. GaussRender enables rendering from

arbitrary viewpoints. Its flexibility helps reduce occlusions,

for instance, by leveraging elevated viewpoints that are less

affected by horizontal obstructions from ground objects.

We validate our approach on multiple datasets, including

SurroundOcc-nuScenes [54], Occ3D-nuScenes [50], and

SSCBench-KITTI360 [31]. Our experiments demonstrate

that GaussRender significantly improves geometric fidelity

across diverse architectures — ranging from multi-scale

voxel-based models (SurroundOcc [54]), tri-plane models

(TPVFormer [15]) to hybrid query-voxel models (Sym-

phonies [19]). Across all settings and datasets, GaussRen-

der consistently improves performance on classical metrics

such as IoU and mIoU. Moreover, when evaluated using

surface- and artifact-sensitive metrics, such as RayIoU [36],

the improvements are even more pronounced. This is be-

cause the projective constraints enforced by our method

promote surface continuity — ensuring that neighboring

voxels agree when rendered from any viewpoint, thereby

eliminating floating artifacts and discontinuities. Crucially,

our approach is plug-and-play, integrating seamlessly with

existing 3D occupancy frameworks without requiring any

architectural modifications. Thanks to our efficient Gaus-

sian rendering proxy, GaussRender incurs minimal compu-

tational and memory overhead compared to NeRF-based al-

ternatives [17, 43].

The key contributions include:

• A rendering-based module that enforces semantic and ge-

ometric consistency in 3D occupancy prediction, elimi-

nating visual and spatial artifacts through projective con-

straints,

• A fast and memory-efficient loss implementation-based

on Gaussian splatting without architectural modifications

during training and having no impact during inference,

• A camera positioning strategy that amplifies supervision

signals in geometrically complex regions.

• Improves results on three standard benchmarks for many

models, with particular gains in RayIoU.

2. Related work

2.1. Learning 3D semantic geometry from cameras

Reconstructing unified 3D scenes from multi-camera sys-

tems must address three interconnected challenges: multi-

view cameras create perspective limitations requiring oc-

clusion reasoning, lifting 2D image features to metric 3D

space demands geometric and semantic 2D-to-3D transfer,

and merging multi-view inputs into volumetric representa-

tions like voxels incurs cubic memory growth [55]. Modern

methods address these challenges through structured inter-

mediate representations.

Discrete methods rely on regular 3D grids to stay as

close as possible to the desired voxel output. Bird’s-eye-

view (BeV) projections [27, 51] significantly reduce mem-

ory cost but introduce a substantial bias in the intermediate

representation due to height compression. Instead, tri-plane

features [15] and tensor decompositions [62] map any 3D

coordinate onto distinct planes or vectors performing inter-

polation to get distinct features. As opposed to BeV ap-

proaches, they do not suffer from height compression while

still operating on a compressed representation. Octrees [39]

preserves a full multi-scale 3D representation, coarse in uni-

form areas and fine where details are needed, resulting in

a fast and memory-efficient representation [54]. Continu-

ous architectures have emerged, using a set of Gaussians

to represent the scene [16, 18] which are then discretized

to obtain the voxelized output map. Furthermore, to bet-

ter capture the overall instance semantics and scene con-

text, query-based methods have been introduced [19]. They

facilitate interactions between image and volume features

using sparse instance queries.

Complementary approaches have been proposed to

enhance 3D occupancy predictions beyond architectural

choices. Temporal aggregation uses past frames to resolve

occlusions and refine geometric details [26, 27, 43, 46,

59], with extensions to 4D forecasting for dynamic scenes

[24, 40, 53, 58]. Self-supervised methods reduces depen-

dency on 3D annotations by generating pseudo-labels from

monocular depth and segmentation [7, 17], but suffer from

scale miscalibrations and label mismatches between 2D and

3D labels. Lastly, supervised rendering with lidar repro-

jections [43, 49] has been introduced to provide accurate

depths. While more precise than pseudo-annotations, lidar

reprojections face challenges such as signal sparsity, occlu-

sions, and misalignment between the lidar and cameras. In

particular, [43, 49] require temporal supervision from adja-

cent frames to compensate for lidar sparsity and occlusions.

