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Abstract

Indirect Time-of-Flight (iToF) cameras are popular for 3D
perception because they are cost-effective and easy to de-
ploy. They emit modulated infrared signals to illuminate
the scene and process the received signals to generate am-
plitude and phase images. The depth is calculated from the
phase using the modulation frequency. However, the ob-
tained depth often suffers from noise caused by multi-path
interference, low signal-to-noise ratio (SNR), and depth
wrapping. Building on recent advancements in neural scene
representations, which have shown great potential in 3D
modeling from multi-view RGB images, we propose lever-
aging this approach to reconstruct 3D representations from
noisy iToF data. Our method utilizes the multi-view con-
sistency of amplitude and phase maps, fusing information
from all input views to generate an accurate scene repre-
sentation. Considering the impact of infrared illumination,
we propose a new rendering scheme for amplitude maps
based on signed distance function (SDF) and introduce a
neural lighting function to model the appearance variations
caused by active illumination. We also incorporate a phase-
guided sampling strategy and a wrapping-aware phase-to-
depth loss to utilize raw phase information and mitigate
depth wrapping. Additionally, we add a noise-weight loss
to prevent excessive smoothing information across noisy
multi-view measurements. Experiments conducted on syn-
thetic and real-world datasets demonstrate that the pro-
posed method outperforms state-of-the-art techniques.

1. Introduction

Time-of-Flight (ToF) imaging has emerged as a founda-
tional technology in depth sensing, widely adopted across
diverse fields such as autonomous driving [2, 28, 35], aug-
mented reality [12, 25], and robotics [19, 36], owing to its
capability to capture depth information by measuring the
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Figure 1. iToF cameras are affected by various interferences (a)-
(b), resulting in noisy amplitude and phase information (c). We
aim to utilize neural scene representation techniques to obtain ac-
curate depth information (d) from multi-view iToF imaging data
and achieve promising surface reconstruction (e).

time delay between emitted and received signals. ToF imag-
ing can be broadly classified into direct-ToF (dToF) and
indirect-ToF (iToF) systems. While dToF systems offer pre-
cise depth measurements using components like single pho-
ton avalanche diodes (SPADs), they are often constrained
by high hardware costs and low spatial resolution [37]. In
contrast, iToF imaging emits amplitude-modulated infrared
signals and calculates the phase and amplitude information,
as shown in Fig. 1(c). The phase information denotes the
phase difference between the emitted signals and returned
signals [16], which is then transformed into depth measure-
ments. This approach offers a more cost-effective solution
and provides higher spatial resolution, making it particu-
larly attractive for consumer applications [4].

Despite these advantages, iToF imaging faces significant
challenges, such as multi-path interference, low signal-to-
noise ratio (SNR), and depth wrapping [27]. As shown in
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Fig. 1, multi-path interference leads to depth errors because
the light signals captured by each pixel travel along indirect
paths, affecting the accuracy of depth measurement [11].
Low SNR arises from operating under low exposure times
and power consumption [4], further degrading depth accu-
racy. Additionally, depth wrapping can occur due to the
periodic nature of phase measurements, where the mea-
sured phase ambiguously represents depth beyond a spe-
cific range, leading to significant inaccuracies, especially
in scenes with high-depth variation [13]. Some researchers
have been struggling to address these errors in iToF imag-
ing. With the advancement of deep learning, many data-
driven approaches [1, 7-10, 17, 20, 29, 32] have been de-
veloped, which train on simulated datasets and aim to gen-
eralize to real-world data. However, reliance on training
data limits these methods’ adaptability across different iToF
camera systems, which hinders their generalization to sce-
narios beyond the training conditions.

Recently, Neural Radiance Fields (NeRF) [21] and re-
lated techniques have gained significant attention as pow-
erful tools for 3D reconstruction from a set of input RGB
images. RawNeRF [22] demonstrates that when optimiz-
ing a 3D scene representation using multi-view images with
noise, the optimization process can effectively smooth out
the noise through multi-view consistency, without relying
on additional denoising designs. Building on this foun-
dation, we aim to achieve precise 3D reconstruction from
multi-view noisy iToF imaging data by enforcing the con-
sistency of the amplitude and phase components across dif-
ferent views. Unlike data-driven methods that depend on
specific training datasets, this approach functions indepen-
dently of GT supervision, making it suitable for data cap-
tured by various iToF cameras at different frequencies.

