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Abstract

No published work on visual question answering (VQA) ac-
counts for ambiguity regarding where the content described
in the question is located in the image. To fill this gap, we
introduce VQ-FocusAmbiguity, the first VQA dataset that
visually grounds each plausible image region a question
could refer to when arriving at valid answers. We next an-
alyze and compare our dataset to existing datasets to re-
veal its unique properties. Finally, we benchmark modern
models for two novel tasks related to acknowledging focus
ambiguity: recognizing whether a visual question has focus
ambiguity and locating all plausible focus regions within
the image. Results show that the dataset is challenging for
modern models. To facilitate future progress on these tasks,
we publicly share the dataset with an evaluation server at
https://vizwiz.org/tasks-and-datasets/
focus-ambiguity-in-visual-questions/.

1. Introduction
Ambiguous language is a common part of communication.
It entails using vague words or phrases that can be inter-
preted in multiple plausible ways, ideally alongside con-
text clarifying the intended meaning. For example, when a
three-year-old asks “What is this?”, we can understand the
meaning if the child simultaneously points to an item (e.g., a
red pomegranate). However, context is not always provided
to clarify the intended meaning of a question, as exempli-
fied in Figure 1. In such cases, the language in the question
could refer to multiple plausible visual regions. We call this
focus ambiguity in visual questions, or more concisely “am-
biguous questions” and “question ambiguity”.

Our paper is motivated by the belief that a VQA sys-
tem should notify users when there is question ambiguity
and then facilitate them to arrive at the desired interpreta-
tion. The possible repercussions from VQA services not
providing such information can be grave, potentially inflict-
ing adverse social, professional, legal, financial, and per-
sonal consequences. For instance, imagine if the answer to
the question in Figure 1 about “What is the cleaning prod-

Figure 1. Visual questions with focus ambiguity, meaning lan-
guage in the questions (underlined words/phrases) refer to mul-
tiple plausible image regions (aka, segmentations). ‘Q’ denotes
the question, ‘F’ denotes the focus specified in the question, and
‘A’ denotes the answer. We created a new dataset that origi-
nates from four sources to represent ambiguous and unambiguous
questions, with two of the sources originating from existing VQA
datasets [15, 22] and exemplified in this figure. As shown, the lo-
cation of the question grounding and answer grounding can match
(in which case, matching colors are used for all segmentations and
their associated text) and can differ (bottom right example, where
an additional answer segmentation is shown with a dashed line).

uct?” leads a blind person to use window cleaner to wash
their dishes they will use for eating instead of the dish soap.
Alternatively, imagine replacing the question in Figure 1
with “What is the medicine?” when instead three pill bottles
are visible. The current obstacle for developing ambiguity-
aware VQA solutions is that no benchmark dataset exists for
establishing to what extent VQA models are aware of ques-
tion ambiguity and so where further improvement is needed.

To fill this gap, we introduce the first dataset goal-
oriented towards focus ambiguity in visual questions.
Called VQ-FocusAmbiguity, it consists of 5,500 exam-
ples and segments (aka, grounds) all plausible image re-
gions to which the language in each question could refer.
The dataset has a nearly even distribution between ambigu-
ous and unambiguous examples. We also characterize this
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dataset and how it relates to a related answer grounding
dataset. Crucially, as exemplified in Figure 1, our analysis
underscores the importance of disentangling questions as a
source of ambiguity, since the focus of language in ques-
tions can differ from visual evidence showing answers. Ad-
ditional scenarios where the question and answer ground-
ings can differ include for questions about relations (e.g.,
“What is above the mirror?”, with the question grounding of
the mirror, and answer grounding of objects above the mir-
ror) and activities (e.g., “What is the person doing?”, with
the question grounding of a person and the answer ground-
ing of a frisbee). Finally, we show that modern models per-
form poorly for the tasks of (1) recognizing whether a visual
question has focus ambiguity and (2) locating all plausible
image regions to which the content described in the question
could refer. Our fine-grained analysis reveals where models
struggle, and so provides valuable insights for future efforts
in model development.

