
SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation

Junsong Chen1→ Shuchen Xue5→ Yuyang Zhao1† Jincheng Yu1†

Sayak Paul4 Junyu Chen3 Han Cai1 Song Han1,2 Enze Xie1

1NVIDIA 2MIT 3Tsinghua University 4Huggingface 5Independent Researcher

→Equal contribution. †Core contribution.

Abstract

This paper presents SANA-Sprint, an efficient diffusion model
for ultra-fast text-to-image (T2I) generation. SANA-Sprint is
built on a pre-trained foundation model and augmented with
hybrid distillation, dramatically reducing inference steps
from 20 to 1-4. We introduce three key innovations: (1)
We propose a training-free approach that transforms a pre-
trained flow-matching model for continuous-time consis-
tency distillation (sCM), eliminating costly training from
scratch and achieving high training efficiency. Our hybrid
distillation strategy combines sCM with latent adversar-
ial distillation (LADD): sCM ensures alignment with the
teacher model, while LADD enhances single-step gener-
ation fidelity. (2) SANA-Sprint is a unified step-adaptive
model that achieves high-quality generation in 1-4 steps,
eliminating step-specific training and improving efficiency.
(3) We integrate ControlNet with SANA-Sprint for real-time
interactive image generation, enabling instant visual feed-
back for user interaction. SANA-Sprint establishes a new
Pareto frontier in speed-quality tradeoffs, achieving state-
of-the-art performance with 7.59 FID and 0.74 GenEval in
only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71
GenEval) while being 10! faster (0.1s vs 1.1s on H100). It
also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for
1024→1024 images on H100, and 0.31s (T2I) on an RTX
4090, showcasing its exceptional efficiency and potential
for AI-powered consumer applications (AIPC). Code and
pre-trained models will be open-sourced.

1. Introduction
The computational intensity of diffusion generative mod-
els [15, 53], typically requiring 50-100 iterative denois-
ing steps, has driven significant innovation by time-step
distillation to enable efficient inference. Current method-
ologies primarily coalesce into two dominant paradigms:
(1) distribution-based distillations like GAN [12] (e.g.,
ADD [52], LADD [51]) and its variational score distilla-

tion (VSD) variants [37, 46, 62] leverage joint training to
align single-step outputs with multi-step teacher’s distribu-
tions, and (2) trajectory-based distillations like Direct Dis-
tillation [35], Progressive Distillation [39, 49], Consistency
Models (CMs) [54] (e.g. LCM [36], CTM [20], MCM [13],
PCM [60], sCM [34]) learn ODE solution across reduced
sampling intervals. Together, these methods achieve 10-
100! image generation speedup while maintaining competi-
tive generation quality, positioning distillation as a critical
pathway toward practical deployment.

Despite their promise, key limitations hinder broader
adoption. GAN-based methods suffer from training insta-
bility due to oscillatory adversarial dynamics and mode col-
lapse. GANs face challenges due to the need to map noise
to natural images without supervision, making unpaired
learning more ill-posed than paired learning, as highlighted
in [17, 76]. This instability is compounded by architectural
rigidity, which demands meticulous hyperparameter tuning
when adapting to new backbones or settings. VSD-based
methods involve the joint training of an additional diffusion
model, which increases computational overhead and imposes
significant pressure on GPU memory, and requires careful
tuning [69]. Consistency models, while stable, suffer quality
erosion in ultra-few-step regimes (e.g., <4 steps), particu-
larly in text-to-image tasks where trajectory truncation errors
degrade semantic alignment. These challenges underscore
the need for a distillation framework that harmonizes effi-
ciency, flexibility, and quality.

