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Abstract

Model merging has emerged as a promising approach for
multi-task learning (MTL), offering a data-efficient alterna-
tive to conventional fine-tuning. However, with the rapid
development of the open-source AI ecosystem and the in-
creasing availability of fine-tuned foundation models, ex-
isting model merging methods face two key limitations: (i)
They are primarily designed for in-house fine-tuned mod-
els, making them less adaptable to diverse model sources
with partially unknown model and task information, (ii)
They struggle to scale effectively when merging numerous
model checkpoints. To address these challenges, we formu-
late model merging as a constrained optimization problem
and introduce a novel approach: Frank-Wolfe Merging
(FW-Merging). Inspired by Frank-Wolfe optimization,
our approach iteratively selects the most relevant model in
the pool to minimize a linear approximation of the objec-
tive function and then executes a local merging similar to
the Frank-Wolfe update. The objective function is designed
to capture the desired behavior of the target-merged model,
while the fine-tuned candidate models define the constraint
set. More importantly, FW-Merging serves as an orthog-
onal technique for existing merging methods, seamlessly
integrating with them to further enhance accuracy perfor-
mance. Our experiments show that FW-Merging scales
across diverse model sources, remaining stable with 16 ir-
relevant models and improving by 15.3% with 16 relevant
models on 20 CV tasks, while maintaining constant mem-
ory overhead—unlike the linear overhead of data-informed
merging methods. Compared with the state-of-the-art ap-
proaches, FW-Merging surpasses the data-free merg-
ing method by 32.8% and outperforms the data-informed
Adamerging by 8.39% when merging 20 ViT models. Our
code is open-sourced at here.

1. Introduction
Multi-task learning (MTL)-based fine-tuning adapts a sin-
gle pre-trained Large Language Model (LLM) for multiple
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downstream applications, reducing the deployment over-
head of separately fine-tuning multiple models [53]. How-
ever, it still demands a large amount of high-quality data,
which might only exist in the private domain [32], and
significant compute resources [36]. To mitigate these is-
sues, model merging has emerged as a promising tech-
nique for fusing fine-tuned models within the parameter
space [14, 48, 50]. Existing model merging methods can
be broadly classified into two categories: data-free meth-
ods [14, 15, 48], and data-informed methods [50, 51], which
optimize merge coefficients based on additional data.

While these approaches have proven effective, several
key limitations hinder their scalability and broader adop-
tion. First, these methods adjust merging coefficients based
on the known capabilities of the models on specific tasks
to optimize performance, which is less robust when deal-
ing with diverse model sources with unknown information1.
This is primarily caused by the inability to distinguish high-
quality models from poorly fine-tuned ones in an unknown
model setting. Second, when scaling up these approaches to
a large number of unknown models, these methods struggle
and can result in significant performance degradation. As
shown in Figure 1a, our profiling study demonstrates a per-
formance reduction ranging from 18.9% to 64.4%. These
limitations are further amplified by the fast-growing open-
source AI ecosystem, where platforms such as Hugging
Face have driven a surge in the release of powerful LLMs
with many lacking complete information. Given that merg-
ing open-source models has repeatedly shown the poten-
tial to produce top-ranking LLMs on major model leader-
boards [13], developing scalable and robust merging tech-
niques is essential to harness the growing number of open-
source models, further enhancing performance and widen-
ing the adoption of model merging.

To effectively scale model merging and leverage the vast
collection of open-sourced models with unknown capabili-
ties, the new model merging method must exhibit two fun-
damental scaling properties: 1) as more irrelevant models

1This paper refers unknown information to: 1) when open-source mod-
els are partially assessed on limited benchmarks, leaving their performance
on other tasks unknown and costly to evaluate, and 2) when models contain
misleading information, polluting the merging process.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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(a) 4 CV tasks with irrelevant model addition.
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(b) 20 CV tasks with relevant model addition.
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(c) NLP tasks with noisy model addition.

