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Abstract

Recent advancements in multi-view scene reconstruction

have been significant, yet existing methods face limitations

when processing streams of input images. These methods

either rely on time-consuming offline optimization or are re-

stricted to shorter sequences, hindering their applicability

in real-time scenarios. In this work, we propose LONG3R

(LOng sequence streamiNG 3D Reconstruction), a novel

model designed for streaming multi-view 3D scene recon-

struction over longer sequences. Our model achieves real-

time processing by operating recurrently, maintaining and

updating memory with each new observation. We first em-

ploy a memory gating mechanism to filter relevant mem-

ory, which, together with a new observation, is fed into a

dual-source refined decoder for coarse-to-fine interaction.

To effectively capture long-sequence memory, we propose

a 3D spatio-temporal memory that dynamically prunes re-

dundant spatial information while adaptively adjusting res-

olution along the scene. To enhance our model’s perfor-

mance on long sequences while maintaining training effi-

ciency, we employ a two-stage curriculum training strat-

egy, each stage targeting specific capabilities. Experi-

ments demonstrate that LONG3R outperforms state-of-the-

art streaming methods, particularly for longer sequences,

while maintaining real-time inference speed. Project page:

https://zgchen33.github.io/LONG3R/.

1. Introduction

Recovering dense geometry from a sequence of images is a

fundamental task in 3D computer vision. It has widespread

applications in robotics, autonomous driving, and indoor

and outdoor scene reconstruction. Traditional approaches

typically address this task through various methods, includ-

ing Structure from Motion (SfM) [1, 9, 50, 53, 57, 71, 72],

keypoint detection [33, 34, 46], bundle adjustment [2, 62,

73], Simultaneous Localization and Mapping (SLAM) [11,

28, 41], and Multi-View Stereo [22, 23, 41, 51]. While these

methods have achieved notable success, they rely on hand-

crafted heuristics, requiring significant engineering effort

∗ Equal contribution. †Corresponding author.
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Figure 1. (Top): Overview of our LONG3R framework, which

integrates a 3D spatio-temporal memory module and memory

gating to refine features through a dual-source refined decoder.

Here, AM denotes All Memory and RM denotes Relevant Mem-

ory. (Bottom): Qualitative comparison of 3D reconstructions from

Spann3R, our method LONG3R, and the ground truth. LONG3R

can achieve more accurate point prediction.

when assembled into a pipeline [49, 51].

Recently, a new class of methods, beginning with

DUSt3R [68] and MASt3R [30], has tackled this problem

using end-to-end neural networks. These models directly

regress 3D representations (i.e., pointmaps) from image

pairs, offering a simple yet highly generalizable approach

that has quickly gained traction in the community. A par-

ticularly promising direction extends this paradigm to on-

line processing of streaming input images. For instance,

Spann3R [63] introduced a recurrent model with memory to

process streaming input images in real time, enabling vari-

ous practical applications. However, despite its efficiency,

Spann3R struggles with long input sequences due to three

key issues: (1) its memory is only attended once per iter-

ation, preventing effective reuse, (2) its memory becomes

spatially redundant as images accumulate, and (3) its train-

ing strategy does not support adaptation to long sequences.

To address the aforementioned challenges, in this pa-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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per, we propose LONG3R (LOng sequence streamiNG

3D Reconstruction), a novel model designed for stream-

ing multi-view 3D scene reconstruction over longer se-

quences, as illustrated in Fig. 1. We define long-sequence

reconstruction as real-time processing of tens to hundreds

of frames with near-constant memory requirements. Like

Spann3R [63], our approach employs a recurrent network

with a spatio-temporal 3D memory bank to process stream-

ing image sequences. Given a new observation, our model

retrieves relevant memories, interacts with the current view

to predict its pointmap, and updates the memory accord-

ingly. To enhance long-sequence processing, we introduce

three key innovations:

1. Memory Gating & Dual-Source Decoder: We intro-

duce a memory gating mechanism that selectively retains

memories relevant to the current observation, followed

by a Dual-Source Refined Decoder that enables coarse-

to-fine interaction between observations and memories.