In contrast, our method achieves accurate supervision with-

out these constraints, allowing more flexible and efficient

3D occupancy learning across different architectures.

Despite architectural variations, all methods ultimately

produce voxel grids for supervision. This common output

27011



Figure 2. Overview of GaussRender. Our module enforces 3D-2D consistency via differentiable Gaussian rendering. First, both predicted

and ground-truth voxel grids are ‘gaussianized’ by converting each voxel into a simple spherical Gaussian: the center μ is fixed at the voxel

center, the scale s is a simple fixed scaling of the original voxel dimensions, and features are directly transferred as the semantic ‘classes’

c — with only the opacity o learned when voxel features are available. Next, virtual cameras are positioned in the scene (a fixed bird’s-eye

view and a dynamic, arbitrarily placed camera as described in Sec. 3.2). The resulting 3D Gaussians are then projected into 2D using

Gaussian splatting (Sec. 3.3), producing both semantic and depth renderings. These rendered views are compared against their ground-

truth counterparts using an L1 penalty, ensuring enhanced spatial coherence and geometric consistency (Sec. 3.4).

(a) Sensor view (b) Virtual elevated view (c) Virtual Orthographic BeV

Figure 3. Arbitrary camera positioning. Virtual cameras can be freely placed in the scene, enabling view constraints in occluded regions.

The sensors’ cameras do not provide access to the rear of objects, leading to occlusion issues. GaussRender can place the cameras arbitrarily

within the scene, allowing them to be elevated to reach previously hidden areas.

space lets GaussRender enhance any 3D occupancy model

with a simple rendering loss applied to the voxelic output.

2.2. Differentiable rendering of 3D representations

Supervising 3D predictions through 2D projections requires

efficient differentiable rendering methods. While traditional

differentiable rendering methods handle 3D modalities like

point clouds and meshes [22, 37], recent approaches focus

on neural rendering and Gaussian-based methods.

NeRF-based methods [41] perform volume rendering by

predicting a volumetric density and applying ray-based in-

tegration. RenderOcc [43] constructs a NeRF-style volume

representation supervised by semantic LiDAR projections.

It leverages lidar-derived 2D labels (depth and semantics)

for 3D supervision but inherits lidar’s sparsity. SelfOcc [17]

uses signed distance fields for occupancy prediction and ap-

plies differentiable volume rendering to synthesize depth

and semantic views. Self-supervision is enforced using

multi-view consistency from video sequences. However,

NeRF-based rendering is computationally expensive, espe-

cially with high ray-sampling resolutions. Additionally, its

reliance on image quality and occlusion mitigation necessi-

tates auxiliary supervision from temporal frames [43, 49].

Gaussian splatting provides an efficient alternative to

NeRF by representing 3D scenes as a set of Gaussians

[23]. In 3D semantic occupancy prediction, GaussianOcc
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[7] projects a voxel-based Gaussian representation camera,

using adjacent views for self-supervision, with optional 2D

segmentation to refine the predicted occupancy. GSRen-

der [49] uses lidar reprojection and temporal consistency

to help the learning process. GaussTR [20] extends Gaus-

sian representation learning with foundation models (e.g.,

CLIP, Grounded-SAM) to enable open-vocabulary occu-

pancy prediction. Unlike other self-supervised methods,

it does not use temporal supervision but relies on heavy

pre-trained vision models. A key limitation of these ap-

proaches is their tight coupling of Gaussian representations

with the model architecture, imposing a fixed representation

that limits flexibility. In contrast, our approach introduces

a Gaussian rendering loss applicable to any model, without

requiring the underlying 3D representation to be Gaussian.

All aforementioned methods are restricted to rendering

from recorded camera perspectives, as they require RGB

images to estimate pseudo-labels [7, 17, 20] or rely on se-

mantic LiDAR reprojections [43, 49]. In contrast, as Gauss-

Render renders both the ground truth and the predictions, it

is not constrained by fixed camera perspectives or temporal

supervision, enabling rendering from any viewpoint. More-

over, GaussRender does not enforce a specific 3D feature

representation, and operates at prediction-level, making it

adaptable to diverse architectures.