In this work, we present SANA-Sprint, an efficient dif-
fusion model for one-step high-quality text-to-image (T2I)
generation. Our approach builds on a pre-trained image gen-
eration model SANA and recent advancements in continuous-
time consistency models (sCMs) [34], preserving the benefits
of previous consistency-based models while mitigating the
discretization errors of their discrete-time counterparts. To
achieve the one-step generation, we first transform SANA, a
Flow Matching model, to the TrigFlow model, which is re-
quired for sCM distillation, through a lossless mathematical
transformation. Then, to mitigate the instability of distilla-
tion, we adapt the QK norm in self- and cross-attention in

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16185

Done

Sana Baseline

Flux-dev

+ Deep Compression 
AutoEncoder

+ Linear DiT

+ Flow DPM-Solver

(Sana final version)

+ Kernel Fusion

Flux-dev

Flux-Schnell
4 steps

SANA
20 steps

SANA-Sprint
4 steps

SANA-Sprint
1 step

E6F0E7 F7E8E6 E6EDF2

Transformer: 1.94sVAE: 0.15s

0.03sVAE: 0.12s

0.14s

Transformer: 1.18s 1.6x

8.4x

39.3x

64.7x

Params: 12B, GenEval: 0.71, FID:7.94

Params: 1.6B, GenEval: 0.74, FID:7.59

(a) Generation latency (s) on 1024x1024

VAE: 0.12s

VAE: 0.12s

1

(b) Training GPU Memory (GB)

Flux
Schnell

12B

SDXL
DMD2
0.9B

SANA
Sprint
1.6B

>80GB
>80GB

45GBbs=1
bs=1

bs=2

Text Encode: <0.05s

SANA
Sprint
0.6B

20GB
bs=2

34GB

bs=32

SANA
Sprint
0.6B

67GB

bs=32

SANA
Sprint
1.6B

SANA
Sprint
1.6B

67GB

bs=32

OOM

Figure 1. (a) Our SANA-Sprint accelerate the inference speed for generating 1024 → 1024 images, achieving a remarkable speedup from
FULX-Schnell’s 1.94 seconds to only 0.03 seconds. This represents a 64→ improvement over the current state-of-the-art step-distilled model,
FLUX-Schnell, as measured with a batch size of 1 on an NVIDIA A100 GPU. The ratio is calculated based on Transformer latency. (b)
Additionally, our model demonstrates efficient GPU memory usage during training, outperforming other distillation methods in terms of
memory cost. The GPU memory is measured using official code, 1024 → 1024 images and on a single A100 GPU.

SANA along with dense time embeddings to allow efficient
knowledge transfer from the pre-trained models without re-
training the teacher model. We further combine sCM with
LADD’s adversarial distillation to enable fast convergence
and high-fidelity generation while retaining the advantages
of sCMs. Note that, although validated primarily on SANA,
our method can benefit other mainstream flow-matching
models such as FLUX [23] and SD3 [9].

As a result, SANA-Sprint achieves excellent speed/qual-
ity tradeoff, benefiting from a hybrid objective, inheriting
sCM’s diversity preservation and alignment with the teacher,
while integrating LADD’s fidelity enhancement: experi-
ments show a 0.6 lower FID and 0.4 higher CLIP-Score
at 2-step generations compared to standalone sCM, with
3.9 lower FID and 0.9 higher CLIP-Score over pure latent
adversarial approaches. As shown in Fig. 1, SANA-Sprint
achieves state-of-the-art performance in FID and GenEval
benchmark, surpassing recent advanced methods including
SD3.5-Turbo, SDXL-DMD2, and Flux-schnell. Especially,
SANA-Sprint is 64.7→ faster than Flux-Schnell and exceeds
in FID (7.59 vs 7.94) and GenEval (0.74 vs 0.71).

Moreover, SANA-Sprint demonstrates unprecedented in-
ference speed—generating 1024→1024 images in 0.31 sec-
onds on a laptop with consumer-grade GPUs (NVIDIA RTX
4090) and 0.1 seconds on H100 GPU, 8.4→ speedup than
teacher model SANA. This efficiency unlocks transforma-
tive applications that require instant visual feedback: in
ControlNet-guided image generation/editing, by integrating
with ControlNet, SANA-Sprint enables instant interaction
with 250ms latency on H100. SANA-Sprint exhibits robust
scalability and is potentially suitable for human-in-the-loop
creative workflows, AIPC, and immersive AR/VR interfaces.
In summary, our key contributions are threefold:

• Hybrid Distillation Framework: We designed an inno-
vative hybrid distillation framework that seamlessly trans-
forms the flow model into the Trigflow model, integrating
continuous-time consistency models (sCM) with latent
adversarial diffusion distillation (LADD). This framework

leverages sCM’s diversity preservation and alignment with
the teacher alongside LADD’s fidelity enhancement, en-
abling unified step-adaptive sampling.