2. 3D Spatio-temporal Memory: We propose a dynamic

3D memory module that automatically prunes redundant

memories and adapts resolution to the scene scale, bal-

ancing memory efficiency and reconstruction accuracy.

3. Two-stage Curriculum Training: We adopt a two-stage

curriculum training strategy that progressively increases

sequence length, enhancing the model’s ability to handle

increasingly complex memory interactions.

We conduct extensive experiments on multiple 3D datasets,

comparing LONG3R with various state-of-the-art methods.

Results demonstrate that our approach significantly im-

proves long-sequence streaming reconstruction while main-

taining real-time processing capability.

2. Related Work

Traditional 3D Reconstruction. 3D reconstruction from

visual data modalities has been a long-standing research

challenge in computer vision and graphics. This field

has evolved through paradigm shifts from Structure-from-

Motion (SfM) frameworks [6, 16] and SLAM systems [11,

18, 28, 39, 41] to advanced scene representation methods

like Neural Radiance Fields (NeRF) [7, 21, 37, 38, 66, 81]

and 3D Gaussian Splatting [26, 27, 78, 82, 84, 86]. Contem-

porary reconstruction frameworks expose fundamental lim-

itations of classical geometric approaches when confronted

with sparse observations, ill-posed problems, or long un-

constrained sequences. Traditional methods based on geo-

metric optimization—such as explicit feature matching and

iterative bundle adjustment—are inherently sensitive to ob-

servation sparsity, computationally redundant, and notably

slow due to the absence of learned priors for regulariz-

ing underconstrained scenarios. In contrast, our streaming

3D reconstruction method, LONG3R, directly regresses 3D

pointmaps from images using learned priors, resulting in

significantly faster reconstruction.

Learning-Based 3D Reconstruction. Replacing tradi-

tional handcrafted components with learning-based ap-

proaches, including learning-based priors [8, 12, 17, 47, 56,

60, 61, 77, 84, 90], depth estimation [5, 24, 25, 31, 42, 42–

44, 76], and end-to-end system optimization [58, 61, 65,

79], is becoming a prevailing trend for scalable scene rep-

resentation. This trend elevates data-driven methodologies

to prominence within 3D reconstruction frameworks, with

pointmap representations [13, 19, 29, 32, 35, 36, 63, 67,

68, 75, 87] catalyzing the evolution of this field. Draw-

ing inspiration from the CroCo [69, 70] cross-view comple-

tion paradigm, DUSt3R [68] pioneers a geometry-agnostic

pointmap prediction mechanism without prior calibration.

MASt3R [30] implements a coarse-to-fine feature matching

strategy, which improves the predictions of the metric-scale

point map. Metric scale dense pointmaps predictions [30]

can serve as a front-end to improve initialization and tri-

angulation processes in SFM/SLAM pipelines [15, 40].

SLAM3R [32] and Reloc3r [13] propose to leverage a feed-

forward network for initial mapping and localization es-

timation, instead of relying on computationally intensive

bundle adjustment-based backends. MV-DUSt3R [59] in-

corporates multi-view decoder blocks for cross-view infor-

mation exchange and cross-reference view blocks to en-

hance robustness against reference view selection. For

dynamic scene reconstruction, both MonST3R [85] and

CUT3R [67] reconstruct temporally coherent 3D represen-

tations from unconstrained monocular video sequences.

Streaming Reconstruction. Current streaming scene re-

construction methods using pairwise image matching strug-

gle with long sequences. Accumulative scale drift and

error propagation in pose estimation degrade 3D recon-

struction consistency. Traditional monocular SLAM sys-

tems [18, 20, 61, 90] mitigate these issues through opti-

mized tracking, optical flow-integrated bundle adjustment,

and loop closure detection. Their reliance on predefined

intrinsic parameters limits generalizability, and reconstruc-

tion quality heavily depends on depth estimation accuracy.

