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Figure 1. State-of-the-Art Performance of KDIC. We propose a knowledge distillation framework for learned image compression and
develop KDIC, a compact and efficient student model based on S2CFormer [12]. As shown in Figure (a), KDIC outperforms recent advanced
methods in rate-distortion (RD) metrics and model complexity measures. Figure (b) highlights the effectiveness of knowledge distillation: it
achieves a 2.5% reduction in BDrate while reducing parameters by 40% and FLOPs by 57% compared to the teacher model. The circle
radius corresponds to the parameter count of each model.

Abstract

Recently, learned image compression (LIC) models have
achieved remarkable rate-distortion (RD) performance, yet
their high computational complexity severely limits practi-
cal deployment. To overcome this challenge, we propose a
novel Stage-wise Modular Distillation framework, SMoDi,
which efficiently compresses LIC models while preserving
RD performance. This framework treats each stage of LIC
models as an independent sub-task, mirroring the teacher
model’s task decomposition to the student, thereby simplify-
ing knowledge transfer. We identify two crucial factors deter-
mining the effectiveness of knowledge distillation: student
model construction and loss function design. Specifically, we
first propose Teacher-Guided Student Model Construction,
a pruning-like method ensuring architectural consistency
between teacher and student models. Next, we introduce
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Implicit End-to-end Supervision, facilitating adaptive en-
ergy compaction and bitrate regularization. Based on these
insights, we develop KDIC, a lightweight student model
derived from the state-of-the-art S2CFormer model. Ex-
perimental results demonstrate that KDIC achieves top-tier
RD performance with significantly reduced computational
complexity. To our knowledge, this work is among the first
successful applications of knowledge distillation to learned
image compression.

1. Introduction

The rapid growth of digital image data demands efficient
compression methods. Deep neural network–based learned
image compression (LIC) has recently delivered significant
advances in rate-distortion (RD) performance compared to
traditional compression methods, achieving enhanced com-
pression efficiency and storage savings [3, 4, 26, 45, 46, 63].

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4996



Despite these benefits, existing LIC models often require
high computational resources, resulting in a suboptimal
tradeoff between performance and complexity. For example,
as shown in Fig. 1 (a), MLIC++ [25] suffers from exces-
sive parameters, FTIC [33] faces high decoding latency, and
TCM-L [40] requires substantial floating-point operations.

To overcome the previous tradeoff between rate-distortion
(RD) performance and model complexity, we turn to knowl-
edge distillation. This technique transfers capabilities from
larger, high-performing teacher models to more compact stu-
dent models[1, 24, 50, 56, 57]. Although this approach has
been applied in various domains, its dedicated application in
LIC remains underexplored. Moreover, applying knowledge
distillation to LIC models poses unique challenges inherent
to compression tasks.

We propose Stage-wise Modular Distillation framework,
SMoDi, a novel knowledge distillation framework tailored
for LIC. Given the unique requirements of image compres-
sion, our framework treats each stage as an independent
sub-task. This approach decomposes the complex overall
task handled by the teacher model into simpler sub-tasks for
the student model, thereby simplifying knowledge transfer.
Next, We identify that the efficacy of knowledge distillation
in LIC fundamentally depends on two critical factors: the
architectural design of student-teacher model pairs and the
formulation of appropriate distillation loss functions.

Firstly, architectural mismatches are a common issue for
low-level tasks and knowledge transfer. Variations in model
architectures (e.g., convolution-based, transformer-based, or
mamba-based structures) can result in the capacity gap that
hinders knowledge transfer [9, 47]. We propose Teacher-
Guided Student Model Construction, a pruning-like method
that builds the student model based on the teacher model, en-
suring structural consistency and facilitating effective knowl-
edge transfer. The second challenge lies in the design of the
loss function, which must simultaneously account for energy
biases and bitrate regularization. Intermediate features in
LIC models tend to exhibit pronounced energy compaction,
where most energy is concentrated in a few channels, leading
to disparities in channel importance and information content.
Besides, an inappropriate fluctuation in energy distribution
can significantly affect the bit rate. To overcome this, we
introduce Implicit End-to-end Supervision, which enables
intermediate layers to adaptively learn appropriate energy
compaction patterns, thus robustly managing reconstruction
quality and bitrate. This strategy also mitigates challenges
related to discrepancies in channel count and feature sizes
during explicit intermediate feature supervision.