Figure 1. Performance scaling of FW-Merging across CV tasks. (a) demonstrate robustness to irrelevant models, while (b) show improved
performance with relevant models. (c) analyzes performance degradation when incorporating a noisy model initialized from a different
pre-trained checkpoint. Detailed results and experimental setup are discussed in Section 4.4.

are added to the merging pool, the performance should re-
main unaffected, and 2) as more relevant models are added
to the merging pool, the performance should steadily in-
crease, converging towards the optimal performance. To
this end, we revisit model merging and formulate it as a con-
strained optimization problem, where the objective function
dictates the desirable behavior of the final merged model,
and fine-tuned checkpoints form the constraint set. Inspired
by Frank-Wolfe optimization, we introduce Frank-Wolfe
Merging (FW-Merging), an iterative algorithm designed
to enhance merging efficiency while maintaining robustness
at scale. FW-Merging comprises three principal stages
in each iteration: (1) Relevance Evaluation: Instead of
merging models arbitrarily, we obtain the linear approxima-
tion of the objective function using gradients of the current
model, revealing the most beneficial direction for improve-
ment. (2) Model Selection: The most relevant checkpoints
are selected from the constraint set by minimizing the linear
approximation, ensuring that each step incorporates task-
specific knowledge with minimal interference. (3) Knowl-
edge Integration: The selected checkpoint is integrated us-
ing an orthogonal merging method, striking a balance be-
tween adaptation and stability in the merged model.

We demonstrate the effectiveness of FW-Merging with
a diverse pool of fine-tuned checkpoints across various lan-
guage and vision tasks, compared to both data-free and
data-informed model merging methods as well as tradi-
tional MTL-based fine-tuning. As shown in Figure 1,
FW-Merging satisfy our two fundamental scaling prop-
erties: accuracy performance does not drop when 16 irrel-
evant models are added (compared to a 49% drop in task-
arithmetic) and steadily improves by 15.3% when 16 rel-
evant models are included. Additionally, FW-Merging
requires only constant memory overhead, as it selects and
merges a fixed number of models at a time. In contrast,
methods that optimize merging coefficients [50] or resolve
parameter interference [48] must store all models in mem-
ory, leading to linear overhead. Moreover, FW-Merging

exhibits greater robustness to noisy models lacking critical
information, such as their initialization point. As shown
in Figure 1c, FW-Merging experiences minimal perfor-
mance degradation when a misinitialized model is intro-
duced, whereas Ties suffers a performance drop of up to
3.2%. FW-Merging outperforms state-of-the-art data-free
merging method by 32.8% and the data-informed method
Adamerging by 8.39% when merging 20 ViT models. On
the language benchmarks, FW-Merging achieves 6.3%
improvement over the best model merging method across
discriminative and generative tasks, while even surpassing
the performance of traditional MTL using only 3.4% of its
required data. Our results position FW-Merging as an ef-
fective solution to scale model merging to the next level.

Our contributions can be summarized as follows:
• Identify scalability and robustness issues in existing

model merging techniques through experiments, high-
lighting the urgent need for large-scale model merging.

• Formulate model merging as a constrained optimization
problem with an objective function that explicitly cap-
tures the desired behavior of the final merged model.

• Introduce Frank-Wolfe Merging, a novel iterative method
that autonomously guides the merged model toward an
optimized direction, even with large sets of black-box
open-source checkpoints.

• Evaluate our proposed approach on extensive bench-
marks, demonstrating its effectiveness and scalability.

2. Related Work

Efficient Multi-Task Learning. In traditional Multi-Task
Learning (MTL), a single model is trained on a dataset con-
taining multiple tasks to enable the model to acquire diverse
capabilities [2]. However, a significant challenge in tradi-
tional MTL is the issue of negative transfer [16]. To mit-
igate this, architecture-based approaches have been devel-
oped, such as parameter sparsification [26, 39] and shared
structure modularization [29, 30]. On the optimization side,
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methods to resolve gradient conflicts [6, 54] and domina-
tion of gradient or learning rate [5, 24] have been proposed.
With the rise of Large Language Models (LLMs), MTL
faces additional challenges, particularly the high compu-
tational costs. To address these challenges, strategies like
parameter-efficient fine-tuning [11, 20, 21] and memory-
efficient fine-tuning [8, 22, 31] have been introduced to
minimize both memory and computational resource usage.
More recently, model merging has emerged as a promising
approach to make MTL more compute- and data-efficient.