3. GaussRender

We present GaussRender, a plug-and-play rendering mod-

ule that enhances 3D occupancy models through efficient,

differentiable Gaussian rendering. First, we define 3D-2D

consistency and how to enforce it during training (Sec. 3.1).

We then outline our camera placement strategy (Sec. 3.2)

and describe the rendering process, which projects 3D vox-

els into 2D images using Gaussian splatting (Sec. 3.3). Fi-

nally, we detail our 2D rendering loss (Sec. 3.4).

3.1. Enforcing 3D-2D consistency

Vision-to-3D semantic occupancy models [15, 19, 54] take

a set of N images, I = {Ii}
N
i=1, and predict a 3D semantic

grid O ∈ [0, 1]X×Y×Z×C , where C is the number of se-

mantic classes and (X,Y, Z) defines the spatial resolution.

The standard pipeline consists of three steps:

• Feature Extraction: Each image is processed by a back-

bone network to extract 2D features F = {Fi}
N
i=1 ∈

R
dimg , where dimg is the feature dimension.

• 3D Lifting: The features are lifted into a 3D repre-

sentation (e.g., voxels, tri-planes) using cross- and self-

attention mechanisms.

• Voxel Prediction: The 3D representation is converted

into a voxel grid, and standard losses (e.g., cross-entropy,

Lovász, Dice) are computed against the ground truth.

While the standard 3D losses (denoted as L3D) ensure

overall occupancy alignment with the ground truth, they

treat each voxel independently and ignore spatial consis-

tency. This limitation can lead to artifacts such as floating

voxels or misaligned surfaces [36]. To overcome these is-

sues, we introduce a 2D rendering loss, L2D, which provides

additional supervision by comparing rendered views of the

predicted occupancy with corresponding ground-truth im-

ages. This loss enforces spatial coherence in the 2D pro-

jection, thereby penalizing 3D configurations that produce

poor renderings. The overall training loss is defined as:

L = L3D + λL2D, (1)

where λ ∈ R
+ is a weighting factor for the 2D loss.

In the following subsections, we define L2D by address-

ing two key aspects: (1) the placement of rendering cameras

in the scene (Sec. 3.2), and (2) the differentiable rendering

of 3D occupancy via Gaussian splatting (Sec. 3.3).

3.2. Camera Placement Strategy

GaussRender is not restricted to the original sensor or ad-

jacent frames [17, 43, 49], it renders images from arbitrary

camera positions within the scene. This flexibility allows

us to position virtual cameras anywhere in the 3D space.

Fig. 3 illustrates how virtual cameras generate complemen-

tary constraints (both semantic and depth) to enhance voxel

consistency.

The placement of these virtual cameras is crucial and

has been extensively studied. Several strategies have been

found depending on the objective:

• Visible Voxels: If the goal is to accurately reconstruct

only the visible portions of the scene [31, 50], the render-

ing cameras should be placed close to the original sensor

positions, as illustrated in Fig. 3 (a) in order to constraint

the visibile voxels. This placement ensures that the in-

ferred 3D structure remains consistent with the sensor’s

view.

• Holistic 3D Reconstruction: For complete 3D re-

construction, including occluded regions [54], cameras

should be positioned more diversely. Exploring different

viewpoints provides additional supervision for occluded

areas, heavily penalizing aberrant configurations. In prac-

tice, we generate the virtual views with a simple rule: the

camera is (1) elevated along z axis with respect to its orig-

inal position, (2) randomly translated in a close range to

the ego-vehicle on the xy plane. The resulting camera

increases the field of view, looking at both visible and oc-

cluded parts of the scene (Fig. 3 (b)).

Additionally, given the importance of bird’s-eye view

(BeV) understanding in autonomous driving, we system-

atically include a fixed virtual orthographic BeV camera,

illustrated in Fig. 3 (c). The BeV camera offers an orthog-

onal and complementary perspective, ensuring that objects
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are accurately localized on the ground and further enhanc-

ing voxel consistency.