By integrating these alignment mechanisms with our
stage-wise distillation framework, we systematically over-
come the primary constraints hindering effective knowledge
distillation in LIC models. To demonstrate the effectiveness
of our approach, we apply our framework to the state-of-

the-art S2CFormer model and develop KDIC, a compact,
lightweight student model. KDIC demonstrates superior RD
performance and efficiency compared to previous methods,
showcasing the practical benefits of our framework.

Our main contributions are summarized as follows:
• We propose SMoDi, a modular knowledge distillation

framework explicitly tailored to LIC tasks, effectively
transferring knowledge from complex teacher models to
compact student architectures.

• We identify two key barriers to knowledge distillation in
LIC models: architectural mismatches and supervision
inefficiency. We propose Teacher-Guided Student Model
Construction for architecture alignment and Implicit End-
to-end Supervision for adaptive energy compaction and
bitrate regularization to address these issues.

• We implement and validate KDIC, a student model dis-
tilled from the state-of-the-art S2CFormer architecture,
demonstrating superior RD performance with significantly
reduced complexity compared to existing LIC methods.

2. Related Work

2.1. Learned Image Compression
Recent years have witnessed a surge in end-to-end learned
image compression (LIC), spearheaded by Ballé et al.[3, 4].
Their work, which leverages convolutional neural networks
and variational auto-encoders with hyper-prior frameworks,
has been a cornerstone for subsequent research in end-to-
end learned image compression. Subsequent research has
focused on enhancing rate-distortion performance along
two primary avenues: improved transform networks and
advanced entropy models [5, 16, 17, 32, 39, 42–44, 51–
53, 58, 62].

Regarding transform networks, innovations range from
the use of invertible neural networks [55] and residual blocks
[13] to octave residual modules [10]. Moreover, researchers
have integrated transformer architectures—exemplified
by Swin Transformers [64, 65], Resblock-Swin hybrids
[40], and frequency-driven window attention mechanisms
[33]—to further boost performance. In parallel, entropy
modeling has evolved significantly. Early methods based on
autoregressive schemes [46] and checkerboard patterns [20]
have given way to more sophisticated approaches such as
channel-dimension context models [45] and uneven space-
channel adaptive coding [21]. Recent advances also include
quadtree models [35, 36], ViT-based context enhancement
[48], multi-reference models [25, 26], and transformer-based
channel-wise autoregression [33].

Despite these impressive advances, the complexity of cur-
rent LIC models remains a significant obstacle to practical
deployment. Metrics such as parameter count, FLOPs, de-
coding latency, and training throughput indicate that these
models are computationally intensive. This high complex-
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ity increases resource requirements and poses challenges
for real-time applications. Consequently, a growing inter-
est is in exploring more efficient architectures that balance
compression accuracy with reduced computational demands.
Accordingly, this paper focuses on reducing model com-
plexity while preserving compression performance, enabling
broader practical use of LIC models.

2.2. Knowledge Distillation
Knowledge distillation has become one of the most effec-
tive model compression and acceleration techniques. Its
primary goal is to transfer the rich representational capacity
of a large model (the teacher) to a smaller one (the student),
thereby enhancing the student’s performance. Initially in-
troduced for classification tasks [1, 23, 24, 50, 56, 57, 59],
the method utilizes the teacher’s softmax outputs as soft
labels, offering more nuanced guidance than traditional com-
plex labels. Building on this foundation, researchers have
extended the approach to feature distillation, where inter-
mediate feature maps from the teacher are transferred to
the student [27, 41, 61]. In these methods, manually de-
signed transformations align the teacher’s and student’s fea-
ture representations [30, 61]. Additionally, self-distillation
techniques have been proposed to transfer knowledge from
deeper to shallower layers within the same network [38, 60].
Beyond image classification, knowledge distillation has also
proven effective in domains such as object detection and
image segmentation [41, 54], as well as in low-level tasks
like super-resolution [18, 22, 31].