Model Merging. While pre-merging methods prepare fa-
vorable conditions for merging, during-merging techniques
combine multiple neural networks into a single model
while retaining or enhancing their capabilities [49]. In
this work, we focus on during-merging methods. Early in-
sights into neural network landscapes [10] revealed that lin-
ear interpolation between models exposes useful loss sur-
face properties, laying the foundation for weight averag-
ing—a core merging technique. Simple averaging widens
optima and improves generalization [15], evolving into ad-
vanced methods like model soups [46] and heterogeneous
model merging. Recent advances introduce more struc-
tured approaches, such as Fisher-Weighted Averaging [37],
which incorporates Fisher information to weight parame-
ters more effectively, and Permutation Alignment methods
like Git Re-Basin [1], which address weight permutation
symmetries. Interference Resolution techniques, including
TIES [25] and DOGE [45], mitigate parameter conflicts ei-
ther through explicit alignment or projective gradient de-
scent. Task Arithmetic [33] enables weight-space opera-
tions to combine task-specific behaviors in language mod-
els, while Diversity-Aware Merging, such as DARE [23],
leverages model diversity to improve sparse-to-dense in-
tegration. In contrast to the data-free methods mentioned
above, data-informed methods [40, 50, 51] optimize merg-
ing coefficients using additional data. Model merging is
impactful for LLMs, enabling efficient knowledge inte-
gration without full retraining, facilitating distributed fine-
tuning [44], multi-task learning [35], and cost-effective
model adaptation.

3. Method
3.1. Preliminary: Frank-Wolfe algorithm
The Frank-Wolfe (FW) algorithm [9], also known as the
conditional gradient method, is an iterative optimization al-
gorithm for constrained optimization problems of the form:

min
x∈C

f(x) (1)

where f is a continuously differentiable function, and C is
a compact convex set. The algorithm follows an elegant

geometric intuition: at each iteration t, FW first identifies
which vertex of C yields the steepest descent direction and
then moves towards this vertex to decrease the value of the
objective function. More specifically, FW algorithm:
1. Constructs a linear subproblem of the original optimiza-

tion (a.k.a. linear minimization oracle) using first-order
Taylor expansion at the point xt:

LMO(C, xt) := argmin
s∈C

⟨s,∇f(xt)⟩ (2)

2. Finds the vertex st of the feasible set C by picking st ∈
LMO(C, xt).

3. Takes a careful step from the current point xt towards
this direction st−xt, maintaining feasibility through the
convex combination: xt+1 = (1− γt)xt + γtst.
The step size γt ∈ [0, 1] can be chosen by line search

γt = argmin
γ∈[0,1]

f
(
(1− γ)xt + γst

)
, (3)

which ensures a sufficient decrease in f(.) at each FW step.
To determine when to stop, the FW gap is used to mea-

sure the suboptimality in terms of the proximity to the best
solution of LMO:

gt := max
s∈C
⟨−∇f(xt), st − xt⟩, (4)

which is non-negative by definition.

3.2. Frank-Wolfe Model Merging
We consider the problem of fine-tuning a pre-trained foun-
dation model on new tasks. Given a pre-trained model θ0
and previously fine-tuned models {θ∗1 , θ∗2 , · · · , θ∗n}, we aim
to fine-tune the (n + 1)-th model θn+1 on new tasks as a
convex combination of the previous models with optimal
merging coefficients.

To this end, we propose a Frank-Wolfe based model
merging framework, which is described as follows.

min
λ

ℓ
( n∑

i=1

λiθ
∗
i

)
s.t.

n∑
i=1

λi = 1, λi ≥ 0, (5)

where λ = {λ1, . . . , λn} are the merging coefficients, and
ℓ is a loss function formulated for a specific goal, such as
aligning the merged and individual models [45] or satisfy-
ing a task objective [50].

Potentially, a scaling issue of this formulation appears
when the number of fine-tuned models n is large, since we
need to keep all the fine-tuned models in memory. To ad-
dress this, we propose a reformulation of the problem eq. (5)
as follows:

min
θ∈M

ℓ(θ), (6)

whereM := conv({θ∗i }ni=1) is the convex hull of the set of
previously fine-tuned models.
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Figure 2. Illustration of model merging methods. ΘA is an irrelevant model, while ΘB and ΘC are relevant models. Darker regions indicate
higher objective function loss. Task Arithmetic treats all task vectors equally, failing to move optimally. Adamerging assigns different
coefficients, moving towards more desirable direction but suffer from slow convergence due to interference from ΘaA. FW-Merging
iteratively selects the most relevant model to merge and adapts step sizes, efficiently reaching the optimum after T iterations.