In practice, placing a camera involves specifying its ex-

trinsic and intrinsic parameters, respectively defining the

viewing transformation W ∈ R
4×4 and the projective trans-

formation K ∈ R
3×3. Our method keeps the intrinsic pa-

rameters fixed and only update the extrinsic parameters for

each training batch.

3.3. Gaussian rendering

For each camera, once its position is chosen and its intrin-

sics and extrinsics are set, we render the 3D occupancy into

the corresponding view. Our goal is fast, fully differentiable

rendering that supports efficient gradient backpropagation.

To do it, we adopt a Gaussian splatting approach [23],

which is significantly faster than traditional ray-casting

while preserving differentiability. Consequently, we repre-

sent each voxel as a Gaussian primitive.

Voxel ‘Gaussianization’. To derive a Gaussian from a

voxel, we emphasize simplicity to ease the learning pro-

cess. In practice, we: (1) use spherical Gaussians: rep-

resent each voxel as a sphere, which removes the need for

orientation parameters; (2) fix the center: place each Gaus-

sian at the center of its corresponding voxel, eliminating the

need to learn an offset; (3) fix the scale: set the scale of each

Gaussian based on the voxel dimensions.

Concretely, as illustrated in Fig. 2 (bottom right), for

each voxel at position μ = (x, y, z), we create a simple

Gaussian primitive with:

• position μ: inherited from voxel grid coordinates.

• scale S = Diag(s): a diagonal matrix defined by a scalar

factor s ∈ R.

• semantic ‘color’ logits c: taken from the model’s final

prediction.

• opacity o: learned from voxel features (or derived from

the logit of the empty semantic class when features are

absent).

• rotation R = I: set to the identity matrix, as spheres

require no orientation. With this choice, the Gaussian co-

variance matrix becomes Σ3D = S2.

Gaussian rendering. To relate the 3D Gaussian represen-

tation to the 2D image, we project the 3D covariance matrix

Σ3D into the image plane using the camera parameters. The

projected covariance is given by:

Σ2D = J ·W · Σ3D ·WT · JT , (2)

where J is the Jacobian of the affine approximation of

the projective transformation K related to the intrinsic pa-

rameters (see [23] for details). This 2D covariance defines

the shape and spread of each Gaussian in the image, which

directly influences the computation of opacity and transmit-

tance in the following rendering step.

For each pixel p in the 2D projection, the rendering com-

putes its semantic value by aggregating contributions from

all projected Gaussians. Specifically, at p, the rendered se-

mantic color value Cp ∈ [0, 1]C (C is the number of seman-

tic classes) and the rendered depth Dp ∈ R
+ are given by:

Cp =

N∑

i=1

Ti, αi, ci, Dp =

N∑

i=1

Ti, αi,di, (3)

where:

• N is the total number of Gaussians.

• αi = 1 − exp(−σi δi) is the opacity (or alpha blending

factor) for the ith Gaussian, with σi representing its den-

sity and δi the distance traversed along the ray.

• Ti =
∏i−1

j=1
(1 − αj) is the accumulated transmittance

from all Gaussians closer to the camera, which accounts

for occlusions.

• ci∈ [0, 1]C is the ‘color’ probability of the ith Gaussian.

• di∈ R
+ is the distance of the ith Gaussian to the pro-

jected camera.

We apply the same rendering process to both the pre-

dicted semantic occupancy and the 3D ground truth. For

ground-truth rendering, we render only occupied voxels by

assigning them an opacity of 1 (and 0 for empty voxels),

while for predictions we use the learned opacities.

This differentiable and efficient rendering pipeline thus

translates the 3D occupancy into 2D views, enabling robust

pixel-wise supervision to enforce spatial consistency.

3.4. L2D rendering loss computation

For each virtual camera, note ‘*’, and the associated pixel

set P ∗, we render semantic and depth images I∗sem =
{Cp, p ∈ P ∗} and I∗depth = {Dp, p ∈ P ∗}, from the pre-

dicted semantic occupancy, following Eq. 3. Similarly, we

obtain Ĩ∗sem and Ĩ∗depth from the ground-truth voxels.