However, conventional distillation strategies face chal-
lenges when applied to LIC models. The unique VAE-based
structure and the energy compaction phenomenon inherent
to compression models complicate the direct use of stan-
dard techniques [15, 21, 34, 37]. Consequently, there is a
pressing need to develop specialized distillation methods
that effectively address these distinct characteristics.

3. Method
3.1. Preliminary
Fig. 2 illustrates the Teacher-Student LIC framework, which
comprises three main components: an encoder, a decoder,
and an entropy model. Starting with an input RGB image x,
the encoder ga(·) generates a latent representation y. This
latent is quantized to obtain ŷ. The decoder gs(·) then recon-
structs the image as x̂ from ŷ. Concurrently, a hyper encoder
ha(·) transforms y into a hyper-latent z, which is also quan-
tized into ẑ. A hyper decoder hs(·) uses ẑ to compute the
Gaussian parameters (µ,σ) governing the distribution of ŷ.
These processes can be expressed as:

y = ga(x;θa), ŷ = Q
(
y − µ

)
+ µ, x̂ = gs

(
ŷ;θs

)
,

z = ha

(
y;ϕa

)
, ẑ = Q

(
z
)
, µ,σ = hs

(
ẑ;ϕs

)
.

To balance compression efficiency and reconstruction
fidelity, we introduce an objective function L defined by:

L = R+ λD,

where the trade-off parameter λ controls the importance
of distortion relative to bitrate. Bitrate and distortion are
defined as

R = E
[
− log2 pŷ|ẑ(ŷ | ẑ)

]
+ E

[
− log2 pẑ(ẑ)

]
,

D = E
[
∥x− x̂∥22

]
.

The encoding and decoding processes in LIC are each
divided into three stages, with divisions occurring at nodes
where feature resolution changes due to upsampling or down-
sampling operations. This creates a total of six distinct stages.
Each stage comprises one downsampling/upsampling mod-
ule and multiple non-linear transform blocks. We approach
each stage as an independent sub-task and perform distilla-
tion in a per-stage manner. This stage-wise decomposition
is the basis for the efficient transfer of knowledge from the
teacher model to the student model.

3.2. Stage-wise Modular Distillation
3.2.1. Distillation for Non-linear Transforms
This section introduces our Stage-wise Modular Distilla-
tion framework, SMoDi, designed to systematically transfer
knowledge from a complex teacher model to a more efficient
student model. As shown in Fig. 2, the teacher model’s over-
all task is decomposed into a series of independent sub-tasks,
each representing a specific network stage. This framework
systematically breaks down the complex tasks executed by
the teacher into simpler, well-defined sub-tasks for the stu-
dent to learn and mimic. Each sub-task is assigned to a
corresponding module in the student model, fostering a mod-
ular and efficient knowledge transfer. Each module in the
student model is trained to master its assigned sub-task by
mirroring the behavior of the corresponding stage in the
teacher model. Each module focuses on a specific aspect by
breaking the task into manageable sub-tasks, reducing task
complexity and ambiguity and simplifying learning.

Conventional knowledge distillation methods typically
rely on end-to-end training with intermediate feature super-
vision, where each stage is initialized and trained together
from scratch. This approach can lead to several challenges:
during forward propagation, the incompletely trained param-
eters and noise in the early stages can propagate errors to
subsequent stages, causing instability in the training pro-
cess. During backpropagation, the gradients may suffer from
inaccuracies or degradation as they are passed through mul-
tiple incompletely trained stages, further exacerbating the
training inefficiency. In our framework, however, each stage
of the student model is integrated into a pre-trained and
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Figure 2. Overview of our SMoDi framework. The encoding and decoding processes are each split into 3 stages at nodes where feature
resolution shifts via upsampling (US) or downsampling (DS). This results in 6 distinct stages overall. Each stage consists of one DS/US
module and several non-linear transform blocks. In the teacher model, the stages are labeled T1–T6, with channel configurations C1–C6 and
block counts M1–M6. Similarly, in the student model, stages S1–S6 have channel configurations L1–L6 and block counts N1–N6. The
knowledge from the teacher model is effectively transferred to the student model in a stage-wise manner.

frozen teacher model, which allows the student modules to
be trained more precisely and efficiently.