Proposition 1. The optimization problems in equations (5)
and (6) are equivalent.

Proof. By definition of convex hull, any point θ ∈ M can
be written as a convex combination of the vertices {θ∗i }ni=1,
i.e., θ =

∑n
i=1 λiθ

∗
i where λ ∈ ∆n := {λ ∈ Rn |∑n

i=1 λi = 1, λi ≥ 0}. Therefore:

min
θ∈M

ℓ(θ) = min
λ∈∆n

ℓ
( n∑

i=1

λiθ
∗
i

)
.

This shows that any solution of one problem can be mapped
to a solution of the other problem with the same objective
value.

Since the FW algorithm requires the initial solution to
be an interior point of the constraint set, we add the initial
solution θ0 to form a new constraint setM := conv(M∪
{θ0}), which we still denote asM for simple notations. A
nice property of this reformulation is that the LMO can be
simplified to

LMO({θ∗i }ni=1, θt) = argmin
s∈{θ∗

1 ,...,θ
∗
n}
⟨∇ℓ(θt), s⟩ (7)

This is because for linear programming problems over
convex sets, the optimal solution is always attained at the
vertices of the constraint set. Algorithm 1 details the steps,
and Figure 2 provides an overview.

3.3. Design choices of the algorithm
The above algorithm illustrates the key ingredients of

Frank-Wolfe merging: LMO, stopping criterion gt, line
search routine, and the merging function. We discuss in
this section the design choices of these components.

Merging function The main deviation from the classi-
cal FW algorithm is the reinterpretation of the FW update
xt+1 = (1 − γt)xt + γtst as a local merging between θt

Algorithm 1: Frank-Wolfe Merging:
Input : Initial solution θ0; Fine-tuned checkpoints

{θ∗i }ni=1; FW budget T .
Output: Merged model θ∗merged.

1: if θ0 /∈M thenM :=M∪ {θ0}
2: for t = 0 . . . T do
3: Let st := LMO(θt) and dt := st − θt
4: if gt := ⟨−∇ℓ(θt), dt⟩ ≤ ϵ then
5: return θ∗merged ← θt
6: end if
7: Line-search: γt ∈ argmin

γ∈[0,1]

ℓ (θt + γdt))

8: Update: θt+1 := MergeFn(θt, st, γt)
9: end for

10: return θ∗Merged ← θT

and st. We denote by MergeFn the customizable merging
function as long as the merged model stays in the convex
hullM. The most straightforward merging function is the
convex combination:

MergeFn(θt, st, γt) := (1− γt)θt + γtst, (8)

which corresponds to the Task-Arithmetic [33] method. The
step size γt makes sure the merged model stays inM.

It is natural to ask whether other existing model merg-
ing methods, such as TIES-Merging [25] and DARE [23]
could also be used as MergeFn. The problem with these
sophisticated merging methods is that the merged model
might leave the constraint set, and thus violate the assump-
tion of maintaining feasibility required by the classical FW
theory. We verified in practice that these less rigorous merg-
ing functions might achieve better performance in certain
cases but they generally cause more stability issues. There-
fore, we do not consider these merging functions from the
current comparison.
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Hard FW v.s. Soft FW In the case of deep learning, the
optimization problem is non-convex, additional efforts are
needed to better characterize the loss landscape and prevent
the LMO from being dominated by one or a few fine-tuned
models, which occurs because the linear approximation of
ℓ(θ) is an inaccurate sketch of the original objective func-
tion. Instead of relying on the argmin of linear subproblem,
we fetch the top-k vertices of LMO, {s̃j}kj=1. A more sub-
tle top-k operation can be performed in a task-wise fashion
if the original objective function involves multi-tasks.

Given the top-k vertices, we now go back to eq. (5)
to obtain the optimal merging coefficients {λ∗

j}kj=1. Note
that this inner optimization2 is a reduced version of original
eq. (5) because hosting k models in memory would not be a
problem. We also remove the line search step as this gives
a new merging function of the form

MergeFn(θt, {s̃j}kj=1, {λ∗
j}kj=1) := θt +

k∑
j=1

λ∗
j (s̃j − θt).

(9)

We call this oracle soft LMO in comparison to the argmin
version which we call hard LMO.