Success in developing ambiguity-aware solutions can
immediately benefit today’s users of VQA services, span-
ning blind and sighted individuals, who already regularly
ask visual questions using mobile phone apps (e.g., Be
My AI, Microsoft’s Seeing AI), smart glasses (e.g., Meta’s
Ray Bans, Envision AI), and the web (e.g., Q&A plat-
forms such as Stack Exchange). It would enable AI agents
to alert users when there is question ambiguity as well as
interactively guide users towards disambiguating their in-
tent by having them specify which from all plausible im-
age regions the question is referring to. This work can
also support enhanced reasoning abilities of AI agents, by
encouraging an intermediate step of determining a ques-
tion’s focus in an image towards deciding what answer to
predict. Finally, we expect this work will serve as a pio-
neering example for addressing focus ambiguity for other
vision-language tasks (e.g., image captioning [11], visual
storytelling [34], language-guided image editing [37]), and
across more modalities (e.g., focus ambiguity for questions
asking about visual, audible, tactile, or olfactory content).

2. Related Work
Automatically Acknowledging Ambiguity in Question
Answering. Automated systems already account for sev-
eral types of ambiguity in question answering. Most focus
on a purely language setting [17, 27, 38, 49], such as when a
word has multiple plausible meanings (e.g., “revolting” can
mean rebelling or disgusting). A few focus on multimodal
VQA [4, 19, 40, 46, 50, 53], by accounting for when and
why different answers are observed from different people
(e.g., due to subjectivity and differing levels of granularity).
Our work complements prior work by being the first to dis-
entangle the questions themselves as a source of ambigu-
ity, thereby helping clarify how different answers can arise
by showing the reasoning process from a question that leads

to the answers.

VQA and VQA Grounding Datasets. Many datasets ex-
ist for VQA [2, 7, 15, 22, 36, 45] and locating the visual
evidence showing where answers to visual questions re-
side [5, 6, 14, 24, 29, 51, 55]. One dataset, Visual7W [55],
even locates where the language in questions refers to in im-
ages. Extending prior work, we introduce the first dataset
goal-oriented to focus ambiguity, with examples showing
when language in questions refers to multiple plausible
image regions.

Natural Language Localization. More generally, this
work contributes to existing literature on locating linguistic
expressions in an image, which is already explored for tasks
like object detection [56], instance segmentation [18, 23],
referring expression comprehension [8, 41], and described
object detection [44, 52]. Complementing these tasks, our
work locates where language in a question refers to in
an image, which yields diverse linguistic expressions, in-
cluding vague terms such as “this”, “it”, and “her” (e.g.,
third person pronouns, singular demonstrative pronouns).

3. VQ-FocusAmbiguity Dataset
3.1. Dataset Creation
Each example in our dataset has three parts: an image, a
question, and segmentations for all regions that could be
the focus of the question. We created the dataset by ex-
tending four diverse sources, that are described in Table 1.
The visual data spans content that (1) shows a single ob-
ject and complex scenes; (2) comes from sighted and vi-
sually impaired photographers, and (3) has objects at vari-
ous locations and of many sizes. Questions ask about many
subjects—including about objects and their parts—as well
as about their relationships and actions, using vague terms
(e.g., “this”), specific categories (e.g., “bus”), and detailed
descriptions (e.g., “person in blue next to the car”).

3.1.1. Extensions of Segmentation Datasets
Most examples are derived from two entity segmentation
datasets, which already provide images with segmentations.

Data Source. We leverage test sets of PACO [42] and
MSRA-B [33], which both contain images scraped from
online image-sharing platforms. PACO uses the COCO
images [31], which each show a complex scene with two
or more objects. PACO provides exhaustive segmentations
for all instances belonging to 75 object and 200 part cate-
gories. MSRA-B, in contrast, is a salient object segmenta-
tion dataset designed to contain a single foreground object
per image, agnostic to the object category [26].