When directly applying the classic volume rendering
scheme to amplitude maps of iToF data, the results are
often unsatisfactory due to the varying lighting conditions
caused by the infrared light signals emitted by the iToF
camera. To address this, we propose a rendering scheme
based on Signed Distance Functions (SDF), which simu-
lates the imaging process of iToF cameras and facilitates
surface reconstruction. To model the appearance variations
caused by lighting, we introduce a neural lighting function
that models the reconstructed scene’s response to infrared
light signals in the incident direction. Moreover, the depth
measurements of iToF cameras are derived from phase shift,
which constrains their measurement range based on modu-
lation frequency. This leads to phase wrapping when the
actual depth exceeds the measurement limits. We propose
a wrapping-aware loss that supervises reconstruction using
wrapped phase estimation to mitigate the ambiguity. Fur-
thermore, we adopt a phase-guided sampling strategy to
leverage the phase information, thereby enhancing perfor-
mance. To avoid excessive smoothing of noisy data from

different viewpoints, we use a noise-weight regularization
in the loss function to improve the reconstruction details.
By integrating these components, we construct a neural
scene representation directly from noisy multi-view iToF
amplitude and phase information, optimizing depth estima-
tion and outputting accurate 3D mesh reconstruction.

In summary, the contributions of this work can be sum-
marized as follows:

* We propose a new rendering scheme based on SDF and
introduce a neural lighting function to model the appear-
ance variation caused by infrared illumination signals.
These innovations enable accurate surface reconstruction
from raw iToF imaging data.

* We introduce a Wrapping-Aware loss to address the am-
biguity caused by phase wrapping and adapt a sampling
strategy to leverage the phase information provided by
iToF imaging. These methods are designed to enhance
the effectiveness of the training process.

» Extensive experiments validate the effectiveness of the
proposed method under both synthetic and real-world
scenarios. Compared with TORF [3], we achieved error
reductions of 70.3% in the MAE metric for depth error.

2. Related Work

In this section, we briefly overview methods that are related
to learning-based iToF imaging and neural scene represen-
tation (NSR) methods under active illumination.

Data-Driven ToF Imaging: Recently, learning-based
methods have greatly improved depth estimation from iToF
cameras. Some approaches take noisy iToF depth data as
input and produce refined depth estimations. Marco et al.
[17] created a dataset for ToF denoising and proposed a light
transport model for multi-path interference effects. Agresti
et al. [1] developed an adversarial learning strategy to ad-
dress the domain shift between unlabeled real-world scenes
and synthetic training data. Dong et al. [7] utilized the spa-
tial structure of scenes by constructing a multi-scale depth
residual pyramid. RADU [29] extended 2D ToF denoising
to 3D, using 3D point CNNs for depth updating. MTDNet
[8] further improved depth estimation by combining multi-
frame imaging results. Other approaches enhance depth es-
timation by leveraging both amplitude and phase informa-
tion from iToF imaging. Su et al. [32] directly took raw
measurements as input and output denoised depth maps.
Guo et al. [9] generated a large-scale ToF dataset and a
residual-based U-Net network to remove multi-path inter-
ference and shot noise. iToF2dToF [10] interpolated fre-
quency measurements from iToF images to estimate dToF
images, offering an alternative output representation. Meng
et al. [20] established the relationship between measure-
ments taken at different times and phase shifts to miti-
gate errors caused by 3D motions in iToF imaging. Since
acquiring detailed 3D ground truth data from real-world
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iToF imaging is challenging and costly, these methods are
predominantly trained on simulated datasets, limiting their
generalizability to real-world applications.