Spann3R [63] refines point map predictions using a hy-

brid memory feature bank with attention interaction, en-

abling feedforward scene reconstruction without iterative

optimization. CUT3R [67] uses persistent state tokens with

transformer-based recurrent state updates for online recon-

struction from streaming sequences, yet suffers from lim-

ited extreme viewpoint extrapolation capabilities due to de-

terministic inference and potential drift accumulation in ex-

tended sequences lacking global alignment. Our model uti-

lizes spatio-temporal contextual information during training

and inference phases to reduce cumulative errors caused by

the lack of loop closure detection and post-optimization.
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(c) Dual-Source Refined Decoder.

Figure 2. Method Overview. (a) Illustrates the overall architecture, where image features F I

t first interact with F
I

t−1 in the Coarse Decoder

to generate F
c

t , after which a memory-gating module filters irrelevant entries from the spatio-temporal memory Fmem. The Dual-Source

Refined Decoder subsequently interacts with both the filtered memory and features from t + 1, ultimately generating the pointmap t. (b)

Details the attention-based memory gating module, which selects relevant information from the memory. (c) Illustrates the dual-source

refined decoder, which alternately interacts with the next-frame features and relevant memory features through multiple self- and cross-

attention layers to optimize memory information utilization and maintain alignment with the subsequent frame.

3. Method

Our proposed streaming 3D reconstruction method,

LONG3R, is depicted in Fig. 2. It starts by encoding fea-

tures from consecutive frames, which are then processed

by a Coarse Decoder to generate a rough 3D structure. A

memory gating mechanism then filters the spatio-temporal

memory to retain relevant memory. The relevant memory,

along with t+ 1 context, is used by a Dual-Source Refined

Decoder to produce accurate reconstructions.

3.1. Feature Encoding and Coarse Decoding

Following previous studies [63, 68], the input image It is

processed by a ViT encoder that partitions it into patches

and linearly projects them into visual feature tokens:

F
I
t = Encoder(It). (1)

These tokens are then forwarded to a Coarse Decoder, im-

plemented as a generic transformer composed of B Pair-

wiseBlocks. Each PairwiseBlock, which comprises self-

attention, cross-attention, and an MLP, is used as follows:

F
c
t,i = PairwiseBlockci

(

F
c
t,i−1,F

r
t−1,i−1

)

, (2)

for i = 1, 2, . . . , B, with F
c
t,0 = F

I
t . Here, F

r
t−1,i−1

denotes the refined tokens produced by the corresponding

blocks of the Refined Decoder for the (t− 1)-th frame. By

efficiently interacting with temporal features from the pre-

vious frame, the Coarse Decoder generates coarse represen-

tations that serve as the basis for subsequent processing.

3.2. Attention­based Memory Gating

As depicted in Fig. 2b, the memory gating mechanism

serves two primary functions: aggregating information

from all memory entries and filtering out irrelevant memory

tokens to reduce the computational load of the subsequent

Refined Decoder. For brevity, we denote the final Pairwise-

Block output F c
t,B by F

c
t , which then attends to the memory

keys FK
mem and values F V

mem via cross-attention:

Wt = Softmax

(

F
c
t

(

F
K
mem

)⊤

√
C

)

, (3)

F
fuse
t = WtF

V
mem, (4)

where Wt ∈ R
P×S denotes the attention weights for each

token in the current query relative to all memory keys, with

P as the number of tokens in the current frame and S as the

number of memory tokens.

To filter out memory irrelevant to the current observa-

tion, we employ the attention weights Wt ∈ R
P×S and
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an attention threshold τ (5 × 10−4). Specifically, for each

memory index s ∈ {1, . . . , S}, if there exists at least one to-

ken p ∈ {1, . . . , P} such that Wt(p, s) > τ , the s-th mem-

ory feature is retained; otherwise, it is discarded. Thus, the

relevant memory Fr mem is given by:

δ(s) =

{

1, if maxp Wt(p, s) > τ,

0, otherwise.
(5)

Fr mem = {Fmem(s) | δ(s) = 1 }. (6)

Here, δ(s) is an indicator function. Notably, Fmem com-

prises two components, FK
mem and F

V
mem, both of which un-

dergo the same above filtering process. This mechanism en-

sures that only memory elements with sufficient relevance,

as determined by the attention weights, contribute to the fol-

lowing refining process.