Task-wise LMO v.s. layer-wise LMO The naive im-
plementation of FW-Merging would vectorize the whole
model weights θ and then solve LMO. We call this task-
wise LMO. Since different layers contribute differently to
model performance [52], a layer-wise LMO may yield bet-
ter model merging. To incorporate this, the constraint set
is redefined as a Cartesian product of convex hulls for each
layer: M := M1 × · · · × ML, where L is the number
of layers andMl := conv

(
{θ∗,li }ni=1

)
. The LMO is then

conducted layer-wise:

LMO({θ∗,li }
n
i=1, D, θlt) = argmin

sl∈{θ∗,l
1 ,...,θ∗,l

n }
⟨∇ℓ(θt)l, sl⟩.

(10)

This version can be viewed as a block-coordinate Frank-
Wolfe algorithm [19], which is applied when the problem
has a natural decomposition into blocks.

4. Experiments
4.1. Experiment Setup
Benchmarks. Our primary objective is to evaluate the ef-
fectiveness of our method in scenarios where the number of
models greatly exceeds the number of evaluation tasks, and
each model’s capabilities are unknown in advance.

2For inner optimization, we use projected gradient descent with a pro-
jection of {λj}kj=1 onto the simplex after each gradient update.

• Vision Tasks: Following the setting of TALL [43], we
use 20 ViT-B/32 models, each fine-tuned on a different
vision task. The number of models to be merged is in-
tentionally set to be significantly larger than the number
of evaluation tasks, allowing us to assess the scalability
of model merging methods. The evaluation benchmarks
consist of four tasks: SUN397 [47], Stanford Cars [18],
GTSRB [38], and DTD [7].

• Language Discriminative Tasks: We prepare 8
RoBERTa checkpoints [27] fine-tuned on eight tasks from
the GLUE benchmark, following the practice in [28]. The
merged model is then evaluated on four tasks from the
GLUE benchmark [42]: MNLI, QNLI, QQP, and RTE.

• Language Generative Tasks: We collect 16 LLaMA2-
7B models [41] fine-tuned with LoRA [12] on various
tasks from Hugging Face. These models have unknown
and uncontrolled capabilities, making them equivalently
black-box models. Our goal is to evaluate the robust-
ness of model merging methods in this challenging set-
ting. The evaluation benchmarks include CNN/DM sum-
marization [34], PubMedQA [17], and HumanEval [4].

Metrics. For vision tasks, we report the classification ac-
curacy. Following [28], we report the average normal-
ized score for language tasks to account for differences in
task-specific score ranges to account for variations in task-
specific score ranges. The normalized score is computed as
Scorenormalized = 1

T

∑T
t=1

Score(f(θ∗))
Score(ft(θt))

.

Baselines. We compare FW-Merging with both data-
informed and data-free model merging methods. For
data-informed model merging, we compare FW-Merging
against Adamerging [50], Surgery [51], and Concrete Merg-
ing [40]. To ensure a fair comparison, these methods are
trained only on the same tasks as FW-Merging. For
data-free model merging, we compare FW-Merging with
Fisher Merging, Weight Averaging, RegMean Merging,
Task Arithmetic [33], Ties-Merging [48], and DARE Merg-
ing [23] across both language and vision tasks. Addition-
ally, we fine-tune one model on the discriminative language
benchmark and another on the generative language bench-
mark to serve as additional baselines.

Implementations. We implement two FW-Merging
variants: FWhard, which uses hard FW with layer-wise
LMO, and FWsoft, which employs soft FW with task-wise
LMO (Section 3.3). For FWsoft, layer-wise coefficients are
optimized via gradient descent on the training dataset to
solve eq. 5, differing from Adamerging [50] by minimiz-
ing cross-entropy loss on training data rather than entropy
on test samples. On language benchmarks, the training
dataset consists of 100 samples per task, and FWhard runs
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Table 1. Performance on 4 Discriminative Tasks when merging 8 RoBERTa and 3 Generative Tasks when merging 16 LLaMA2-7B.

Method 4 Disc. Tasks (8 Models) 3 Gen. Tasks (16 Models) Avg. Normalized Score

Pretrained 49.6 77.1 63.4
Traditional MTL 73.1 81.2 77.2

Task Arithmetic (w/ DARE) 77.3 16.8 47.1
Ties-Merging (w/ DARE) 75.6 46.6 61.1
Task Arithmetic 80.8 75.9 78.4
Ties-Merging 64.3 78.5 71.4

FWhard (Ours) 85.4 81.1 83.1

Table 2. Performance on 4 CV Tasks when merging 20 ViT-B/32.