NSR under Active Illumination: Although NeRF has
demonstrated promising results [5, 21, 23, 26, 38], it has
limitations when dealing with inputs under varying illumi-
nation conditions. These limitations lead to ambiguities in
scenes, as the observed radiance at the same spatial location
and viewing direction can vary due to variations in lighting
intensity [40]. These variations are often introduced by ac-
tive imaging devices, such as structured light systems and
iToF cameras. To address this issue, some studies have ex-
tended NeRF to these devices by redesigning the volume
rendering scheme and/or incorporating additional imaging
data [6, 15, 30, 31, 39]. Structured light cameras project
a known pattern onto a scene and use the captured defor-
mation image to calculate the 3D shape of the objects. Li
et al. [15] reconstructed 3D objects with a neural signed
distance field from multi-view structured light pattern im-
ages. Shandilya et al. [30] adopt a density field to explicitly
model raw structured light images to recover scene geom-
etry and additional properties such as surface normals, di-
rect and indirect lighting components. Both approaches use
additional ambient images without lighting as supervision.
iToF cameras emit modulated infrared light to illuminate
the scene and recover depth by measuring the time it takes
for the light to travel from the source to the scene and back
to the sensor. TORF [3] combined RGB images with iToF
imaging data to model dynamic scenes, while F-TORF [24]
reconstructed fast-moving objects with a fixed camera po-
sition. In contrast to these works, we focus on developing
an approach for high-quality static 3D reconstruction using
multi-view iToF imaging data.

3. Preliminary

In this section, we introduce the fundamental principles
and mathematical formulations of the iToF camera, includ-
ing the transformation of the emitted infrared signal into
the received signal, as well as the methods for obtaining
phase and amplitude measurements. ToF cameras emit an
amplitude-modulated infrared signal, represented as

g(t) = g1 cos(27 ft) + go, (1)

where g is the modulation amplitude, f is the modulation
frequency, and gy is the direct current (DC) offset. This sig-
nal illuminates the scene, and the light reflects off objects,
returning to the camera with a time delay 7y, which depends
on the distance to the object. The received signal at a cam-
era pixel can be expressed as

Srec(t) = r1cos(2m ft — 27 f1o) + 70, )

where r; and 7y represent the amplitude and DC compo-
nent of the signal after reflection from the object and at-

tenuation during propagation through the medium. To mea-
sure the phase shift 27 f 7y and amplitude, ToF cameras pro-
cess the received signal with an internal reference signal,
bcos(2m ft — ¢), where ¢ is a programmable phase shift.
The multiplication of the received signal s(¢) with the ref-
erence signal results in

i(t) = s(t) - beos(2m ft — ). 3)

This signal is then integrated over a long exposure time,
filtering out high-frequency components and isolating the
phase-related terms. By capturing measurements at multi-
ple reference phase settings (0°, 90°, 180°, and 270°), we
obtain the measurements I, which can be expressed as:

b
I, = % cos(¢p—2mfry)+ap, ¢ € {0°,90°,180°,270°},

“)
where ag includes the contributions from environmental
light and DC offset. These measurements are then used to
calculate the phase shift # and amplitude A:

Igg — I
0 = 27 f1y = arctan <90270> , 5)
Igo — Ip

A= /(Io — Iis0)? + (Izro — Ioo)? = 11b.  (6)

The phase shift 6 is directly related to the time delay of the
signal and to the distance of the object, which is given by
d = ¢ 719/2, where c is the speed of light. This equation
accounts for the round-trip time of the emitted signal. The
amplitude A reflects the combined effects of surface reflec-
tivity and modulation amplitude.

4. Method
4.1. Rendering for iToF Imaging Data

The vanilla radiance integral formula from NeRF [18] is
defined as:

n

cn = / (c(s)a(s)e_ fdﬁ"("’)dt) ds, (7

m

where C‘;EL € R3 denotes the integrated radiance along the
segment between m and n. Here, ¢(s) € R3 indicates the
radiance emitted from that point at position s, and o(s) € R
is the medium absorption coefficient at position s. The point
5 = 0 corresponds to the pixel at the camera. In the vanilla
NeRF framework, c(s) is typically assumed to be constant
for a given point from the same direction, implying that the
radiance emitted by each point is independent of the light
source position. Following [3], we consider the light source
and the signal receiver to be at the same position, and the
¢(s) under the effects of active illumination can be further
detailed as:

C(S) _ AOJE(S) . 67'[5 U(s)ds7 (8)
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Figure 2. Our method learns 3D scene geometry from a set of iToF imaging data, including phase and amplitude information. For
an emitted ray (red arrow), its optical center o, direction v, and measured phase information 6 are used for Phasor Guided Sampling,
introduced in Sec. 4.3, to obtain a series of sampling points p;. These sampling points are then queried through a neural network to obtain
the corresponding reflectance R; and signed distance function SDF;. At the same time, the emitted ray’s direction v and implicit encoding
E are used to determine the scene’s lighting response A (Sec. 4.2). Finally, the rendering pipeline introduced in Sec. 4.1 synthesizes phase
and amplitude data, which are used to construct supervision along with the imaging results.