To enforce consistency, we compare each predicted ren-

dering against its ground-truth counterpart from the same

viewpoint using the L1 distance:

L∗

depth =
1

d∗range

‖I∗depth-Ĩ∗depth‖1, L∗

sem = ‖I∗sem-Ĩ∗sem‖1, (4)

where d∗range ∈ R
+ is a normalization factor based on the

maximum depth, ensuring scale consistency across different

scenes. The per-camera loss is then obtained as the sum of

these two terms:

L∗

2D = L∗

depth + L∗

sem. (5)

Thus, the overall 2D rendering loss for our module is:

L2D = Lbev
2D + Lcam

2D . (6)
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where ‘bev’ is the orthographic BeV camera (top-down per-

spective) crucial for global scene understanding and ‘cam’

is the dynamically generated camera generated following

the strategy outlined in Sec. 3.2, which ensures diverse

viewpoints and improves generalization.

This loss ensures that the learned 3D occupancy aligns

with both depth and semantic projections, improving the

consistency between 3D and 2D representations.

4. Experiments

We evaluate GaussRender on several models and datasets

to demonstrate its versatility. We present experimental de-

tails in Sec. 4.1, compare our results against state-of-the-

art models and datasets in Sec. 4.2, show how GaussRender

enhances 3D semantic occupancy predictions from multiple

views in Sec. 4.3, and present ablations in Sec. 4.4.

4.1. Data and models

Data. The trainings and evaluations are conducted on

three datasets: SurroundOcc-nuScenes [54], Occ3d-

nuScenes [50], and SSCBench-Kitti360 [31]. We briefly

outline below the specific characteristics of each dataset.

More details can be found in App. A.

SurroundOcc-nuScenes is derived from the nuScenes

dataset [3], acquired in Boston and Singapore. It aggregates

the lidar annotations of nuScenes to create 3D semantic oc-

cupancy grids of range [-50, 50]× [-50, 50]× [-5, 3] meters

with 50cm voxel resolution, with labels corresponding to

17 lidar semantic segmentation classes. This dataset takes

into account both visible and occluded voxels. The oc-

cluded voxels are obtained by accumulating lidar data over

the frames of the whole sequence consequently introducing

temporal artifacts over dynamic objects.

Occ3D-nuScenes is also based on the nuScenes dataset.

It contains 18 semantic classes and has a 40cm voxel grid

of range [-40, 40]× [-40, 40]× [-1, 5.4] meters. One major

difference with SurroundOcc-nuScenes, is that it only eval-

uates the voxels visible from the cameras at the current time

frame. Thus, it focuses on the geometric and semantic un-

derstanding of the visible objects, rather than extrapolating

to occluded regions, leading to a simpler task.

SSCBench-Kitti360 [31] is derived from the Kitti360

dataset [34], acquired in Germany. It contains 19 seman-

tic classes and has a 20cm voxel grid of range [0, 51.2]×
[−25.6, 25.6]×[−2, 4.4] meters, resulting in a very precise

semantic of urban scenes. It evaluates both visible and oc-

cluded voxels, making the dataset particularly challenging

due to its voxel resolution and the presence of occlusions.

Models and training details. We integrate GaussRen-

der into three different models that use different intermedi-

ate representations: SurroundOcc [54] (multi-scale voxel-

Surround- Occ3D SSCBench

Occ nusc. [54] nusc [50] KITTI360 [31]