Method SUN397 Cars GTSRB DTD Avg.

Pretrained 62.3 59.7 32.6 43.8 49.6

DARE (TIES) 5.9 2.3 16.7 11.8 9.2
Task Arithmetic 20.4 12.2 29.8 22.3 21.2
Ties-Merging 51.0 36.2 57.7 40.6 46.4
Weight Averaging 64.2 59.6 43.1 46.5 53.4
Fisher Merging 64.6 63.8 43.0 46.9 54.6
RegMean 65.5 62.2 59.7 53.9 60.3

LW Concrete AM 62.5 60.3 88.0 54.7 66.3
Adamerging 66.4 70.1 95.1 64.0 73.9
Surgery 69.7 71.8 96.6 73.4 77.9
FWhard (Ours) 66.5 69.9 95.1 64.5 74.0
FWsoft (Ours) 72.9 74.8 96.8 76.0 80.1

for 10 iterations, initialized with Task Arithmetic’s merged
model. For vision tasks, it runs for 3 iterations. FWsoft runs
for 15 iterations on vision benchmarks, initialized with the
pre-trained model. Training datasets consist of 100 sam-
ples from MNLI, QNLI, QQP, and RTE [42] for discrimi-
native tasks; CNN/DM [34], CodeAlpaca-20k [3], and Pub-
MedQA [17] for generative tasks; and SUN397 [47], Stan-
ford Cars [18], GTSRB [38], and DTD [7] for vision tasks.

4.2. Comparison with Model Merging Methods
We evaluate FW-Merging against both data-informed and
data-free model merging approaches across language and
vision benchmarks. Table 1 reports the results for language
tasks, including both discriminative and generative settings,
while Table 2 presents results on vision benchmarks.

Language Tasks. FWhard achieves the highest average
normalized score across language benchmarks, consistently
surpassing prior model merging baselines. Specifically,
FWhard improves upon Task Arithmetic by 4.6 points, Ties-
Merging by 11.7, and DARE (Ties) by 9.8 on discrimina-
tive tasks. Table 4 shows that FWhard also outperforms
data-informed Adamerging by 5.9 points. For generative
tasks, FWhard outperforms Task Arithmetic by 5.2 points,
Ties-Merging by 2.6, and DARE (Ties) by 34.5. Interest-
ingly, while Task Arithmetic outperforms Ties-Merging on
discriminative tasks by a margin of 16.5 points, it lags be-
hind by 2.6 points on the more challenging generative tasks.

This discrepancy likely arises from increased interference
among task vectors as more checkpoints are merged. Un-
like Ties-Merging, which explicitly resolves merging con-
flicts, Task Arithmetic lacks a reconciliation mechanism,
making it more susceptible to such interference. In con-
trast, FWhard consistently outperforms both Ties-Merging
and Task Arithmetic by selectively merging only the most
relevant model parameters in each iteration. This targeted
approach effectively mitigates interference, leading to more
stable and robust performance across both discriminative
and generative tasks.

Vision Tasks. FWsoft achieves state-of-the-art perfor-
mance across multiple vision benchmarks, surpassing data-
informed methods like Adamerging and Surgery. As shown
in Table 2, FWhard surpasses Adamerging, Concrete Merg-
ing, and all data-free merging methods in overall perfor-
mance. Additionally, FWsoft attains the highest accuracy
(80.1%), outperforming Adamerging by 6.2% and Surgery
by 2.2%. Unlike Surgery, which requires additional task-
specific parameters and multiple forward passes per infer-
ence, our approach efficiently adapts to diverse visual tasks
without increasing storage or inference complexity.

In general, data-free merging methods show significantly
lower performance compared to data-informed approaches
while merging a large number of models, when the mod-
els’ capabilities do not precisely align with the evaluation
tasks. This limitation arises because data-free methods
treat all models equally, merging them without considering
their unique capabilities, which amplifies interference be-
tween models. In contrast, data-informed merging methods
achieve superior performance by optimizing merging coef-
ficients on datasets as they allow for explicit control over de-
sirable capabilities. FW-Merging, in particular, enhances
scalability via hard model selection based on the linear ap-
proximation minimization.