where Ay € R is the initial amplitude of the infrared light
source, and 1/s? models the geometric attenuation of the
amplitude. The term e~ J5 @(s)ds accounts for the medium-
induced attenuation, while R(s) € R reflects the energy
loss due to surface reflections. By integrating Eq. 7 and Eq.
8, we derive the radiance integral under active illumination
conditions as:

- [ (28,
m S

This equation is further discretized as follows:

(s)e™ Js 2U(t)dt> ds. 9)

N - |
A=Y TR g e L0l

10
22 (10)

i=1

which represents the amplitude information of the received
signal. Following NeuS [34], this formulation can be ex-
tended to incorporate Signed Distance Functions (SDF) as:

N

AoR;

A= E TiOéith , (11)
i=1 i

where T; = H;;ll(l — a;) represents the accumulated
transmittance up to point ¢, and the opacity a; € R based

on the SDF values is defined as:

@%(SDF(ti)) — @%(SDF(tZ—H))
ozl':max< @%(SDF(ti)) ,0> (12)

where ®5(z) = (1 + e~#)~! is the logistic function that
controls the smoothness of the transition. This formulation,

based on the Signed Distance Representation, models the
attenuation of the amplitude of the emitted signal during
spatial propagation and reflection, rendering the amplitude
information of iToF imaging data. Please refer to the sup-
plementary materials for the detailed derivation process.

Particularly, given a ray r(t) = o + tv, where o € R? is
the origin and v € R3 is the direction, we sample a set of
points {p; € R*}Y | along the ray. For each sampled point
P, the Signed Distance Function (SDF) value SDF; € R
and the reflection attenuation coefficient R; are predicted
by the neural networks:

SDF;,fi = Gy(pi), Ri=Ry(piv,fi), (13)
where f; € R™7 is the feature vector predicted by the ge-
ometry network G'¢. The SDF value SDF; quantifies the
distance of each sampled point from the nearest surface,
providing essential geometric information about the scene,
while R; models the reflection attenuation. Substituting
these values into Eq. 11, we can obtain the rendered am-
plitude component A. Furthermore, the phase measurement
4(r) can be derived from the depth estimation as:

inf |

N
. D(r)] mod 27, D(r) = ;Tiaiti, (14)

O(r) = {

where f is the modulated frequency of the emitted infrared
signal, c is the speed of light.
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4.2. Neural Lighting Function

In an ideal scenario, the infrared light signal emitted is mod-
eled as a point light source, meaning its energy distribution
is uniform in all directions [33]. Therefore, the term Aq in
Eq. 11 is considered a constant. However, in practical iToF
imaging devices, the light source is often a surface light
source, which leads to the inconsistency in the amplitude of
the emitted signal across different directions [4]. Addition-
ally, the amplitude of the signal is influenced by the incident
angle and the normal vector of the surface. These factors
affect the energy distribution in the reflection direction. To
address these issues, we propose the Neural Lighting Func-
tion, which uses a neural network to implicitly model the
amplitude distribution of the emitted signal. Specifically,
for a ray r corresponding to a pixel in the iToF measure-
ment M, the initial amplitude of the ray is given by:

Ap(r) = Fy(ve, Ej), (15)

where v, € R3 is the direction vector in the camera coor-
dinate system, which can be obtained from the camera’s in-
trinsic parameters; E; € R3? is a learnable implicit encod-
ing corresponding to the original measurement M. This
encoding captures the specific characteristics of the light
source and environmental conditions during the iToF imag-
ing, allowing the neural network to adaptively model the
initial energy distribution of the light source for each esti-
mated scenario.