We also provide some theoretical insights to demonstrate
the advantages of the stage-wise approach over conventional
methods later. As our SMoDi framework splits the LIC
primary transform into stages, we can rewrite the encoding
and decoding processes as follows:

yT = Ta(x;Θa) = T3(Θ3) ◦ T2(Θ2) ◦ T1(Θ1)(x),

x̂T = Ts(ŷ;Θs) = T6(Θ6) ◦ T5(Θ5) ◦ T4(Θ4)(ŷ),

yS = Sa(x;Ψa) = S3(Ψ3) ◦ S2(Ψ2) ◦ S1(Ψ1)(x),

x̂S = Ss(ŷ;Ψs) = S6(Ψ6) ◦ S5(Ψ5) ◦ S4(Ψ4)(ŷ),

where Ti (Si) denotes the i-th block of the teacher model
(student model), parameterized by Θi (Ψi).

Let P (x) denote the distribution of the input raw image.
For the purpose of providing preliminary theoretical insights,
here we assume each block’s irreversibility and differentia-
bility. Then, for the latent representation distributions, we
have:

P (yT |Θa) = P (x) · JTa
(x)−1,

P (yS |Ψa) = P (x) · JSa(x)
−1,

where J denotes the absolute Jacobian determinant.
In distillation, our goal is for P (yS |Ψa) to approximate

P (yT |Θa) as closely as possible. However, since each block
is parameterized by learned parameters (e.g., Ψi for Si),
which are optimized using methods like Adam, and due

to training randomness (e.g., uniform noise, parameter ini-
tialization, and batch sampling), each Jacobian determinant
becomes stochastic, introducing variance.

Intuitively, when blocks are trained stage-wise, each stage
learns separately, keeping training errors uncorrelated. This
keeps errors small, localized, and independent, maintaining
a stable latent distribution close to the teacher’s. In contrast,
joint training trains layers together from scratch, causing
errors to correlate and amplify randomness across layers.
This accumulates fluctuations, causing the latent distribution
to deviate further from the stable teacher model. Thus, the
stage-wise method is expected to perform better.

To mathematically justify this, let M1 denote the stage-
wise method, M2 denote the joint training method, PT (y) =
P (yT |Θa), and PS(y) = P (yS |Ψa). We measure the
difference between the two distributions using the KL di-
vergence. We can roughly assume that (1) determinant of
each block’s Jacobian follows an invariant marginal distri-
bution with fixed mean and variance regardless of the train-
ing method, and is unbiased about the teacher model’s tar-
get block; (2) in joint training, dependencies increase each
block’s co-movement in magnitudes but do not increase the
absolute mean of each block’s product. Then, we state that:

DKL(PT ∥PS)M2

DKL(PT ∥PS)M1

≈
Var(J−1

Sa
(x))M2

Var(J−1
Sa

(x))M1

≥ 1.

For detailed proof and discussion of our findings, we refer
the reader to the appendix.
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Figure 3. The two-stage distillation for the entropy model. We
distill two main parts of SCCTX [21] entropy model by stages:
Channel Context and Parameter Aggregation modules.

3.2.2. Distillation for Entropy Model
For LIC models, the entropy model—alongside the non-
linear transforms—is also a pivotal component. We apply
the stage-wise modular distillation (SMoDi) strategy to the
entropy model as well, decomposing its structure and tasks
to achieve more effective knowledge transfer.