4.3. Comparison with Traditional MTL
We compare FW-Merging with models fine-tuned using
traditional MTL on discriminative and generative tasks.
In each case, one single model is fine-tuned across all
tasks, with performance and computational cost reported
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Table 3. Merging Methods’ Performance vs. Number of Models when Adding Relevant vs. Irrelevant Models.

#Models
4 CV Tasks 20 CV Tasks

When ”Irrelevant” Models Added When ”Relevant” Models Added

DARE Task Ties AM FWsoft DARE Task Ties AM FWsoft

4 73.6 70.3 65.7 75.2 74.1 57.3 59.2 60.2 59.6 59.2
6 64.1 64.1 64.4 74.6 73.9 54.0 58.4 61.6 64.0 63.2
8 48.5 57.1 63.6 73.4 74.0 48.2 57.2 63.9 64.7 64.5

10 40.6 52.9 62.9 72.8 73.9 43.5 55.0 63.9 65.4 66.2
12 31.7 47.9 61.9 71.4 74.1 39.1 52.3 63.7 65.1 67.5
14 23.6 40.1 57.7 69.9 74.0 36.1 48.9 62.0 64.1 68.0
16 17.9 33.3 52.5 68.6 74.1 32.3 45.3 59.7 62.7 68.3
18 12.2 25.9 49.2 64.6 74.0 27.8 40.3 57.3 60.7 68.4
20 9.2 21.2 46.4 61.0 74.2 24.2 36.3 55.6 58.9 68.3
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Figure 3. Linear Approximation of the Objective Function of Model Checkpoints Across Different Tasks in a Frank-Wolfe Iteration. The
x-axis represents the checkpoints, and each graph shows the linear approximation result for each task.

Table 4. Costs and Perf. of methods on NLP discriminative tasks.

Method Data Samples/Task Time Cost Perf.

Traditional MTL 2.9K 4.2h 73.1
Data-free Merging 0 0 80.8
Data-informed Merging 1.6K 2min 79.5
FW Merging 100 2min 85.4

in Table 1 and Table 4. Traditional MTL achieves an
average score of 77.2, lower than that of FW-Merging
(83.1). On discriminative tasks, MTL scores 73.1, trailing
FW-Merging (85.4). For generative tasks, MTL scores
81.2, while FW-Merging closely matches it at 80.8, sug-
gesting that FW-Merging’s performance matches that of
traditional MTL.

As shown in Table 4, FW-Merging demonstrates a
substantial advantage in efficiency. Traditional MTL re-
quires fine-tuning on 2.9K samples per task and takes 4.2
hours of training time, which is computationally inten-
sive. In contrast, FW-Merging only requires 100 train-
ing samples per task and completes the merging process
in just 2 minutes. This huge reduction in computational
cost underscores the effectiveness of FW-Merging com-
pared to traditional MTL. Moreover, FW-Merging has a
key advantage over traditional MTL: while MTL requires a
large volume of high-quality data for optimal performance,
FW-Merging needs only a small set of data because: 1) it
optimizes merging coefficients based on models’ character-

istics, which simplifies the optimization space, and 2) it uses
model weights as inputs, which are much more information-
dense representations than data, enabling more efficient ob-
jective learning.
FW-Merging is a post-training technique that does not

require access to original training data, making it ideal for
privacy-sensitive or data-scarce scenarios. Overall, the re-
sults suggest that FW-Merging is a scalable, efficient al-
ternative to traditional MTL, providing comparable perfor-
mance at a reduced computational cost.

4.4. Scaling to More Models and Tasks

We investigate the performance scaling of different
merging methods with the number of models, as shown in
Figure 1a, Figure 1b, and Table 3. In large-scale model
merging, models from open-source platforms vary in qual-
ity. To simulate this, we use 20 ViT-B/32 models fine-tuned
on tasks that are either included in the evaluation bench-
mark or not. A model is irrelevant if its fine-tuning dataset
does not match the training split of the evaluation task, and
relevant if it matches. To ensure fair comparison, the total
number of training iterations run by FWsoft is the same as
that of Adamreging.

As shown in Table 3, adding irrelevant models sharply
reduces the performance of data-free methods: DARE by
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Table 5. Ablation on design variants of FW-Merging.