Evaluation split val. val. test

Visible voxels only � � �

Model IoU mIoU mIoU IoU mIoU

BEVDet [14] - - 19.38 - -

BEVStereo [28] - - 24.51 - -

RenderOcc [43] - - 26.11 - -

CTF-Occ [50] - - 28.53 - -

GSRender [49] - - 29.56 - -

TPVFormer-lidar [15] 11.51 11.66 - - -

MonoScene [4] 23.96 7.31 6.06 37.87 12.31

Atlas [42] 28.66 15.00 - - -

GaussianFormer [18] 29.83 19.10 - - -

BEVFormer [32] 30.50 16.75 26.88 - -

GaussianFormerv2 [16] 30.56 20.02 - - -

VoxFormer [30] - - - 38.76 11.91

OccFormer [61] 31.39 19.03 21.93 40.27 13.81

TPVFormer [15] 30.86 17.10 27.83 - -

w/ GaussRender 32.05 20.85 30.48 - -

+1.19 +3.75 +2.65 - -

SurroundOcc [54] 31.49 20.30 29.21 38.51 13.08

w/ GaussRender 32.61 20.82 30.38 38.62 13.34

+1.12 +0.52 +1.17 +0.11 +0.26

Symphonies [19] - - - 43.40 17.82

w/ GaussRender - - - 44.08 18.11

- - - +0.68 +0.29

Table 1. Performance Comparison on Multiple 3D Occu-

pancy Benchmarks. We report IoU (↑) and mIoU (↑) met-

rics on SurroundOcc-nuScenes [54], Occ3D-nuScenes [50], and

SSCBench-KITTI360 [31]. The best results are highlighted in

bold. Our module, GaussRender, consistently improves perfor-

mance when integrated with standard models, achieving state-of-

the-art results across all benchmarks. Performance gains intro-

duced by GaussRender are shown in green.

based approach), TPVFormer [15] (tri-plane-based ap-

proach), and Symphonies [19] (voxel-with-instance query-

based approach). By doing so we validate the claim that

our proposed approach is compatible with any type of ar-

chitecture. For each combination of models and datasets,

we follow the same procedure. By default, we evaluate the

original model checkpoints when available; otherwise, we

report scores from previous papers if provided or re-train

the models for the target dataset. Each model uses the same

training settings, following the optimization parameters of

[54]. Camera strategy parameters (elevation and transla-

tion are detailed in Sec. 4.4). More technical details can be

found in App. B.

4.2. 3D semantic occupancy results

We evaluate GaussRender across multiple models [15, 19,

54] and datasets [31, 50, 54] for 3D semantic occupancy

prediction. Our method consistently improves performance

27015



Methods Labels
2D

GT Img.
Train Mem.
Overhead

Single

Frame mIoU (↑)

SelfOcc Pseudo-lbs. Dense High � 9.3

OccNerf Pseudo-lbs. Dense High � 9.5

GaussianOcc Pseudo-lbs. Dense Low � 9.9

RenderOcc Lidar Sparse High � 19.3 (S) / 23.9 (T)

GaussRender Voxels Dense Low � 25.3

Table 2. Comparison of rendering-based methods on Occ3d-

nuScenes under 2D-only supervision. We report the mIoU on

fully trained models. Labels include pseudo-labels, sparse Lidar,

or dense voxel supervision. GaussRender achieves the best per-

formance with low memory and using a dense image supervision

signal.

without relying on other sensors such as the lidar used in

other works [43, 49]. Results are summarized in Tab. 1 and

detailed scores by class can be found in App. F.

SurroundOcc-nuScenes [54]. On this dataset, consid-

ering visible and occluded voxels, GaussRender brings sig-

nificant gains to all tested models. As shown in Tab. 1,

TPVFormer [15] and SurroundOcc [54] reach the top two

ranks. They achieve higher IoU (+1.2 and +1.1) and mIoU

(+3.8 and +0.5) compared to their original implementations.

Remarkably, GaussRender enables these models to surpass

more recent approaches like GaussianFormer and Gaussian-

FormerV2 [16] in both IoU and mIoU, proving that older

architectures can achieve state-of-the-art results when their

training is enhanced with GaussRender.

Occ3D-nuScenes. On Occ3D-nuScenes [50], Gauss-

Render leads to the top two results: TPVFormer with

GaussRender achieves 30.48 mIoU (+2.65), ranking first,

and SurroundOcc with GaussRender reaches 30.38 mIoU

(+1.17), ranking second. Notably, our approach outper-

forms other rendering methods such as RenderOcc [43] and

GSRender [49] without requiring lidar inputs for loss com-

putation. In addition, we also evaluate our model using only

the rendering losses and compare to other supervised and

unsupervised methods, seeTab. 2. While being static (single

frame), it outperforms both static (+6.0 mIoU) and temporal

(+1.4 mIoU) versions of RenderOcc, the latter casting rays

from other frames achieving a new state-of-the art score

on 2D supervision for 3D Occupancy on Occ3d-nuScenes.