Data Filtering. For PACO, we randomly sampled 2,272
examples. For MSRA-B, we focused on the 626 images
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Dataset Image Source Question Source Ambiguity Labels Segmentations % Unambig (#)
PACO [42] COCO (2017) [18, 31] Synthesized + Workers Workers Workers* 50% (2,272)
MSRA-B [33] MSRA-B [33] Synthesized STATIC [20] Workers 100% (626)

AnswerTherapy [6]
COCO (2015) [31]
VizWiz [22]

Workers [31]
Visually Impaired People [22]

Workers Workers 47% (82)
53% (83)

Table 1. Description of the four data sources used in VQ-FocusAmbiguity. Entries in bold represent new annotations created by our team.
(* denotes when annotators selected between candidate segmentations rather than creating them from scratch; Unambig = Unambiguous).

that both lacked human faces and adult content (we deter-
mined this using the GPT-4o model [39]) and were flagged
as containing “a single, noncontroversial foreground object
of interest” [21].

Data Annotation. We next established questions with
language referring to the segmentations.

For PACO, we achieved this using a home-grown anno-
tation interface that showed the image with all available
segmentations overlaid on the image. The interface first
prompted the annotator to generate a question by present-
ing a list of AI-suggested questions and letting the anno-
tator choose between either (1) authoring a question from
scratch, (2) selecting a suggested candidate question as is,
or (3) selecting a suggested candidate question after refining
it.1 Next, the user was prompted to select all segmentations
to which the question could be grounded.

For MSRA-B, we only generated unambiguous ques-
tions and used the single segmentation per image as the
question’s focus. We automatically generated the questions,
using variants of the most common question asked by peo-
ple with vision impairments [22]: “What is this?”

3.1.2. Extensions of Visual Question Answering Datasets
The remaining examples extend two VQA datasets.

Data Source. We extend VizWiz-VQA [22] and
VQAv2 [16]. VizWiz-VQA represents an authentic use
case where people with visual impairments asked questions
about images they took. VQAv2 is the most popular VQA
dataset for model benchmarking and was created by asking
people to make up questions about images that would
“stump a robot”. We focused on the 4,440 examples from
these sources contained in the publicly-available splits
of the AnswerTherapy dataset [6] (i.e., its training and
validation sets) to enable comparison between its answer
groundings and our question groundings.

Data Annotation. We established a trusted annotation
protocol through three iterative refinement steps, discussed
in the supplementary materials. Following this protocol,
in-house annotators labeled every example from the data
source by (1) locating the phrase in the question that needed
to be grounded to the image in order to answer the question

1When generating ambiguous questions, annotators chose options 1, 2,
and 3 for 55%, 31%, and 14% respectively. For unambiguous questions,
annotators chose options 1, 2, and 3 for 43%, 43%, and 14% respectively.

and (2) indicating whether there was ambiguity where the
phrase is referring to in the image. This culminated in 165
ambiguous questions and 4,275 unambiguous questions,
with 85% (i.e., 3792/4440) belonging to visual questions
with a single answer grounding and 15% (i.e., 648/4440)
belonging to visual questions with multiple answer ground-
ings. The annotators then segmented all 165 ambiguous
questions and 165 randomly sampled unambiguous ques-
tions, locating all regions the relevant phrase could focus
on in the images.

Data annotation culminated in 5,500 visual questions
with 12,880 instance segmentations and 5,500 classifica-
tion labels (the binary flag for ambiguity is inferred from
the number of segmentations).2 Examples are nearly evenly
distributed between containing and lacking question ambi-
guity, with 2,437 and 3,063 examples respectively.

3.1.3. Dataset Splits
Consistent with recent published VQA datasets [7, 25, 30,
35, 47, 54], we split this dataset to support zero/few-shot
learning settings. This recent trend reflects that state-of-
the-art performance regularly arises from foundation mod-
els in such settings; e.g., Frozen in 2021 [48], Flamingo
in 2022 [1], ViTiS in 2023 [13], and LLaVA-v1.6 in
2024 [32]. For both the training and validation sets, we
randomly sampled 10 unambiguous and 10 ambiguous ex-
amples from each data source to increase domain diver-
sity. With four sources for unambiguous questions (PACO,
MSRA-B, AnswerTherapy-VQAv2, and AnswerTherapy-
VizWiz) and three sources for ambiguous questions (PACO,
AnswerTherapy-VQAv2, and AnswerTherapy-VizWiz), we
end up with 70, 70, and 5,360 examples in our training, val-
idation, and test splits respectively.