4.3. Phase Guided Sampling

In iToF imaging, the phase measurements are within the
range of 0 to 27, which corresponds to the range of dis-
tances related to the modulation frequency f. However,
due to the periodicity of phase measurements as introduced
in Eq. 5, the observed phase € may not directly repre-
sent the true phase, which could be in a periodic space:
Owe = 0 + 27k, where k € {0,1,2...}. To effec-
tively leverage the prior phase information from iToF data
and address noise caused by the wrapped phase, we per-
form uniform sampling within a phase range adjusted for
potential phase wraps. Specifically, we consider the true
phase values within the interval [—e, €] around each peri-
odic phase space Oy, = 6 + 27k. Finally, for the ray
r, we perform uniform sampling within the range [¢,,,t/]
and combine it with the phase-wrapped interval sampling

ﬁ[@ + 27k — €,0 + 2wk + €] to obtain the final sam-
7T

pling points. This approach helps mitigate inaccuracies in
geometric representation caused by phase ambiguities and
noise, ensuring a more robust and accurate modeling of the
scene’s depth and structure.

4.4. Loss Function

We optimize our neural scene representation by minimizing
the following loss functions.
Photometric Loss.

1 o
L= 7l > IA(r) - Av)l, (16)

reR

where R is a batch of camera rays, A is the rendered ampli-
tude and A is the reference amplitude.
Wrapping-Aware Phase-to-Depth Loss.

;o adn

d(r) = d - round (ﬁ(r)dD(r)> , (18)

where D represents the rendered depth, and D is the refer-
ence depth derived from the phase measurements, given by
D(r) = ¢-0(r)/4nf. The parameter d = ¢/2f defines
the depth range. The round(-) function performs a rounding
operation. This loss function is designed to measure the dis-
crepancy between the rendered depth D and the reference
depth D, with §(r) incorporating a wrapping operation to
mitigate the effect of periodic depth errors.

Noise-Weight Loss.

1 A
L, = il > w(r)-||D(r) - D(r) - 5(r)

a9
where w(r) = exp(—u ‘f)(r) — D(r) — d(r)|), and we set

1 = 0.5 in our experiments.
Eikonal Loss.

1
£ =7 2 (IVGa(Pll, - 1), 20)

pEP

where VG (p) denotes the gradient of the signed distance
function (SDF) at the sample points p. This helps ensure
that the SDF represents a valid distance function, improving
the stability and accuracy of the model during training.

S. Experiments
5.1. Datasets

Synthetic. We constructed a multi-view reconstruction
evaluation dataset based on iToF2dToF [10]. Each sam-
ple includes RGB images, ground truth depth maps, iToF
frequency images at 31 frequencies (generated via Mitsub-
aToF transient simulation), and camera poses. The scenes
primarily contain diffuse materials. For evaluation, we se-
lected six representative indoor scenes with measurements
at 20, 40, and 60 MHz frequencies.
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Figure 3. Qualitative comparisons on the synthetic dataset. (b) represents the depth calculated from Eq. 5, visualized in the range of 0 to
2.5 meters for reference. (e), (c), and (d) are visualized within the same depth range to ensure a fair comparison.

Real-world. The dataset proposed by TORF [3] utilizes a
Texas Instruments OPT8241 sensor to capture iToF mea-
surements at a resolution of 320x240 and 30 fps, with an
unambiguous range of 5 meters. The scenes are recorded
indoors in office environments, featuring a person perform-
ing dynamic actions. Since the dataset includes dynamic
objects, we apply masks during training to exclude the dy-
namic parts of the scene, focusing on the static elements.

5.2. Implementation details

We implement our network using the PyTorch framework
and train it for 20K iterations on a single NVIDIA A6000
GPU with approximately 6 GB of video memory, complet-
ing the process in around 20 minutes. We randomly sample
512 camera rays per optimization step. Specifically, during
the first 5000 iterations, the network is trained with a com-

bined photometric loss and regularization loss, defined as
L = L,40.001L,. For iterations 5000 to 15000, we intro-
duce the Wrapping-Aware Phase-to-Depth Loss, updating
the objective to £ = L, + L,, +0.001L,.. In the final 5,000
iterations, L., is replaced by L,,.We use the Adam optimizer
[14], starting with a learning rate of 5 x 10~ that decays
exponentially to 5 x 1075,

5.3. Evaluation

Baselines. To evaluate our approach, we conduct compar-
isons against following methods. iToF Depth refers to depth
produced directly by the phase information from iToF mea-
surements. TORF [3] is a previous iToF-based approach that
employs separate networks for static and dynamic parts and
then blends them to reconstruct a dynamic scene. For a fair
comparison, we disable TORF’s dynamic network to focus
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Table 1. Evaluation results on the constructed synthetic dataset. Our method quantitatively outperforms all prior work in all scenes. T6RF'

is trained with additional RGB images.