• Excellent Speed/Quality Tradeoff: SANA-Sprint
achieves exceptional performance with only 1-4 steps.
SANA-Sprint generates a 1024!1024 image in only 0.10s-
0.18s on H100, achieving state-of-the-art 7.59 FID on
MJHQ-30K and 0.74 GenEval score - surpassing FLUX-
schnell (7.94 FID/0.71 GenEval) while being 10→ faster.

• Real-Time Interactive Generation: By integrating Con-
trolNet with SANA-Sprint, we enable real-time interactive
image generation in 0.25s on H100. This facilitates im-
mediate visual feedback in human-in-the-loop creative
workflows, enabling better human-computer interaction.

2. Preliminaries
2.1. Diffusion Model and Its Variants
Diffusion models [15, 53] diffuse clean data sample x0 ↑
pdata from data distribution to noisy data xt = ωtx0 + εtz,
where t ↓ [0, T] represents time within the interval, z ↑
N (0, I) is a standard Gaussian noise. The terminal distribu-
tion pT of xT exactly or approximately follows a Gaussian
distribution. Typically, diffusion models train a noise pre-
diction network ωω using Ex0,z,t[↔ωω(xt, t)↗ z↔2], which
is equivalent to denoising score matching loss [53, 59].
The sampling process of diffusion models involves solv-
ing the probability flow ODE (PF-ODE) [53] dxt

dt =
d logωt

dt xt+(dεt
dt ↗ d logωt

dt εt)ωω(xt, t) with the initial value
x1 ↑ N (0, I). Below, we will introduce two recent for-
mulations of diffusion models that have received significant
attention.

Flow Matching [29, 31, 43] considers a linear interpola-
tion noising process by defining ωt = 1↗ t,εt = t, T = 1.
The flow matching models train a velocity prediction net-
work vω using Ex0,z,t[w(t)↔vω(xt, t)↗ (z↗x0)↔2], where
w(t) is a weighting function. The sampling of flow models
solves the PF-ODE dxt

dt = vω(xt, t) with the initial value

16186

x1 ↑ N (0, I).
TrigFlow [1, 34] considers a spherical linear interpolation

noising process by defining ωt = cos(t),εt = sin(t), T =
ϑ
2 . Moreover, Trigflow assumes the noise z ↑ N (0,ε2

dI),
where εd represents the standard deviation of data distribu-
tion pdata. The TrigFlow models train a velocity prediction
network Fω using Ex0,z,t[w(t)↔εdFω(

xt
εd

, t)↗ (cos(t)z ↗
sin(t)x0)↔2], where w(t) is a weighting function. The sam-
pling of TrigFlow models solves the PF-ODE defined by
dxt
dt = εdFω(

xt
εd

, t) starting from xω
2
↑ N (0,ε2

dI).
Diffusion, Flow Matching, and TrigFlow are all

continuous-time generative models that differ in their in-
terpolation schemes and velocity field parameterizations.

2.2. Consistency Models
A consistency model (CM) [54] parameterizes a neural net-
work fω(xt, t) which is trained to predict the solution x0

of the PF-ODE, which is the terminal clean data along the
trajectory of the PF-ODE (regardless of its position in the
trajectory), starting from the noisy observation xt. The
conventional approach parameterizes the CM using skip con-
nections, bearing a close resemblance to [2, 18]

fω(xt, t) = cskip(t)xt + cout(t)Fω(xt, t), (1)

where cskip(t) and cout(t) are differentiable functions satisfy-
ing cskip(0) = 1 and cout(0) = 0 to ensure the boundary con-
ditions fω(x0, 0) = x0. Fω indicates the pretrained diffu-
sion/flow model and fω is the data prediction model. Based
on the training approach, CMs can be categorized into two
types: discrete-time [36, 54] and continuous-time [34, 54].
Discrete-time CMs are trained with the following objective

l
!t
CM = Ext,t[d(fω(xt, t),fω→(xt→!t, t↗!t))], (2)