3.2. Dataset Analysis

Questions. We first characterize how questions compare
for examples with versus without focus ambiguity. We pro-
vide analysis with respect to the entire VQ-FocusAmbiguity
dataset as well as with respect to each data source.

Statistics regarding how many words are in the questions
are shown in Figure 2(a). Overall, we observe a tendency

2To facilitate future research, we also publicly-share the metadata about
the additional 4,110 examples from the VQA datasets that we flagged as
unambiguous but did not segment.
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Figure 2. Analysis of questions in the dataset. (a) Box plot show-
ing the number of words in questions that are unambiguous (UA)
versus ambiguous (A), overall and for each data source (outliers
are omitted for improved readability). (b) Icicle chart showing the
first three words for all questions with and without question ambi-
guity. Each rectangle size is proportional to the number of ques-
tions with that word/phrase, with the left column showing the first
word and each subsequent column showing a subsequent word.

for unambiguous questions to contain more words, partic-
ularly for examples from PACO. We hypothesize this cor-
relation stems from extra words providing additional con-
text that disambiguates the intended questions. Unambigu-
ous questions also exhibit greater variation in length, as re-
flected by a higher standard deviation of 3.13 for unambigu-
ous questions versus 1.97 for ambiguous questions.

We next characterize common linguistic patterns in ques-
tions by visualizing the distribution of their first three words
in Figure 2(b). The key distinction between both question
types is that questions with focus ambiguity more often be-
gin with “Is the” while questions without focus ambiguity
more often start with “How many”. Intuitively, it makes
sense that ambiguity is more likely to arise when a ques-
tion is framed in a singular form (“Is a”) rather than a plural
form (“How many”), since the former does not permit ac-
knowledging multiple image regions (e.g., “What color is
the kite?” versus “What color are the kites?”). To further
investigate this intuition, we utilized NLTK to flag whether
any word in each question contains a plural noun (i.e., a
plural common noun or plural proper noun). Supporting
our hypothesis, we found that unambiguous questions are

Figure 3. Location of each instance segmentation using normal-
ized center of mass coordinates (x, y), for (a) all ambiguous ques-
tions and (b) all unambiguous questions. While both types of ques-
tions have instance segmentations located at a diversity of posi-
tions, unambiguous questions are biased to the center of images.

more than three times as likely to contain a plural noun than
ambiguous questions, with 23.8% versus 4.7% respectively.
This trend was more pronounced for PACO and for VQAv2,
where questions were typed, than for VizWiz-VQA where
the questions were initially spoken and subsequently tran-
scribed.3 Despite this slight difference in trends, the pres-
ence of plural nouns is not sufficient alone to determine
whether there is question ambiguity.

Segmentations. We next characterize how segmentations
compare for those with versus without focus ambiguity,
again providing analysis for all of VQ-FocusAmbiguity and
with respect to each data source.

We report the position of instance segmentations by
computing the center of mass of each instance segmentation
with respect to the entire image. Each coordinate can range
from 0 to 1, and we normalize all images to ensure (x,y)
values are comparable to each other. Results are shown in
Figure 3. There is a greater bias for instance segmentations
lacking focus ambiguity to be located in the center of an im-
age, likely due to the salient object data source MSRA-B.
However, we observe that unambiguous questions can also
manifest the diverse locations typical for ambiguous ques-
tions, particularly for the unambiguous examples coming
from the more complex images in PACO.

Summative statistics regarding how many instance seg-
mentations are associated with each question are shown in
Figure 4(a). We exclude unambiguous examples since, by
definition, they contain one segmentation. We observe sim-
ilar statistics across all data sources, with an overall median
of 3 and mean of 4 segmentations per ambiguous question.