3.3. Dual­Source Refined Decoder

To maximize the utilization of memory information and

maintain alignment with the subsequent frame, we propose

the Dual-Source Refined Decoder, as illustrated in Fig. 2c.

Unlike the Coarse Decoder, which consists solely of generic

PairwiseBlocks, the Dual-Source Refined Decoder alter-

nates between two types of blocks: a PairwiseBlock and a

MemoryBlock. This design allows the current-frame tokens

to fully exploit and aggregate both spatio-temporal memory

tokens and features from the next frame.

Let F r
t,i denote the refined feature representation at block

i. The overall operation can be formulated as:

F
r
t,i =

{

PairwiseBlock(F r
t,i−1,F

c
t+1,i−1), i odd,

MemoryBlock(F r
t,i−1,Fr mem), i even,

(7)

for i = 1, 2, . . . , B, with F
r
t,0 = F

fuse
t . The Pairwise-

Block (applied for odd i) facilitates feature interactions be-

tween the refined current-frame features and the coarse to-

kens from the next frame, while the MemoryBlock (applied

for even i) integrates these refined features with the rele-

vant memory tokens Fr mem, thereby enhancing long-range

spatio-temporal dependencies. This alternating structure

enables the decoder to construct a robust, context-aware

feature representation by leveraging both immediate and

historical information.

Following the decoder, an explicit 3D reconstruction pre-

diction is generated from its outputs using a DPT head.

3.4. 3D Spatio­Temporal Memory

Our memory mechanism handles long sequences by concur-

rently maintaining short-term temporal memory and long-

term 3D spatial memory. The memory consists of his-

torical tokens generated by the Dual-Source Refined De-

coder. With a fixed storage capacity, our long-term 3D

0 1

Accumulated attention weight

3D Spatial 

Memory Pruning

Figure 3. 3D Spatial Memory Pruning. Memory tokens are

grouped into voxels based on 3D positions (illustrated here in a

2D simplified view), with only the token having the highest ac-

cumulated attention weight retained per voxel. Darker blue dots

indicate higher attention weights.

spatial memory maintains an overall spatial representation

while avoiding redundant tokens. This memory design ef-

ficiently captures essential spatio-temporal features without

overwhelming memory resources.

The short-term temporal memory stores historical tokens

from the time window [t−K, t− 1], where K denotes the

window length. It stores key features fK ∈ R
(K·P )×C and

value features fV ∈ R
(K·P )×C , ensuring the effective uti-

lization of time-dependent information.

The long-term 3D spatial memory mitigates GPU mem-

ory constraints and improves inference speed by managing

tokens within [1, t − K] while limiting their number. In-

spired by the occupancy mechanism, we employ voxels as

storage units, with each voxel retaining a single token. This

sparsification balances the number of memory units with the

scene’s spatial size. However, since different scenes require

varying voxel sizes and the model’s optimization is metric-

invariant, predefined voxel sizes are unsuitable. To address

this, we introduce an adaptive voxel size strategy.

Adaptive Voxel Size. Since the memory stores patch-

based tokens, we first compute a unique 3D position P for

each patch using the point map predicted in each frame via

a weighted average. Each token then calculates the 3D

Euclidean distance to its eight neighboring tokens in the

image plane, with the average distance defined as di =
0.125

∑

j∈N (i) ∥Pi − Pj∥2, where Pi is the 3D position of

token i, N (i) represents the set of its eight neighboring to-

kens, and ∥ · ∥2 is the Euclidean norm.