where ε→ is the stopgrad version of ε, w(t) is the weight-
ing function, !t is a small time interval, and xt→!t is ob-
tained from xt by running a numerical ODE solver. d(·, ·) is
a metric such as ϑ1, squared ϑ2, Pseudo-Huber loss, and the
LPIPS loss [73].
Although discrete-time CMs work well in practice, the ad-
ditional discretization errors brought by numerical ODE
solvers are inevitable. Continuous-time CMs correspond to
the limiting case of !t ↘ 0 in Eq. (2). When choosing
d(x,y) = ↔x↗ y↔22, the expression simplifies to:

lcont.
CM := lim

!t↑0

l!t
CM

!t
= Ext,t

[
w(t)↑fω(xt, t),

dfω→

dt
(xt, t)↓

]
,

(3)
where df

ω→ (xt,t)

dt =
ϖf

ω→ (xt,t)

ϖt +≃xtfω→(xt, t)
dxt
dt . The

infinitesimal step of dxt
dt replaces numerical ODE solvers,

thereby eliminating discretization errors.
Specifically, under TrigFlow where cskip(t) = cos(t) and

cout(t) = ↗ sin(t), sCM’s parameterization and arithmetic
coefficients are simplified to the following form:

fω(xt, t) = cos(t)xt ↗ sin(t)εdFω(
xt

εd
, t), (4)

and the time derivative becomes:

dfω→(xt, t)

dt
=↗ cos(t)

(
εdFω→(

xt

εd
, t)↗ dxt

dt

)

↗ sin(t)

(
xt + εd

dFω→(xt
εd

, t)

dt

)
.

(5)

3. Method
sCM [34] simplify continuous-time CMs using the TrigFlow
formulation. While this provides an elegant framework,
most score-based generative models are based on diffusion
or flow matching formulations. One possible approach is
to develop separate training algorithms for continuous-time
CMs under these formulations, but this requires distinct
algorithm designs and hyperparameter tuning, increasing
complexity. Alternatively, one could pretrain a dedicated
TrigFlow model, as in [34], but this significantly increases
computational cost.

To address these challenges, we propose a simple method
to transform a pre-trained flow matching model into a
TrigFlow model through straightforward mathematical input
and output transformations. This approach makes it possible
to strictly follow the training algorithm in [34], eliminating
the need for separate algorithm designs while fully leverag-
ing existing pre-trained models. The transformation process
for general diffusion models can be carried out in a similar
manner, which we omit here for simplicity.

3.1. Training-Free Transformation to TrigFlow
Score-based generative models (diffusion, flow matching,
and TrigFlow) can denoise data with proper data scales
and signal-to-noise ratios (SNRs)1 aligned with training.
However, flow matching cannot directly denoise TrigFlow-
scheduled data due to three mismatches: First, their time
domains differ: TrigFlow uses [0, ϑ

2], while flow matching
is defined on [0, 1]. Second, their noise schedules are dis-
tinct—TrigFlow maintains cos2(tTrig) + sin2(tTrig) = 1,
while flow matching yields t2FM + (1 ↗ tFM)2 < 1, causing
data scale discrepancies. Finally, their prediction targets
differ: flow matching predicts z ↗ x0 with static coefficients
(1,↗1), whereas TrigFlow predicts cos(t)z ↗ sin(t)x0 with
time-varying coefficients. These mismatches in temporal
parameterization, SNR, and output necessitate explicit in-
put/output transformations.

To clarify, we use the subscript Trig to denote noisy data
under the TrigFlow framework and FM to denote noisy data

1For a diffusion model xt = ωtx0 + εtz, SNR is defined as ω2
t

ε2
t

16187

E6F0E7 F7E8E6 E6EDF2

Done

Discriminator
Heads

Self
Consistency(̂x0, JVP)

dx /dt

̂x0

Fake

Real

Teacher

Fpretrain

Student
fθ

Teacher

Fpretrain

xt,Trig
ϵt′

DC-AE

sCM Loss

GAN Loss

x0

ϵt

Pipeline

xt,FM =
xt,Trig

σd
⋅ t2

FM + (1 − tFM)2

tFM =
sin(tTrig)

sin(tTrig) + cos(tTrig)