This demonstrates that methods augmented with GaussRen-

der can learn strong 3D representations using only cameras.

SSCBench-Kitti360. On the challenging SSCBench-

Kitti360 [34] dataset, integrating GaussRender to Sur-

roundOcc [54] and Symphonies [19] boosts IoU (+0.11 and

+0.68) and mIoU (+0.26 and +0.29). Absolute gains are

smaller because models in this benchmark achieve tightly

clustered performance due to the smaller voxel size mak-

ing the segmentation task more difficult. However, when

we look only at the visible voxels or in the sensor image

metrics, we better see the overall improvements as figured

3D all

mIoU / IoU

3D visible

mIoU / IoU

Image

mIoU / IoU

Depth

L1

SurroundOcc [54] 13.08 / 38.51 25.83 / 69.40 34.20 / 90.72 1.394

w/ GaussRender 13.34 / 38.62 27.06 / 71.39 35.86 / 94.55 1.173

+0.26 / +0.11 +1.23 / +1.99 +1.66 / +3.83 -0.221

Table 3. Performance improvement of SurroundOcc using

GaussRender on KITTI-360. GaussRender leads to clear gains

even on challenging datasets, especially in visible 3D regions.

Models RayIoU RayIoU1m, 2m, 4m

RenderOcc [43] 19.5 13.4, 19.6, 25.5

BEVDet-Occ [13] 29.6 23.6, 30.0, 35.1

BEVFormer [32] 32.4 26.1, 32.9, 38.0

BEVDet-Occ-Long [13] 32.6 26.6, 33.1, 38.2

SparseOcc[36] (8f) 34.0 28.0, 34.7, 39.4

FB-Occ [33] 33.5 26.7, 34.1, 39.7

SparseOcc [36] (16f) 36.1 30.2, 36.8, 41.2

TPVFormer [15] 37.2 31.5, 38.1, 41.9

w/ GaussRender 38.3 +1.1 32.3, 39.3, 43.4

SurroundOcc [54] 35.5 29.9, 36.3, 40.1

w/ GaussRender 37.5 +2.0 31.4, 38.5, 42.6

Table 4. Impact of GaussRender on RayIoU (↑) metrics on

the Occ3D-nuScenes validation dataset. Best results are in bold.

Previous results are reported from [36]. RayIoU1m, 2m, 4m refers to

the RayIoU with a depth tolerance of 1, 2, or 4 meters.

in Tab. 3. SurroundOcc with GaussRender achieves higher

mIoU (+1.23) and IoU (+1.99) on visible voxels. It clearly

appears that GaussRender has strong impact on visible vox-

els meaning it has removed visibility artefacts.

Our results show that GaussRender consistently en-

hances various architectures leading to state-of-the-art re-

sults, reaches top results without requiring projected lidar

annotations, and remains effective across different dataset

scales and annotation densities. This demonstrates the sig-

nificant advantages of GaussRender for 3D semantic occu-

pancy learning.

4.3. Finer-grained multi-view metric analysis

RayIoU. Classical 3D occupancy metrics, such as voxel-

wise IoU, treat all voxels equally, often failing to capture in-

consistencies in object surfaces and depth localization. This

can lead to misleading evaluations, as models may artifi-

cially inflate scores by predicting thick or duplicated sur-

faces [36] rather than accurately reconstructing scene ge-

ometry. To address this, we use RayIoU [36], a metric de-

signed to assess 3D occupancy predictions in a depth-aware

manner. Instead of evaluating individual voxels, RayIoU

casts rays through the predicted 3D volume and determines

correctness based on the first occupied voxel the ray inter-

sects. A prediction is considered correct if both the class
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Cameras Sensor Elevated Elevated + Around. Fully Rand. Dynamic

2D+3D 25.9 26.0 26.3 25.4 25.8

2D-only 16.1 11.7 12.9 6.9 4.8

Table 5. Comparison of mIoU with different camera sampling

strategies trained and evaluated on 20% of Occ3D. We evaluate

five sampling strategies under 2D-only and 2D+3D supervision.