An SCCTX entropy model [21] predicts Gaussian param-
eters Θ(k)

i = (µ, σ) from three contexts:

Φ
(k)
sp,i = g(k)sp

(
ŷ
(k)
<i

)
, Φ

(k)
ch = g

(k)
ch

(
ŷ(<k)

)
, Ψ = ghyper(ẑ),

followed by an Aggregation network:

Θ
(k)
i = Agg

(
Φ

(k)
sp,i,Φ

(k)
ch ,Ψ

)
.

Distillation principle. We identify that Channel-context
module and Parameter-aggregation module are two main
parts containing large amounts of parameters. We sequen-
tially transfer these two learnable blocks while freezing the
rest of the student’s entropy path:

1. Channel-context stage. Unfreeze g
(k)
ch only and let stu-

dent’s channel context modules mimic the teacher’s Φ(k)
ch .

2. Parameter-aggregation stage. Freeze g
(k)
ch and others,

unfreeze aggregation networks to learn from teacher’s
parameter aggregation.
This two-step schedule for entropy model also isolates

the sub-tasks, stabilises gradients, and yields better rate-
distortion performance than distilling the whole entropy
model at once.

3.3. Teacher-Guided Student Model Construction
The performance of a student model in knowledge distilla-
tion depends on both the teacher model’s efficacy and the

Figure 4. Channel-wise energy distribution of S2CFormer’s inter-
mediate features [12], averaged over 24 images from the Kodak
dataset. The latent channels are sorted into eight groups. Pan-
els (a)–(c) display histograms for the features produced by the
first three stages, while panel (d) presents the histogram for the
final latent representation. Notably, the first group—capturing
low-frequency features—accounts for an average of 87% of the
total energy, whereas the remaining groups, corresponding to high-
frequency features, exhibit significantly lower energy.

student’s ability to mimic the teacher [9]. Specifically, when
the capacity gap between teacher and student is too large,
the student struggles to mimic effectively, resulting in sub-
optimal distillation. Consequently, it is crucial to respect
this transfer gap in knowledge distillation [47]. In image
compression, where pixel-level precision is essential, the
architectural distinctions (e.g., between CNNs, Transform-
ers, and Mambas) are particularly magnified. For exam-
ple, a convolution-based network may struggle to mimic a
transformer-based teacher due to significant disparities in
their feature representations. Therefore, maintaining struc-
tural consistency between teacher and student models is
critical for effective knowledge transfer in LIC.

We propose constructing the student model by pruning the
teacher model to address this issue. This approach involves
selectively removing redundant components from the teacher
model to reduce computational complexity while preserving
its core performance. Specifically, the model is simplified by
reducing the number of blocks, decreasing the channel count,
and lowering the FeedForward network (FFN) expansion
factor. By using this teacher-guided pruning strategy, the stu-
dent model inherits the teacher’s essential capabilities while
achieving lower resource consumption. This method not
only avoids the pitfalls of cross-architecture distillation but
also ensures that the distilled model remains both efficient
and effective. The experimental section provides a detailed
description and comparative analysis of this approach.

5000



3.4. Implicit End-to-end Supervision

Another key deterministic component in knowledge distilla-
tion is the design of loss functions. Traditional knowledge
distillation methods fall into two categories: logit distilla-
tion and feature distillation. Logit distillation aligns teacher
and student outputs using soft labels (e.g., via KL diver-
gence) but appears unsuitable for low-level tasks like image
compression, which lack categorical information. Feature
distillation, on the other hand, aligns intermediate features
(e.g., via L2 loss) but faces significant challenges in LIC due
to the uneven energy distribution across channels.