̂Fθ (
xt,Trig

σd
, tTrig, y) =

1

t2
FM + (1 − tFM)2

[(1 − 2tFM)xt,FM

+(1 − 2tFM + 2t2
FM)vθ(xt,FM, tFM, y)]

Input Timestep Transform

Output Transform

TransformInput Latent

xt,FM =
xt,Trig

σd
⋅ t2

FM + (1 − tFM)2

tFM =
sin(tTrig)

sin(tTrig) + cos(tTrig)
,

Input Timestep Transform

Output Transform

TransformInput Latent

̂Fθ (
xt,Trig

σd
, tTrig, y) =

1

t2
FM + (1 − tFM)2

[(1 − 2tFM)xt,FM

+(1 − 2tFM + 2t2
FM)vθ(xt,FM, tFM, y)]

Transform
TrigFlow

xt,Trig

xt,FM

xt,FM

Figure 2. Training paradigm of SANA-Sprint. In SANA-Sprint, we use the student model for synthetic data generation (x̂0) and JVP
calculation, and we use the teacher model for velocity (dx/dt) compute and its feature for the GAN loss, which allows us train sCM and
GAN together and have only one training model purely in the latent space. Details of training objective and TrigFlow Transformation are in
Eq. (9), Eq. (11) and Sec. 3.1.

under the flow matching framework. The following proposi-
tion outlines the transformation from flow matching models
to TrigFlow models, which is theoretically lossless.

Remark. We prioritize seamlessly transforming existing
noise schedules, e.g. flow matching, into TrigFlow while
integrating the sCM framework with minimal modifications.
This approach avoids the need for pre-training a dedicated
TrigFlow model, as in [34], although it involves a deviation
from the unit variance principle in [18, 34].

Proposition 3.1. Given a noisy data xt,Trig

εd
under TrigFlow

noise schedule, a flow matching model can denoise it via
vω(xt,FM, tFM,y), where

tFM =
sin (tTrig)

sin (tTrig) + cos (tTrig)
, (6)

xt,FM =
xt,Trig

ωd
·
√

t2FM + (1↔ tFM)2. (7)

Given vω(xt,FM, tFM,y), the best estimator for the
TrigFlow model Fω is the following:

F̂ω

(
xt,Trig

ωd
, tTrig,y

)

=
1√

t2FM + (1↔ tFM)2

[
(1↔ 2tFM)xt,FM

+ (1↔ 2tFM + 2t2FM)vω(xt,FM, tFM,y)
]
.

(8)

Furthermore, the transformation is lossless in theory.

The details and proof of Proposition 3.1 are in Ap-
pendix D. The transformations of both input and output
are all differentiable making it compatible with auto differen-
tiation. As validated by Tab. 1, the transformation is lossless
in both theory and practice. The training-free transformation
is depicted in the gray box of Fig. 2.

Table 1. Comparison of original Flow-based SANA model and
training-free transformation of TrigFlow-based SANA-Sprint
model. We evaluate the FID and CLIP-Score before and after the
transformation in Sec. 3.1.

Method FID ⇐ CLIP-Score ⇒
Flow Euler 50 steps 5.81 28.810
TrigFlow Euler 50 steps 5.73 28.806

Self Consistency Loss. With the lossless transformation
established, we can seamlessly adopt the training algorithm
and pipeline of sCM without other modification. This allows
us to directly follow the sCM training framework. Our final
sCM loss is the following:

LsCM(ω,ε) = Ext,t

[ewε(t)

D

∥∥∥F̂ω

(
xt

ωd
, t,y

)

↔ F̂ω→

(
xt

ωd
, t,y

)
↔ cos(t)

df̂ω→(xt, t, y)

dt

∥∥∥
2

2
↔ wε(t)

] (9)

where f̂ω→ is the parameterized sCM as in Eq. (4) after
replacing Fω with F̂ω in Proposition 3.1, xt, t refers to
xt,Trig, tTrig, and wε(t) is an adaptive weighting func-
tion to minimize variance across different timesteps follow-
ing [19, 34].