Images illustrate the impact of camera positioning, black dots rep-

resent camera centers while red dots represent visible points casted

in their frustum.

label and depth fall within a given tolerance. This approach

mitigates issues with voxel-level IoU, ensuring that mod-

els are rewarded for precise surface localization rather than

over-segmentation.

Using GaussRender consistently improves RayIoU

across tested architectures, as reported in Tab. 4, highlight-

ing its ability to enhance spatial consistency. Notably, mod-

els enhanced with GaussRender achieve state-of-the-art per-

formances with a single frame, outperforming prior works

by a significant margin.

4.4. Ablation studies

We conduct our ablations on fixed subsets of the datasets,

each representing 20% of the training and validation sets.

4.4.1. Impact of supervising with virtual viewpoints

A key advantage of GaussRender is its ability to render

3D occupancy from arbitrary viewpoints, offering a flexi-

ble way to supervise 3D occupancy. To investigate the in-

fluence of virtual camera configurations, we evaluate five

different camera placement strategies: Sensor, Elevated, El-

evated + Around, Fully Random, Dynamic. More details

in Appendix E.4. Quantitatively Tab. 5 quantifies the ef-

fect of each strategy under both 2D-only and 2D+3D su-

pervision using mIoU. To do this we train a TPVFormer

model with GaussRender during 20% of the Occ3d-nuSc

training set. Several conclusions can be drawn. Under 2D-

only supervision, the Sensor strategy leads by a large mar-

gin (16.1 mIoU), suggesting that when only 2D supervi-

sion is available, aligning virtual views with actual camera

positions maximizes consistency and learning efficiency.

Both Fully Random and Dynamic strategies suffer heav-

ily, with performance dropping to 6.9 and 4.8 mIoU, re-

spectively. These results highlight the risk of unstructured

camera placement: random viewpoints often observe unoc-

cupied or irrelevant parts of the scene, weakening the su-

pervision signal while dynamic positioning may introduce

instability and bad signals during training leading to poor

results. Under 2D+3D supervision, we clearly see that what

matters is to have complementary viewpoints since the Sen-

Loss Components SurroundOcc-nuSc [50]

Cam Depth BEV Bev Depth IoU (↑) mIoU (↑)

� 26.3 14.3

� � 26.8 15.1

� � � 27.2 15.6

� � � � 27.5 16.4

Table 6. Impact of adding different loss components on 3D se-

mantic occupancy performances. The architecture used is TPV-

Former [15]. Models are trained with different combinations of

losses and evaluated on 3D IoU and mIoU. We train the models on

20% of SurroundOcc-nuScenes [50].

sor strategy is beaten by Elevated + Around achieving the

best result (26.3 mIoU). This indicates that providing di-

verse and informative viewpoints enhances learning, even

when 3D supervision is available.

Overall, these findings emphasize that virtual camera

placement is important. If we consider a 2D only training,

positioning cameras at sensor location ensures consistency

with sensors during training, while when training 2D+3D,

we need additional viewpoints to enhance supervision.

4.4.2. Loss increment

Finally, we analyze the contribution of each individual loss

component to the final metrics by gradually introducing

each term. The results, in Tab. 6, show that each successive

addition of a loss component leads to a gradual improve-

ment in performance, justifying the inclusion of each term.

5. Conclusion

GaussRender introduces a novel paradigm for enhancing

3D occupancy prediction through differentiable Gaussian

rendering, bridging the gap between voxel-based supervi-

sion and projective consistency. By enforcing projective

geometric and semantic coherence, it significantly reduces

spatial artifacts while maintaining compatibility with di-

verse architectures. The module’s efficiency and flexibility

enable state-of-the-art performance across benchmarks.

Looking ahead, several exciting directions emerge. First,

integrating dynamic viewpoint synthesis with temporal se-

quences could further improve occlusion reasoning. Sec-

ond, extending Gaussian rendering to open-vocabulary 3D

understanding (leveraging vision-language models) might

unlock semantic reasoning beyond predefined classes.
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