Method | MAE| RMSE| &1 | MAE| RMSE| &1 | MAE| RMSE| 41
iToF Depth 24918 29357 0.2224 09526 13201  0.6130 1.8428 22191  0.3298
NeuS-ToF 23439 27788 0.2426 07706 1.0000  0.4649 0.5027 05027  0.7965
NeuS-RGB | oo 05405 07914 08727 | o 01629 02594 09138 | o 0.5304  0.6683 0.6916

T6RF AOOM= 0 1470 02253 09900 | CHOO™ 00787 0.1483 09861 | CCUT°™  0.1400 02614 09727

T6RF 02311 04060 0.9424 02305 04083  0.9097 0.1328 02056 0.9776
Ours 0.0427 01059  0.9968 0.0404  0.0900  0.9977 0.0337  0.0688 0.9984
iToF Depth 23747 2.6516  0.1695 14151 16978  0.4266 37801  4.0180  0.0312
NeuS-ToF 05742  1.1008 0.7575 00516  0.1284  0.9726 0.5800 1.1071  0.7794
NeuS-RGB | . . 03210 0.6513 08752 | . 05208 06521 06493 | . 02766 04401 09215
T6RF? WINGTOOM ) 3459 0.6683  0.8559 | 2NO1T 00977 03442 09992 | VAW 57180 03887 0.9692
T6RF 0.6170  0.8930  0.7468 00811  0.1021  0.9993 0.1171  0.1844  0.9935
Ours 0.0820 02846  0.9771 0.0393 00633  0.9994 0.0428 00911  0.9982

TORF

Ours

Figure 4. Comparisons of surface reconstruction on the synthetic dataset. RGB images are presented for reference.

Table 2. Experimental results on the effects of the data informa-
tion. Metrics are averaged over 6 scenes from the synthetic dataset.

Supervision MAE] RMSE | o1 7
w/o Phase 0.3712 0.4957 0.7839
w/o Amplitude 2.9484 3.0702 0.1666
Phase & Amplitude 0.0468 0.1173 0.9946

on static reconstruction. Since T6RF uses both RGB and
iToF information, we additionally provide results where the
model is trained solely on iToF data. Additionally, we have
built two baselines based on NeuS [34]. Neus-ToF uses our
framework for training but applies NeuS’ rendering scheme
to render amplitude maps. Neus-RGB is the result of train-
ing with RGB images without iToF data.

Quantitative Results. Table | presents the error metrics
calculated between the rendered depth and ground truth to
evaluate reconstruction accuracy. All scenes were captured
with the modulation frequency of 60 MHz, corresponding
to a depth range of 0 ~ 2.5 meters for the iToF camera. In
these challenging scenes, our method demonstrates superior
performance across all scenes. NeuS-ToF did not achieve
strong results, confirming the effectiveness of our proposed
rendering scheme under active illumination.

Qualitative Results. As shown in Fig. 3, we provide visual
comparisons of the rendered depth maps from our method
and TORF [3]. From the first to the fourth rows, it can

be observed that TORF [3] introduces significant artifacts
in complex scenes, whereas our method consistently pro-
vides accurate reconstruction results. The fourth and fifth
rows illustrate the reconstruction results in simpler scenes,
where our method still achieves more accurate results. Fig.
4 presents the surface construction results, and our method
can better reconstruct the geometric structure of the scene.
This demonstrates that our SDF-based representation out-
performs TORF in achieving better surface reconstruction.
Moreover, we present the results from a real-world scenario,
as shown in Fig. 5. Unlike the synthetic dataset, noise
in real-world scenes often exists in local areas, which we
highlight with a black box. After fusing the multi-view in-
formation, the noise is effectively removed. Additionally,
the scene suffers from wrapped estimation issues (as shown
in the right area of the image), which is also addressed by
our method. For more visualizations in real-world scenar-
ios, please refer to the supplementary materials.

5.4. Ablation Study

In this section, we conduct ablation studies on the synthetic
dataset to evaluate the proposed methods.