As shown in Fig.4, LIC models exhibit channel-wise en-
ergy compaction: most of the energy is concentrated in a few
channels, leading to substantial variations in channel impor-
tance and information content. This energy concentration
phenomenon is related to bitrate regularization. Different
channel groups convey distinct frequency information, so
inappropriate fluctuations in these unevenly distributed chan-
nels can lead to drastic bitrate changes. LIC models must
address reconstruction fidelity, feature consistency, and bi-
trate penalty. Supervising feature similarity alone does not
adequately regulate the bitrate, causing it to increase unde-
sirably. Traditional feature distillation treats all channels
equally, neglecting this energy imbalance. Moreover, when
teacher and student models have mismatched channel num-
bers, the rearrangement and re-compaction of energy further
complicate conventional channel adaptation methods.

To overcome these challenges, we propose Implicit End-
to-end Supervision, a novel approach tailored to the spe-
cific demands of LIC. Instead of enforcing explicit channel-
wise feature alignment, our method directly integrates the
end-to-end RD loss for supervision. This strategy enables
the student model to implicitly learn effective energy com-
paction patterns and align with the teacher’s energy distribu-
tion while ensuring that the bitrate remains well-regulated.
Thus, our approach simplifies the overall supervision pro-
cess, adapts seamlessly to diverse channel configurations,
and robustly manages reconstruction quality and bitrate. We
demonstrate the channel-wise energy of teacher and student
features (Fig. 5) to show that implicit supervision allows the
student block to reallocate and re-compacts energy across
channels. This redistribution indicates that implicit supervi-
sion can enable more flexible energy compaction.

Figure 5. Unsorted Channel-wise Energy Distribution.

4. Experiments
4.1. Experimental Setup
4.1.1. Training Details
Models are trained on the Flickr2W [39] with Adam [28]
optimizer and an initial learning rate of 0.0001. For MSE-
optimized models, we use Lagrangian multipliers {0.0017,
0.0025, 0.0035, 0.0067, 0.0130, 0.0250, 0.050}. The models
are trained 0.25 million steps for stage-wise modular knowl-
edge transfer and finetuned end-to-end for 0.75 million steps.
Experiments are conducted on NVIDIA A100 GPUs.

4.1.2. Evaluation
We test our models on three datasets: Kodak [29] with the
image size of 768 × 512, Tecnick [2] with the image size of
1200 × 1200, and CLIC professional validation dataset [14]
with 2k resolution. For RD performance, we take PSNR and
bits per pixel (bpp) as metrics. We utilize the BD-rate [6] to
quantify the average bitrate savings. We also take Parameter
Count, FLOPs, Decoding Latency and Training Throughput
as metrics for model complexity. Note: PSNR is calculated
on RGB and all the latency is calculated on 2K images.

4.1.3. Model Details
We choose S2CFormer-Hybrid [12] as the teacher model.
For S2CFormer-Hybrid, channel numbers of intermedi-
ate features {C1, C2, C3, C4} are set as {192, 192, 192,
320} and the numbers of non-linear transform blocks
{L1, L2, L3} are set as {3, 8, 8}. In our design of KDIC,
we prune S2CFormer by reducing the channel number of
the first stage and the block number of the next two stages.
So, for KDIC, we set {128, 192, 192, 320} for channels and
{3, 5, 5} for block numbers. Besides, we also shrink the
expansion factors in FFNs from 4 to 2.

4.2. Performance of KDIC.
In this section, we compare our model with recent advanced
traditional and learned methods, including VTM-21.0 [7, 8],
ELIC [21], TCM-L [40], MLIC++ [25], FTIC [33] and CCA
[19]. We make comprehensive comparisons, including RD
performance on different resolution image datasets and the
complexity metrics. Detailed results are provided in Tab.1.
R-D Performance. As shown in Tab.1, KDIC outperforms
VTM-21.0 by 13.71%, 12.63% and 16.64% in BD-rate on the
Kodak, CLIC and Tecnick datasets, respectively. RD curves
of KDIC and other advanced methods are provided in Fig.6-8.
Our KDIC model achieves SOTA RD performance in terms
of PSNR BD-rate, across all three validation datasets, which
demonstrates that our KDIC model is robust for different
resolutions image datasets.
Model Complexity. Beyond RD performance, we evaluate
LIC models’ computational efficiency by analyzing param-
eters, FLOPs, and decoding latency. Table 1 compares the
complexity of various LIC models, with FLOPs and latency
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Method BD-rate [Kodak] BD-rate [CLIC] BD-rate [Tecnick] Params (M) FLOPs (T) Dec-Lat. (s) Throughput (samples/s)↑
MambaVC [49] -8.11 -10.94 -11.82 47.88 2.10 0.425 6.55
CCA [19] -11.99 -11.40 -13.53 64.89 3.28 0.385 23.28
FTIC [33] -12.94 -10.21 -13.89 69.78 2.38 >10 23.25
MLIC++ [25] -11.97 -12.08 -15.13 116.48 2.64 0.547 27.42
TCM-L [40] -10.04 -8.60 -10.42 75.89 3.74 0.542 17.80
KDIC -13.71 -12.63 -16.64 47.61 1.80 0.350 36.78