We next measure the fraction of image pixels occupied
by each instance segmentation. Results are shown in Fig-

3For PACO, plural nouns were found for 4.7% of ambiguous questions
and 30.9% for unambiguous questions versus 4.2% and 17.6% for VQA-
Therapy (7.7% and 26.8% for VQA-v2; 0% and 8% for VizWiz-VQA).
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Figure 4. Box plots characterizing (a) the number of instance seg-
mentations associated with each ambiguous example, with outliers
omitted for improved readability since PACO can exceed 30 in-
stance segmentations and (b) the fraction of pixels occupied by
each instance segmentation for all examples.

ure 4(b). Unambiguous questions tend to have segmenta-
tions occupying a larger portion of the image, likely because
the tendency in such cases is for images to feature a single,
dominant salient object. However, we do observe unam-
biguous examples with very small coverage like that ob-
served for ambiguous questions, particularly for the PACO
data source. Consequently, properties of an instance’s im-
age coverage alone is insufficient for predicting whether
there is question ambiguity.

Additionally, we analyze the prevalence of objects ver-
sus parts for serving as the instance segmentations for the
PACO data source. Within PACO, 81.4% of instance seg-
mentations are of only objects, 15.8% are of only parts, and
2.8% feature a mix of objects and parts.

Question Groundings Versus Answer Groundings. We
flagged for all examples from the AnswerTherapy dataset
(i.e., 330) whether the instance segmentations in our ques-
tion groundings match the answer groundings. We ob-
served different trends for the different types of questions.
For the ambiguous questions, 79% (131 out of 165) had
groundings that are different for the question and answers.
In contrast, 64% (106 out of 165) of unambiguous questions
had groundings that are matching for the questions and an-
swers. Examples of both scenarios are shown in Figure 5.
These findings reinforce the importance of locating a ques-
tion’s focus as an important, independent stepping stone to-
wards providing users of VQA services all valid answers.

Reasons for Focus Ambiguity. For 265 examples with
question ambiguity, we manually coded the reasons for
question ambiguity. We used all 91 examples from VQAv2,

Figure 5. Examples of groundings for the question and answers
that (a) match and (b) differ. The answers in parentheses are not
provided in the AnswerTherapy dataset.

74 from VizWiz, and a random sample of 100 from PACO.
We identified two primary reasons:
• Multiple instances of the same category account for

61.5% overall, with 84.6% (i.e., 77) in VQAv2, 4% (i.e.,
3) in VizWiz-VQA, and 83% (i.e., 83) in PACO. An ex-
ample is “What is next to the mirror?” when multiple mir-
rors are present.

• Multiple instances of different categories account for
31% overall, with 0.1% (i.e., 9) in VQAv2, 89% (i.e., 66)
in VizWiz-VQA, and 9% (i.e., 9) in PACO. These usually
happen when the questions are vague. Examples include
“What is this?” and “What is outside the window?”

Other rare reasons include (a) perspective ambiguity (e.g.,
“Who is pulling the other side?”), (b) subjectivity (e.g.,
“What is the most distinctive feature on the building?”), (c)
language ambiguity (e.g., “What is in the picture?” while
it can either refer to the entire image or a painting in the
image), and (d) multiple plausible parts for the same entity
(e.g., “What is the part of the lamp that is fully visible?”).

4. Model Benchmarking
We now benchmark models on VQ-FocusAmbiguity for
two novel tasks: (1) recognizing whether a visual question
has focus ambiguity and (2) locating all image regions that
could be the question’s focus.

4.1. Recognizing Questions with Focus Ambiguity
Models. We evaluate four foundation models. Three are
top-performers on Arena-Vision [10] and MMMU bench-
marks [54]: GPT-4o [39], InternVL2-Llama3-76B [9],
and Qwen2.5-VL-7B-Instruct [3]. The fourth is Molmo-
7B [12], a state-of-the-art language grounding model.

Prompts. We used five prompts for each model, result-
ing in 20 tested model variants. Three prompts involved no
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supervision (i.e., zero-shot) while two incorporated a small
number of examples to ideally boost performance (i.e., in-
context few-shot learning). They are as follows:
• Zero-shot (ZS): combines the definition of question ambi-

guity and the task objective.
• Zero-shot chain of thought (ZS-CoT): facilitates the

model’s reasoning by augmenting ZS with the instruction
“please think step by step”.