Scene Representation. Since iToF imaging includes both
amplitude and phase information, we investigate the impact
of these components on reconstruction, as shown in Tab.
2. Without amplitude supervision, the network fails to con-
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i ‘vl

Figure 5. Visual comparisons in the real-world scenario. The scene was captured using an iToF camera with a 30 MHz modulation
frequency, corresponding to a depth range of 0 ~ 5m meters.

Table 3. An ablation study of the techniques introduced to fa-
cilitate the optimization of the scene representation. Metrics are
averaged over the 6 scenes from the synthetic dataset. L., is intro-
duced in Eq. 17. The Sampling Strategy is presented in Sec. 4.3.
L., is denoted with Eq. 19.

L, Sampling Strategy £, MAE] RMSE] ;71

- - - 09039 15218 0.7908
v - - 0.0535 0.1307  0.9909
- v - 03901  0.6990 0.8465
v v - 0.0510 0.1264  0.9881
v v v 0.0468 0.1173  0.9946

verge. In contrast, the network can still perform moderately
without phase supervision. Our approach achieves supe-
rior performance with both amplitude and phase informa-
tion, featuring the importance of jointly considering these
two components.

Modulation Frequency. We conduct ablation experiments
to examine the impact of modulation frequency, ranging
from 20 MHz to 60 MHz, which corresponds to a depth
range of the iToF camera from 7.5 m to 2.5 m. The results
are shown in Tab. 4. Our method achieves promising 3D
reconstructions across different frequencies and leverages
the higher accuracy of higher frequencies to produce more
precise 3D reconstructions.

Loss Items £,, and £,,. To evaluate the effectiveness of
the proposed Wrapping-Aware Phase-to-Depth Loss, we
replace it with a simple phase loss, formulated as £ =

\771€| D orer Hé(r) — G(r)H . From the first row and second

of Tab. 3, the proposed loss effectively recovers accurate
geometric reconstruction results from wrapped estimations.
Moreover, the fifth row of the Tab. 3 shows that the intro-
duced noise-weight loss £,, further improves performance.
Please refer to the visualization in the supplementary mate-
rials, where L£,, helps recover more scene details.

Phase Guided Sampling. To validate the effectiveness of
the proposed Phase Guided Sampling scheme, we replace it
with uniform sampling in [t,,,¢s]. As shown in Tab. 3, the
proposed sampling strategy further improves performance.

TORF Depth Ours Mesh TORF Mesh

Table 4. Experiments on the effects of the modulation frequency.
Metrics are averaged over 6 scenes from the synthetic dataset.

Frequency Depth Range MAE | RMSE | 0T
20M 0~ 7.5m 0.1018 0.1735 0.9943
40M 0~ 3.75m 0.0634 0.1353 0.9914
60M 0~ 2.5m 0.0468 0.1173 0.9946

Table 5. Quantitative comparisons of the MAE error with the depth
measurements only affected by MPI noise.

Bathroom2 Bathroom Bedroom Living-Room Veach-bidir Veach-ajar
MPI  0.1340 0.1505  0.1868 0.1671 0.1541 0.2251
Ours  0.0937 0.0700  0.1026 0.1208 0.1086 0.1148

MPI Removal. Our work does not explicitly model the
generation of MPI noise. Our motivation is that the impact
of MPI varies across different viewpoints. Therefore, by
constraining a unified scene representation with multi-view
imaging results, we can smooth the noise and learn a more
accurate expression. We conduct evaluations on data with
a modulation frequency of 20M, as shown in Tab. 5. The
‘MPT’ represents the error of the depth measurements only
affected by multi-path interference noise. Our depth errors
are lower, suggesting that multi-path interference noise is
reduced. Please refer to the supplementary materials for
further discussion.

6. Conclusion

We propose a framework to achieve accurate 3d reconstruc-
tion from noisy amplitude and phase images of iToF cam-
era with neural scene representation. The developed ren-
dering scheme, lighting modeling, sampling strategy, and
loss items improve the scene representation to obtain accu-
rate measurements efficiently. Experimental results demon-
strate that our method achieves state-of-the-art performance
in both qualitative and quantitative ways. Limitations. Our
method has several limitations. It relies on calibrated cam-
era poses. The approach also struggles with strong specular
reflections and complex multi-path interference.
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