Table 1. R-D Performance and Model Complexity of LIC models.
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Figure 6. RD curves on the Kodak dataset.
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Figure 7. RD curves on the Tecnick dataset.
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Figure 8. RD curves on the CLIC dataset.

measured using 2K images on an A100 GPU and AMD
EPYC 7742 CPU. Training throughput is assessed with a
batch size of 8 and 256×256 patches. Our KDIC model sur-
passes leading LIC models in almost all the metrics. Com-
pared to MLIC++ and TCM-L, KDIC reduces parameters by
59% and 37%, FLOPs by 32% and 52%, and decoding time
by 36% and 35%, respectively. These results underscore its
practicality for latency-sensitive applications, making KDIC
ideal for scenarios demanding high-quality compression and
computational efficiency.

KDIC KDIC (Vanilla) S2C (Teacher)
BD-rate [Kodak] -13.71 -11.21 (↑-2.50) -14.28 (↓-0.57)
BD-rate [CLIC] -12.63 -10.05 (↑-2.58) -12.88 (↓-0.25)
BD-rate [Tecnick] -16.64 -13.92 (↑-2.72) -17.20 (↓-0.56)
Params (M) 47.61 47.61 79.83 (↓ 40%)
FLOPs (T) 1.80 1.80 4.17 (↓ 57%)
Decoding Latency (s) 0.350 0.350 0.362 (↓ 3.3%)
Throughput (samples/s) 36.78 36.78 22.63 (↑ 63%)

Table 2. The effectiveness of Knowledge Distillation on KDIC.

4.3. Effectiveness of Knowledge Distillation
To demonstrate the performance gain of KD, we present de-
tailed comparisons among KDIC, the vanilla-trained version
(without distillation), and the teacher model S2CFormer in
Tab.2). Compared with the teacher model, KDIC reduces
the parameter count by 40% and decreases FLOPs by 57%.

However, the BD-rate drops by only 0.57%, 0.25%, and
0.56% across the three datasets, respectively. In contrast,
compared with the vanilla-trained version of KDIC, our
model achieves BD-rate reductions of more than 2.5% on all
datasets. Besides, we also provide RD curves of these three
models in Fig. 9-11. Overall, these comparisons demonstrate
the effectiveness of our knowledge distillation method.

4.4. Ablation Studies
Distillation Framework. A series of ablation studies is
conducted to evaluate the efficacy of our stage-wise mod-
ular distillation framework. We first evaluate three more
distillation settings: (1) end-to-end training with the RD
loss + MSE feature loss; (2) multi-stage implicit supervision
(treating the encoder and decoder as two separate stages);
and (3) stage-wise explicit supervision by MSE loss. Tab. 3
demonstrates that our finer-grained stage separation yields
superior distillation and explicit MSE supervision does not
align well with RD loss in LIC.

Strategy Vanilla (1) (2) (3) SMoDi Teacher

BD-rate (%) -11.71 -11.22 -12.74 -12.07 -13.91 -14.28

Table 3. Distillation framework ablation results.