• Zero-shot enhanced chain of thought (ZS-ECoT): facili-
tates the model’s reasoning by augmenting ZS with struc-
tured guidance (i.e., four steps) on how to perform our
novel task (i.e., prompt decomposition).

• Few-shot (FS): augments ZS with an ambiguous and an
unambiguous example. A textual description is used for
each example image to maintain evaluation consistency,
as some models don’t support multi-image input.

• Few-shot enhanced chain of thought (FS-ECoT): aug-
ments FS with prompt decomposition from ZS-ECoT.

All prompts specify please only answer “ambiguous” or
“unambiguous”, guiding the models to generate a one-word
answer for binary classification. However, since generative
models can and did produce arbitrary text beyond what was
requested, we applied post-processing to categorize all out-
puts into three possible categories: “ambiguous”, “unam-
biguous”, and “undecided”.

Evaluation Metrics. We employ four metrics. Two
are standard binary classification metrics: accuracy and
weighted f1 score. The third is “positive rate”, measuring
the percentage of positive predictions (i.e., predicting there
is question ambiguity) to reveal potential biases in model
predictions. The last metric is “undecided rate”, which is
the fraction of all examples with “undecided” predictions.

Overall Performance. Results are shown in Table 2.
Overall, all models perform poorly, especially with respect
to accuracy and F1 scores. This underscores that our dataset
offers a challenging problem for the research community.

Our results also offer insights into strategies that can
boost performance. First, we observe that facilitating mod-
els’ reasoning abilities through chain-of-thought prompts
(i.e., CoT and ECoT methods) leads to considerable per-
formance gains across all but one model (i.e., InternVL2).
For instance, ZS-CoT prompting boosts Molmo-7B’s accu-
racy by 18.4 percentage points (pp), and ZS-ECoT yields
an 8.3 pp improvement for Qwen2.5-VL. These gains ele-
vate the performance of these 7B models to match or even
surpass that of the much larger InternVL2 model (76B).
We hypothesize the disparity observed for InternVL2 stems
from the pretraining data, where both Qwen2.5-VL and
Molmo were trained on region-level counting and pointing
tasks included in the PixMo dataset [12], while InternVL2
was not trained. Such tasks are inherently related to am-
biguity recognition: counting a single focus regions cor-

Model Prompt Acc. F1 Pos. UR

ZS 67.7 67.4 63.5 1.9
ZS-CoT 69.6 69.8 53.3 3.0

GPT-4o ZS-ECoT 68.4 68.6 46.8 2.8
(over 200B) FS 60.0 58.0 74.0 0.6

FS-ECoT 64.9 65.1 45.4 2.8

ZS 55.0 53.1 28.5 2.7
ZS-CoT 56.7 54.8 27.9 4.1

InternVL2 ZS-ECoT 54.9 53.2 29.6 3.1
(76B) FS 52.4 51.9 36.8 1.1

FS-ECoT 53.3 51.8 31.1 1.4

ZS 57.2 53.5 79.1 0.0
ZS-CoT 63.8 62.9 67.1 0.1

Qwen2.5-VL ZS-ECoT 65.5 65.3 59.0 0.0
(7B) FS 53.6 46.1 88.3 0.0

FS-ECoT 59.0 55.8 78.1 0.0

ZS 38.5 21.9 99.5 0.1
ZS-CoT 56.9 57.1 48.1 6.9

Molmo ZS-ECoT 45.7 42.6 75.0 1.0
(7B) FS 41.8 24.6 100.0 0.0

FS-ECoT 49.5 48.9 64.2 3.4

Table 2. Performance of 20 model variants for question ambigu-
ity recognition with respect to accuracy (Acc.), weighted f1 score
(F1), positive rate (Pos.), and undecided rate (UR) as percentages.

responds to an unambiguous question, and counting mul-
tiple focus regions indicate ambiguity. The positive rate
scores provides evidence supporting our hypothesis, as In-
ternVL2 consistently favors negative (i.e., unambiguous)
predictions across prompting strategies while Molmo-7B
and Qwen2.5-VL tend to classify questions as ambiguous
under zero-shot conditions while adopting a more balanced
perspective when guided by reasoning-based prompts. To-
gether, these findings underscore the complementary im-
portance of both the prompting strategy and training
data in enhancing vision-language models’ ability to rec-
ognize question ambiguity.