The optimal image voxel size vimg is determined as the

minimum di across all tokens to balance memory usage and

storage efficiency. The scene voxel size vscene is computed

as the average of image voxel sizes across all frames:

vimg = min
i

di and vscene =
1

t− 1

t−1
∑

j=1

vimg,j , (8)

where t denotes the sequence index of the current frame.
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Method

7Scenes NRGBD

FPS
Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

F-Recon [74] 12.43 7.62 5.54 2.31 61.89 68.85 28.55 20.59 15.05 6.31 65.47 75.77 ≪1

Dust3R [68] 3.01 1.47 5.11 2.79 58.83 63.73 3.94 2.48 5.31 3.58 62.62 72.29 ≤3

MASt3R [29] 2.82 1.56 5.26 3.24 58.22 62.46 3.85 2.54 5.50 3.62 60.92 68.67 ≤3

MV-DUSt3R [59] 2.92 1.24 2.49 0.78 66.42 76.07 3.76 1.99 2.55 0.92 81.16 95.39 ∼15

MV-DUSt3R+ [59] 2.93 1.07 8.63 0.95 66.38 76.18 3.47 1.60 3.69 0.85 84.33 97.27 ∼3

CUT3R [67] 7.73 3.57 7.75 1.83 65.74 73.98 12.48 5.57 6.34 2.35 75.84 90.05 ∼23

Spann3R[63] 3.42 1.48 2.41 0.85 66.35 76.25 6.91 3.15 2.91 1.10 77.75 93.71 ∼22

Ours 2.57 1.14 2.08 0.73 66.55 76.43 6.66 2.54 3.11 1.21 77.56 93.08 ∼22

Table 1. Quantitative results on 7Scenes [52] and NRGBD [3] datasets. All models are using 224× 224 image inputs.
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Figure 4. Qualitative comparisons. We present a comparison of reconstruction results on Office-06 and Office-09 from the 7Scenes [52]

dataset with the Spann3R [63] and CUT3R [67] methods. In comparison with other online reconstruction methods, our approach achieves

superior spatial consistency (e.g., the regions enclosed by the red bounding boxes) while preserving real-time performance.

Given the model’s streaming architecture, vscene undergoes

continuous online updates during inference, enabling adap-

tive scene-specific adjustments across temporal sequences.

3D Spatial Memory Pruning. Once the scene voxel size

is determined, tokens with similar 3D positions are grouped

into the same voxel, while tokens that are farther apart

are assigned to different voxels. The cumulative attention

weight of each token is tracked, and only the token with the

highest weight within each voxel is retained, as illustrated in

Fig. 3. This mechanism effectively balances memory size to

avoid storing similar memories while preserving the spatial

representation of the scene.

3.5. Training

Loss Function. Following the approach in [63, 68], we

employ a confidence-aware loss Lconf for 3D regression and

a scale loss Lscale, which encourages the predicted point

cloud to have an average distance smaller than that of the

ground truth. Overall, the final loss function is:

L = Lconf + Lscale. (9)

Two-stage Curriculum Training. To enable our model

to better handle long sequences, we adopt a two-stage train-

ing strategy. In the first stage, the model is trained by ran-

domly sampling 5 frames per video sequence. This ini-

tial training phase allows the model to develop a prelimi-

nary understanding, enabling the encoder to be frozen while

fine-tuning subsequent modules in the second stage. In

the second stage, the ViT encoder remains frozen while

the other modules are fine-tuned, allowing the model to be

trained with an increased number of frames for address-

ing long sequences. Specifically, we initially sample 10

frames and subsequently 32 frames, enabling the model to

gradually adapt to longer sequences. This phased approach

enhances long-sequence reconstruction capabilities by ex-

ploiting spatio-temporal feature correlations across progres-
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Method

Replica100 Replica200

FPS
Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Dust3R [68] 6.34 3.99 6.44 3.68 61.67 69.27 4.99 2.76 4.63 2.59 62.26 70.76 ≤3