Architecture Alignment. Further ablation experiments were
performed to assess the impact of Teacher-guided Student
Model Construction. For this study, we selected a com-
pletely CNN-based teacher model, S2C-Conv. And we also
take KDIC as student model, which is a hybrid structure
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Figure 9. RD curves on the Kodak dataset.
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Figure 10. RD curves on the Tecnick dataset.
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Figure 11. RD curves on the CLIC dataset.

Conv-KD Conv-Vanilla S2C-Conv (Teacher) TCM-KD TCM-Vanilla TCM-L (Teacher)
BD-rate [Kodak] -11.49 -8.77 (↑-2.72) -12.65 (↓-1.16) -9.79 -7.49 (↑-2.30) -10.04 (↓-0.25)
BD-rate [CLIC] -9.91 -7.13 (↑-2.78) -10.98 (↓-1.07) -8.26 -6.05 (↑-2.21) -8.60 (↓-0.34)
BD-rate [Tecnick] -13.45 -10.25 (↑-3.20) -14.48 (↓-1.03) -10.11 -8.06 (↑-2.05) -10.42 (↓-0.31)
Params (M) 42.42 42.42 66.60 (↓ 36%) 68.14 68.14 75.89 (↓ 10%)
FLOPs (T) 1.35 1.35 3.13 (↓ 57%) 1.84 1.84 3.74 (↓ 51%)
Decoding Latency (s) 0.331 0.331 0.356 (↓ 7.0%) 0.479 0.479 0.542 (↓ 11.6%)
Throughput (samples/s) 53.85 53.85 35.49 (↑ 52%) 23.22 23.22 17.80 (↑ 30%)

Table 4. The extension experiments on more structures.

of CNNs and transformers. This absence of architecture
alignment resulted in a BD-rate to -11.01%, -10.07% and
-13.58 in the three datasets, which was inferior even to the
baseline (vanilla) model. This underscores the critical role
of architectural alignment in optimizing knowledge transfer.

4.5. Extensions on Other Structures
To verify the generalizability of our distillation scheme, we
tested it on two other SOTA models: the purely convolution-
based S2C-Conv model [11] and the Swin Transformer-
based TCM-L [40]. For these two models, we similarly
constructed student models by: 1. Reducing the expansion
factor in the FFN, 2. Reducing the number of channels in the
first and sixth stages, namely S1 and S6, and 3. Reducing
the number of nonlinear transform blocks in the second to
fifth stages, namely N2 and N3. We name these student
models Conv-KD and TCM-KD, respectively, and provided
their performance and model complexity data in Tab. 4. Ad-
ditionally, the models that are not trained with knowledge
distillation are named Conv-Vanilla and TCM-Vanilla. As
shown, our distillation scheme is applicable across multiple
models—it greatly reduces FLOPs and model parameters
while incurring only a minor RD performance loss compared
to the teacher models, and it offers stable improvements over
the vanilla-training versions. As we have stated, there can
be a lot of KD variants of student models, so we just provide
two example KD models in this experiment to demonstrate
the extensibility of our KD framework.

5. Conclusion
In this work, we addressed the critical challenge of high com-
putational complexity in learned image compression (LIC)
models by introducing SMoDi, a novel stage-wise modular
distillation framework. By decomposing the compression
task into independent sub-tasks and aligning the student
model with the teacher model through Teacher-Guided Stu-
dent Model Construction, we ensured architectural consis-
tency and efficient knowledge transfer. Additionally, our Im-
plicit End-to-end Supervision mechanism enabled adaptive
energy compaction and robust bitrate regularization, over-
coming the limitations of traditional distillation approaches.

Through the application of SMoDi, we developed KDIC,
a lightweight student model derived from the state-of-the-
art S2CFormer architecture. Experimental results demon-
strated that KDIC achieves top-tier rate-distortion (RD) per-
formance while significantly reducing computational com-
plexity, making it a practical solution for real-world deploy-
ment. To the best of our knowledge, this work represents one
of the first successful applications of knowledge distillation
to LIC, offering a new direction for balancing performance
and efficiency in this domain.
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