Fine-Grained Analysis. We next analyze the perfor-
mance of the models with respect to data source and answer
length. For data sources, we consider all image sources in
VQA-FocusAmbiguity. For answer length, we categorize
answers as short or long, where short answers contain one
word (ideally “ambiguous” or “unambiguous”, as instructed
in the prompt) and all other answers are long. Results are
shown in Figure 6.

With respect to data source, we observe models exhibit
similar performance on the three balanced datasets (i.e.,
PACO, VQA-v2, VizWiz-VQA) and different performance
on the highly imbalanced MSRA-B dataset (i.e., only con-
tains unambiguous examples). For instance, across all five
tested prompts, InternVL2 consistently performs best on
MSRA-B while GPT-4o and Qwen consistently performs
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worst on MSRA-B in comparison to the other three sources.
Altogether, these findings underscore the models’ resilience
to variations in image and question sources, while also high-
lighting they bring different prediction biases.

With respect to answer length, while we generally ob-
serve similar performance for short and long answers, a
notable exception is for the best-performing model where
performance for longer answers surpasses that of short an-
swers when using chain-of-thought prompting (i.e., GPT-4o
with the ZS-CoT prompt). This underscores that facilitat-
ing a model’s reasoning process can enhance overall per-
formance. However, given our instruction to output a sin-
gle word, a potential direction for future research to bridge
the gap between model performance and user expectations
could be to instead execute silent CoT reasoning to achieve
better performance while still generating brief responses.

4.2. Locating All Plausible Regions of Focus

Models. We evaluate three models. Included is the state-
of-the-art language grounding model, GLaMM [43]. We
also benchmark two engineered solutions that facilitate the

Figure 6. Fine-grained analysis of four models in recognizing fo-
cus ambiguity. Accuracy is reported based on data source and an-
swer length. Percentages are provided relative to answer length.
The five prompts are represented as follows: ZS (A), ZS-CoT (B),
ZS-ECoT (C), FS (D), and FS-ECoT (E).

reasoning process by breaking the task into two simpler,
sequential steps. The first relies on GPT-4o to generate
description of the focus regions and GLaMM to locate
the regions given the descriptions. The second prompts
Molmo [12] to generate points (i.e., x,y coordinates) lo-
cating all of a question’s focus regions and then feeds those
as point prompts to SAM [28] to decode into segmentations.

Prompts. For all models, we adopt the five prompt-
ing methods defined in Section 4.1, with minor modifi-
cations. For GLaMM, the problem definition instead in-
dicates the task is to segment all focus regions. For
ChatGPT-4o+GLaMM, we acquire descriptions of the fo-
cus regions from GPT-4o using the five prompts, and then
acquire segmentations by passing each into a prompt for
GLaMM specifying “Can you segment {description}?”.
For Molmo+SAM, we replace the aforementioned prompt’s
“segment” with “point”, since Molmo generates points.

Evaluation Metrics. We employ three metrics. First is
the standard metric for instance segmentation: mAP. We
also employ union IoU and max IoU to analyze perfor-
mance when models predict only one focus region. We cal-
culate union IoU as the IoU between the predicted mask
and the union of all focus regions to measure if the gen-
erated mask provides a semantic segmentation (rather than
instance segmentations) capturing all focus regions. We cal-
culate max IoU as the largest mIoU score between the pre-
dicted mask and each focus region, to see if the generated
mask instead accurately captures a single focus region.

Overall Performance. Results are shown in Table 3. All
models perform poorly, with a considerable performance
discrepancy across them.