MASt3R [29] 5.10 2.96 6.00 3.43 61.81 69.52 5.26 3.23 7.31 3.75 58.03 62.81 ≤3

MV-DUSt3R [59] 10.41 6.48 4.34 1.22 73.76 88.36 17.02 11.70 5.10 1.36 66.74 78.24 ∼7

MV-DUSt3R+ [59] 5.28 3.26 2.56 0.89 79.07 93.63 11.79 8.37 5.64 1.53 70.66 83.86 ∼1

CUT3R [67] 20.44 14.64 5.67 2.32 69.63 84.31 28.3 20.68 6.61 1.88 63.95 73.85 ∼23

Spann3R[63] 14.08 8.88 4.67 1.61 72.46 88.98 16.29 10.17 4.02 1.16 68.56 82.80 ∼21

Ours 11.46 7.55 3.68 1.24 73.29 89.86 11.93 7.42 2.73 0.87 68.67 82.92 ∼21

Table 2. Quantitative results on Replica [54] datasets. All models are using 224×224 image inputs. Replica100 and Replica200 represent

sequence lengths of 100 and 200 frames, respectively.
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Figure 5. Qualitative comparisons. We present a comparison of reconstruction results on Office-0 from the Replica [54] dataset with the

Spann3R [63] and CUT3R [67] methods. During streaming observations within the same scene, existing methods suffer from increasing

ambiguity due to error accumulation. In contrast, our approach effectively suppresses cumulative drift and maintains spatial consistency.

sively expanded temporal contexts, thereby optimizing the

model’s ability to capture and utilize memory-related pat-

terns in sequential data processing.

4. Experiments

To comprehensively assess overall performance and com-

ponent effectiveness, we evaluate our method on 3D recon-

struction (Sec. 4.2) and camera pose estimation (Sec. 4.3),

along with ablation and analysis presented in Sec. 4.4.

4.1. Setup

Training Datasets. Following Spann3R [63], we train our

model with a mixture of 6 datasets: Habitat [48], ARK-

itScenes [4], BlendedMVS [80], ScanNet++ [83], Co3D-

v2 [45], ScanNet [10]. These datasets integrate real-world

and synthetic data, encompassing metric-scale measure-

ments and normalized-scale samples.

Baselines. For online streaming reconstruction methods,

we evaluate LONG3R with Spann3R [63] and CUT3R [67]

as primary baselines. To ensure a comprehensive analy-

sis, we further compare our method with DUSt3R [68] and

MASt3R [29], which involve additional post-processing

stages, as well as offline approaches MV-DUSt3R and MV-

DUSt3R+ [59]. All evaluations are conducted on a single

NVIDIA RTX 3090 GPU with 24 GB of VRAM, and all

input images are resized to 224×224 for a fair comparison.

Implementation details. We use ViT-Large [14] as

LONG3R’s encoder, initialized with DUSt3R’s encoder

weights. Both training stages utilize images at a resolution

of 224 × 224. Experiments are conducted with 10-frame
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Method
7Scenes TUM ScanNet

ATE RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr

Spann3R [63] 12.64 6.15 1.88 5.66 2.13 0.59 9.83 2.30 0.66

CUT3R [67] 12.40 7.65 2.34 6.25 2.55 0.69 14.27 3.58 0.92

Ours 8.72 5.03 1.67 5.40 2.36 0.60 6.44 2.14 0.61

Table 3. Evaluation of Camera Pose Estimation (cm/◦). All

three models using 224 × 224 image inputs.

short-term memory and 3000-token long-term memory. In

the first stage, we employ the AdamW optimizer with a

learning rate of 1.12×10−4 and a batch size of 10 per GPU,

training for 120 epochs. In the second stage, we fine-tune

the model using the AdamW optimizer with a learning rate

of 1×10−5 on 10-view and 32-view sequences, training for

12 epochs each. The first stage runs on 16 A100 GPUs for

28 hours, while fine-tuning requires about 20 hours on the

same hardware configuration.

4.2. 3D Reconstruction

We evaluate scene-level reconstruction on three unseen

datasets: 7Scenes [52], NRGBD [3], and Replica [54] to

demonstrate generalization capability in long-sequence re-

construction using accuracy, completion and normal con-

sistency as in previous works [3, 63, 64, 89] and we re-

port accuracy and completeness in centimeters. For the

Replica [54] dataset, we consider two settings: uniformly

sampling 100 and 200 frames, denoted Replica100 and

Replica200, respectively.