3.2. Stabilizing Continuous-Time Distillation
To stabilize continuous-time consistency distillation, we ad-
dress two key challenges: training instabilities and exces-
sively large gradient norms that occur when scaling up the
model size and increasing resolution, leading to model col-
lapse. We achieve this by refining the time-embedding to
be denser and integrating QK-Normalization into self- and
cross-attention mechanisms. These modifications enable
efficient training and improve stability, allowing for robust
performance at higher resolutions and larger model sizes.

16188

timestep
curve

Done
(c) Timestep Embedding Similarity

10K iterations visualizations 15K iterations visualizations

E6F0E7 F7E8E6 E6EDF2

15K iterations visualizations

(d) w/ or w/o schedule transfer

(a) QK-Norm vs Grad. (b) Time embedding vs Grad.

Figure 3. Efficient Distillation via QK Normalization, Dense Timestep Embedding, and Training-free Schedule Transformation. (a)
We compare gradient norms and visualizations with/without QK Normalization, showing its stabilizing effect. (b) Gradient norm curves for
timestep scales (0↗1 vs. 0↗1000) highlight impacts on stability and stability and quality. (c) PCA-based similarity analysis of timestep
embeddings. (d) Image results after 5,000 iterations of fine-tuning with (left) and without (right) the proposed schedule transfer (Sec. 3.1).

Dense Time-Embedding. As analyzed in sCM [34], the
instability issues in continuous-time CMs primarily stem
from the unstable scale of dfω

dt in Eq. (9). This instability
can be traced back to the expression dFε→

dt = ≃xtFϱ→
dxt
dt +

ϖtFϱ→ in Eq. (5), which ultimately originates from the time
derivative term ϖtFϱ→ :

εtFϑ→ =
εFϑ→

εemb(cnoise)
· εemb(cnoise)

εcnoise
· ϑcnoise(t)

ϑt
(10)

In previous flow matching models like SANA [63],
SD3 [9], and FLUX [23], the noise coefficient cnoise(t) =
1000t amplifies the time derivative ϖtFϱ→ by a factor of
1000, leading to significant training fluctuations. To ad-
dress this, we set cnoise(t) = t and fine-tuned SANA for
5k iterations. As shown in Fig. 3 (b), this adjustment re-
duce excessively large gradient norms (originally exceeding
103) to more stable levels. Furthermore, PCA visualization
in Fig. 3 (c) reveals that our dense time-embedding design
results in more densely packed and similar embeddings for
timesteps between 0↑1. This refinement improved training
stability and accelerated convergence over 15k iterations.
QK-Normalization. When scaling up the model from 0.6B
to 1.6B, we encounter similar issues with excessively large
gradient norms, often exceeding 103, which lead to train-
ing collapse. To address this, we introduce RMS normal-
ization [71] to the Query and Key in both self- and cross-
attention modules of the teacher model during fine-tuning.
This modification enhances training stability significantly,
even with a brief fine-tuning process of only 5,000 itera-
tions. By using the fine-tuned teacher model to initialize the
student model, we achieve a more stable gradient norm, as
shown in Fig. 3 (a), thereby making the distillation process
viable where it was previously infeasible.

3.3. Improving Continuous-Time CMs with GAN
CTM [20] analyzes that CMs distill teacher information in
a local manner, where at each iteration, the student model
learns from local time intervals. This leads the model to learn
cross timestep information under the implicit extrapolation,
which can slow the convergence speed. To address this
limitation, we introduce an additional adversarial loss [51] to
provide direct global supervision across different timesteps,
improving both the convergence speed and the output quality.

GANs [12] consist of a generator G and a discriminator
D that compete in a zero-sum game to produce realistic syn-
thetic data. Diffusion-GANs [61] and LADD [51] extend
this framework by enabling the discriminator to distinguish
between noisy real and fake samples. Furthermore, LADD
introduces a novel approach by utilizing a frozen teacher
model as a feature extractor and training multiple discrimina-
tor heads on the teacher model. This methodology facilitates
direct adversarial supervision in the latent space, as opposed
to the traditional pixel space, leading to more efficient and ef-
fective training. Following LADD, we use a hinge loss [28]
to train the student model and discriminator

LG
adv(ω)

= ↔Ex0,s,t

[∑

k

Dϑ,k(F ωpre,k(x̂
fω
s , s,y))

]
,

(11)

LD
adv(ϖ)

= Ex0,s

[∑

k

ReLU
(
1↔Dϑ,k(F ωpre,k(xs, s,y))

)]

+ Ex0,s,t

[∑

k

ReLU
(
1 +Dϑ,k(F ωpre,k(x̂

f
ω→

s , s,y))
)]

,

(12)
where xs, x̂

fω
s , x̂

f
ω→

s are the noisy versions of x0, x̂
fω
0 :=

fω(xt, t,y), x̂
f
ω→

0 := fω→(xt, t,y).