Coefficient λ Method LMO Score

Vision Tasks
Optimized FWsoft Layer-wise 79.7
Optimized FWsoft Task-wise 80.1

Unoptimized FWsoft Layer-wise 69.8
Unoptimized FWsoft Task-wise 70.3

- FWhard Layer-wise 74.0
- FWhard Task-wise 73.7

NLP Discriminative Tasks
- FWhard Layer-wise 85.4
- FWhard Task-wise 78.2

64.4%, Task Arithmetic by 49.1%, and Ties by 19.1%,
likely due to task interference and equal treatment of
all models. Data-informed methods degrade less, with
Adamerging dropping by 14.2%. In contrast, FWsoft re-
mains highly stable, fluctuating only from 73.9% to 74.1%
as more models are added. In Figure 3, we examine the
linear approximation of different checkpoints for a specific
task and find that the model fine-tuned on the task consis-
tently yields the most negative linear approximation. This
indicates that in the Frank-Wolfe update, the most relevant
checkpoint is chosen as the direction for merging, allowing
FW-Merging to iteratively improve the merged model in
the optimized direction within the constraint set. The inner
product between gradients and model parameters serves as a
reliable indicator of model relevance, with minized compu-
tational cost, further demonstrating FW-Merging ’s scala-
bility even in the presence of irrelevant models.

Adding relevant models should ideally improve perfor-
mance, but data-free methods still degrade as shown in Ta-
ble 3: DARE by 33.1%, Task Arithmetic by 22.9%, and
Ties by 4.6%, with Ties performing best by mitigating pa-
rameter conflicts. Data-informed methods like Adamerg-
ing fluctuate between 58.9% and 64.7% as merging com-
plexity increases, whereas FWsoft steadily improves from
59.2% to 68.3% by iteratively selecting the most relevant
models, facilitating smoother convergence. These results
underscore FW-Merging ’s effectiveness as a scalable so-
lution for large-scale model merging.

4.5. Ablation Studies

Design variants. Table 5 compares the design variants of
FW-Merging (Section 3.3). Task-wise LMO aligns better
with FWsoft, improving performance slightly by 0.5 points
over layer-wise LMO, while layer-wise LMO is more ef-
fective for FWhard, especially on language tasks, yielding
a 7.2-point gain. This is likely because FWsoft optimizes
layer-wise coefficients during merging, reducing the impact
of layer-wise selection.

FWsoft excels when merging a large number of models,
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Figure 4. Ablation on FW-Merging. (a) reports accuracies on the
vision benchmark, while (b) on vision and language benchmarks.

outperforming FWhard by up to 6.7 points. Its ability to
select multiple optimal directions per iteration allows it to
navigate the parameter space efficiently.

Optimizing merging coefficients λ further improves per-
formance by up to 9.9 points, underscoring the importance
of weighting model parameters based on their relevance.

Initial solution. We examine the effect of initialization
on FW-Merging. An ideal initial solution should either
(1) be closer to the global optimum or (2) expand the con-
straint set with a more meaningful search space. As shown
in Figure 4a, initializing FW-Merging with the Adamerg-
ing result improves performance compared to starting from
the pre-trained model, likely because Adamerging is closer
to the optimal point. In contrast, task arithmetic leads to
worse performance than the pre-trained model, potentially
due to its poor performance on vision tasks (21.2%), sug-
gesting it starts further from the optimum. Consequently,
more FW iterations are required to achieve convergence.

Flexibility of merging functions. Although only a re-
stricted set of merging functions ensure that FW-Merging
remains within the convex hull, we demonstrate the flexi-
bility of FW-Merging by showing its ability to enhance
alternative merging functions. As shown in Figure 4b, ap-
plying FW-Merging with both Task Arithmetic and Ties-
Merging improves performance on NLP and vision tasks,
even though Ties-Merging does not necessarily stay within
the convex hull. This suggests that FW-Merging remains
effective across different merging functions.

5. Conclusion
In this work, we extend model merging to a more chal-
lenging setting where the merging pool consists of a large
number of black-box fine-tuned checkpoints. While exist-
ing methods require prior knowledge of model details to
achieve optimized performance, our proposed Frank-Wolfe
Merging (FW-Merging) scales effectively with a large
number of black-box models, iteratively refining the merged
model towards the optimal point defined by an objective
function. Experiments demonstrate that FW-Merging
achieves superior performance and scalability, paving the
way for next-generation model merging.
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