Quantitative comparisons. Tab. 1 and Tab. 2 present the

quantitative comparison of reconstruction metrics between

our method and existing 3D reconstruction approaches. The

learning-based approaches evaluated are categorized into

three classes: optimization methods with post-processing

refinement like DUSt3R [68] and MASt3R [29], offline

methods like MV-DUSt3R [59], and streaming online re-

construction methods like Spann3R [63] and CUT3R [67].

As demonstrated in Tab. 1, our method achieves the high-

est reconstruction accuracy compared to online streaming

reconstruction methods, while attaining a precision com-

parable to post-optimization and offline approaches on the

7Scenes [52] and NRGBD [3] datasets. Furthermore, our

real-time performance offers a crucial advantage over the

slower post-optimization and offline methods.

To systematically assess the robustness and geomet-

ric fidelity of reconstruction approaches under streaming

observations, we design a controlled experiment on the

Replica [54] dataset. We sample 100 and 200 frames se-

quentially from the same scene as complete observations.

The predicted pointmaps are aggregated as the reconstruc-

tion results for metric computation, reflecting the impact

of sequence length on reconstruction accuracy. As shown

in Tab. 2, post-optimization methods achieve higher accu-

Method

7Scenes NRGBD

FPS
Acc↓ Comp↓ Acc↓ Comp↓

Mean Med. Mean Med. Mean Med. Mean Med.

w/o Gating 2.53 1.12 2.12 0.74 6.72 3.14 2.91 1.20 18.0

w/ Gating 2.57 1.14 2.08 0.73 6.66 3.11 2.92 1.21 21.4

Table 4. Attention-based Memory Gating ablation study on

7Scenes [52] and NRGBD [3].

Replica100 Replica2007Scenes NRGBD
0

2000

2500

3000

3500

4000

4500

Relevant Memory

All Memory

Memory number

Figure 6. Memory number comparison. This figure illustrates

the number of memory tokens before (all memory) and after (rel-

evant memory) passing through the memory gating module.

racy due to global alignment effectively mitigating drift, al-

beit at the cost of significantly lower FPS, which limits their

applicability in real-time scenarios. Other optimization-free

baselines exhibit reduced robustness with denser observa-

tional inputs due to their inherent lack of holistic spatial

consistency awareness during training and inference. In

contrast, our approach maintains competitive reconstruction

accuracy compared to online methods while avoiding catas-

trophic performance degradation on extended sequences.

Qualitative comparisons. We qualitatively compare our

method with online reconstruction baselines on the

7Scenes [52] and Replica [54] datasets. Detailed com-

parisons of reconstruction results are presented in Fig. 4

and Fig. 5. As shown in Fig. 4, our method achieves su-

perior spatial consistency while maintaining real-time per-

formance compared to Spann3R [63] and CUT3R [67].

Fig. 5 presents results from long-sequence streaming obser-

vation experiments. With increasing observation sequences,

Spann3R [63] and CUT3R [67] exhibit amplified ambiguity

in geometric predictions (e.g., erroneous surfaces of tele-

visions), whereas our approach maintains consistent recon-

struction quality via 3D spatiotemporal context aggregation.

4.3. Camera Pose Estimation

We evaluate camera pose estimation on 7Scenes [52],

TUM [55], and ScanNet [10] using Absolute Translation

Error (ATE), Relative Translation Error (RPEt), and Rela-

tive Rotation Error (RPEr), following [8, 85, 88].
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Figure 7. Dual-Source Decoder Comparison. This figure com-

pares the interleaved and concatenated architectures of the Dual-

Source Refined Decoder.

As shown in Tab. 3, our method significantly out-

performs Spann3R and CUT3R on static scene datasets,

namely 7Scenes and ScanNet. Despite being trained ex-

clusively on static scenes, our method remains competitive

with Spann3R and CUT3R on the TUM Dynamics dataset,

which features dynamic human motion.