We attribute Molmo+SAM’s leading performance (in
terms of mAP) to its tendency to point to multiple re-
gions, as reinforced by Molmo’s nearly 100% positive rate
observed for zero-shot settings in Table 2 indicating its
bias to predict question ambiguity. Figure 7(b) shows
where it successfully grounds two small clocks. However,
Molmo+SAM features much lower union IoU, which is be-
cause SAM can fail to segment the whole object with only
point input, such as for a “drinking duck” where only the leg

Figure 7. Molmo+SAM zero-shot results. Questions and ground
truth masks are shown in Figures 1 and 5, stars denote where
Molmo points, and blue masks denote SAM’s segmentations.
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Figure 8. Fine-grained analysis on the performance of our three benchmarked approaches for question grounding using the five prompts,
ZS (A), ZS-CoT (B), ZS-ECoT (C), FS (D), and FS-ECoT (E). (a) Union IoU scores of our four data sources. (b) Union IoU scores of
object and part in PACO and the attribute based on question-answer question grounding alignment. (c) Union IoU scores of samples based
on the number of focus regions. (d) An example of PACO parts grounded as focus regions in our dataset.

Approach Prompt mAP union IoU max IoU

ZS 13.01 41.90 43.69
ZS-CoT 13.24 41.72 43.51

GLaMM ZS-ECoT 10.21 36.55 35.66
FS 11.93 40.08 42.58
FS-ECoT 10.29 37.01 39.21

ZS 12.58 37.35 43.62
ZS-CoT 13.04 37.99 44.78

GPT-4o+GLaMM ZS-ECoT 13.76 38.24 43.39
FS 14.24 40.97 47.83
FS-ECoT 13.89 40.51 46.89

ZS 23.9 36.4 44.6
ZS-CoT 24.3 36.2 45.4

Molmo+SAM ZS-ECoT 24.2 36.1 44.3
FS 11.0 16.1 20.8
FS-ECoT - - -

Table 3. Performance of three models for focus ambiguity local-
ization with respect to three metrics.

of the duck is segmented rather than the whole duck. Ad-
ditionally, Molmo encounters errors when processing FS-
ECoT due to the long context input, which results in it not
able to make predictions for FS-ECoT (denoted by “–”).

The other two models perform poorly for different rea-
sons. While GLaMM supports multiple segmentation out-
puts, it consistently generates only a single mask. As for
the GPT-4o-based model, its descriptions poorly correlated
with the number of ground truth regions resulting in poor
subsequent performance from GLaMM.

Fine-Grained Analysis. We finally perform fine-grained
analysis, with all results shown in Figure 8.

First, we observe notable performance differences across

dataset sources (Figure 8a). Almost all models with differ-
ent prompt settings perform best on MSRA-B, followed by
VizWiz-VQA and VQA-v2, and lastly PACO. We attribute
better performance on MSRA-B to the ground truth often
aligning with the most salient object, which simplifies local-
ization. In contrast, PACO-based data often contains many
focus regions occupying smaller areas, which can increase
the segmentation difficulty.

Our fine-grained analysis also show models struggle to
identify parts, when comparing models’ performance in lo-
cating PACO’s objects versus parts (Figure 8(b)), as exem-
plified in Figure 8(d). This finding parallels progress in the
broader computer vision community, where only relatively
recently researchers have begun trying to segment parts.

Our results also underscore a correlation between per-
formance and the number of focus regions, with worse per-
formance when there are a greater number of focus regions
(Figure 8(c)). This is exemplified in Figure 7(a).

Finally, we found models perform consistently worse on
examples where the question grounding differ from answer
grounding. This is exemplified in Figure 8(b) and Fig-
ures 7(c) and 7(d).

5. Conclusion
We introduced the VQ-FocusAmbiguity dataset for evalu-
ating models’ abilities to acknowledge question ambiguity.
Analysis reveals this dataset comes with unique challenges
not explored in related VQA grounding datasets, particu-
larly for answer grounding. Benchmarking reveals models
struggle to recognize question ambiguity and locate all fo-
cus regions, underscoring the need for future research. We
publicly-share the dataset to facilitate future progress.
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