4.4. Ablation and analysis

Attention-based Memory Gating. We analyze the im-

pact of the memory gating mechanism on the 7Scenes [52]

and NRGBD [3] datasets. The experimental results are

summarized in Tab. 4, and Fig. 6. The memory gating

mechanism removes memory features irrelevant to the cur-

rent frame, exemplified by a 27% reduction on 7Scenes, and

achieves an optimal balance between reconstruction accu-

racy and computational efficiency in streaming reconstruc-

tion. We evaluated the FPS with (21.4 FPS) and without

(18.0 FPS) memory gating, resulting in a 20% boost.

Dual-Source Refined Decoder. We conduct an ablation

study on the Replica [54] dataset to compare the effective-

ness of various dual-source block designs, with Fig. 7 de-

picting the design variations. Due to memory constraints

associated with the concatenation method, the experiments

reported in Tab. 5 use a sequence length of 24 frames in-

stead of 32 during the second stage of training. As shown

in Tab. 5, compared with the concatenation approach, our

proposed interleaved attention blocks yield superior scene

reconstruction accuracy under both sampling settings in

Replica while reducing computational complexity. These

performance gains primarily stem from mitigating infor-

mation loss caused by feature space misalignment between

memory features and the coarse features of frame t+1. Our

interleaved attention blocks address this issue by employing

alternating cross-attention, which progressively aligns fea-

ture spaces and improves computational efficiency.

Method

Replica100 Replica200

Acc↓ Comp↓ Acc↓ Comp↓

Mean Med. Mean Med. Mean Med. Mean Med.

Concat. 14.83 10.26 4.59 1.81 29.52 21.04 8.88 4.05

Interleaved. 12.06 7.67 3.68 1.23 13.34 8.41 3.15 0.94

Table 5. Refined Decoder ablation study on Replica [54].

Method

7Scenes Replica200

Acc↓ Comp↓ Acc↓ Comp↓

Mean Med. Mean Med. Mean Med. Mean Med.

w/o 3D Spa. Mem. 5.76 2.96 3.30 1.22 65.75 47.63 13.24 3.49

w/ Spann3R Mem. 2.64 1.16 2.10 0.74 12.41 7.87 3.07 0.88

LONG3R (ours) 2.57 1.14 2.08 0.73 11.93 7.42 2.74 0.87

Table 6. Memory frameworks ablation study on 7Scenes [52]

and Replica [54]. w/o 3D Spa. Mem.: without 3D spatial mem-

ory, only with temporal memory.

3D Spatio-Temporal Memory. We conduct an ablation

study in two parts to evaluate our 3D spatio-temporal mem-

ory design. In the first part, we compare the complete de-

sign with a variant that excludes the long-term 3D spatial

memory component on the Replica [54] dataset. The re-

sults detailed in Tab. 6 reveal that omitting the long-term 3D

spatial memory significantly degrades reconstruction per-

formance, highlighting its essential role in long-sequence

streaming reconstruction. In the second part, we compare

our proposed design with the Spann3R memory [63] frame-

work under consistent network architectures. Our findings

demonstrate that our 3D spatio-temporal memory achieves

superior scene-level reconstruction accuracy through reduc-

ing spatially redundant memory while preserving coherent

geometric understanding across sequential frames.

5. Conclusion

In this paper, we propose LONG3R, a novel framework for

long-sequence streaming 3D reconstruction that overcomes

key limitations of existing methods. It combines a memory

gating mechanism, a Dual-Source Refined Decoder, and a

dynamic 3D Spatio-Temporal Memory Module to improve

memory efficiency and reduce redundancy. A two-stage

curriculum training strategy further helps the model adapt to

long sequences. Experiments on multiple datasets demon-

strate that LONG3R achieves state-of-the-art while main-

taining real-time performance. Future work will explore

scaling the framework to more complex environments.

Limitations. Since our predictions are defined relative to

the first frame, our model may produce blurry results if the

viewpoint deviates significantly. Due to the lack of dynamic

training data, the current model struggles to handle highly

dynamic scenes with large object motions.
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