16189

1
St
ep

A bucket bag made of blue suede with intricate golden paisley patterns. The handle of the bag is made of rubies and pearls.

2
St
ep
s

Bright scene, aerial view, ancient city, fantasy, gorgeous light, mirror reflection, high detail.

Flux-Schnell
2.10s

SANA-Sprint
0.31s

SD3.5-Turbo
1.15s

SDXL-DMD2†
0.54s

SDXL-LCM
0.54s

SDXL-PCM†
0.88s

4
St
ep
s

3d digital art of an adorable ghost, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background

Figure 4. Visual comparison among SANA-Sprint and selected competing methods in different inference steps. † indicates that
distinct models are required for different inference steps, and time below the method name is the latency of 4 steps tested on A100 GPU.
SANA-Sprint produces images with superior realism and text alignment in all inference steps with the fastest speed.

The adversarial loss Ladv is equivalent to the GAN loss
shown at the bottom of Fig. 2. In summary, SANA-Sprint
combines sCM loss with GAN loss: L = LsCM + ϱLadv,
where ϱ = 0.5 by default, as in Tab. 5.

Additional Max-Time Weighting. In our early exper-
iments, we adopt the timestep sampling distribution of
sCM’s generator (student model) for GAN loss, given by
t = arctan (e

ϑ

εd
), where ς ↑ N (Pmean, P

2
std) with two hy-

perparameters Pmean and Pstd. To further enhance one- and
few-step generation performance and improve overall gener-
ation quality, we introduce an additional weighting at t = ϑ

2 .
Specifically, with probability p, the training timestep is set
to ϑ

2 , while with probability 1 ↗ p, it follows the original
timestep sampling distribution of sCM’s generator. We find
that this modification significantly improves the model’s ca-
pability for one- and few-step generation, as shown in Tab. 6.

3.4. Application: Real-Time Interactive Generation
Extending the SANA-Sprint to image-to-image tasks is
straightforward. We apply the SANA-Sprint training
pipeline to ControlNet [72] tasks, which utilize both images
and prompts as instructions. Our approach involves con-
tinuing the training of a pre-trained text-to-image diffusion
model with a diffusion objective on a dataset adjusted for
ControlNet tasks, resulting in the SANA-ControlNet model.
We then distill this model using the SANA-Sprint framework
to obtain SANA-Sprint-ControlNet.

For ControlNet tasks, we extract Holistically-Nested
Edge Detection (HED) scribbles from input images as con-
ditions to guide image generation. Following PixArt’s [7]
design principles, we train our SANA-ControlNet teacher
model on 1024→1024 resolution images. During sampling,
HED maps serve as additional conditioning inputs to the
Transformer model, allowing precise control over image gen-
eration while maintaining structural details. Our experiments
show that the distilled SANA-Sprint-ControlNet model re-
tains the controllability of the teacher model and achieves
fast inference speeds of approximately 200 ms on H100
machines, enabling near-real-time interaction. The effective-
ness of our approach is demonstrated in Appendix F.3.

4. Experiments
4.1. Experimental Setup
Our experiments employ a two-phase training strategy, with
detailed settings and evaluation protocols outlined in Ap-
pendix F.1. The teacher models are pruned and fine-tuned
from the larger SANA-1.5 4.8B model [64], followed by dis-
tillation using our proposed training paradigm. We evaluate
performance using metrics including FID, CLIP Score on
the MJHQ-30K [24], and GenEval [11].

4.2. Efficiency and Performance Comparison
We compare SANA-Sprint with state-of-the-art text-to-
image diffusion and timestep distillation methods in Tab. 2

16190

Table 2. Comprehensive comparison of SANA-Sprint with SOTA approaches in efficiency and performance. The speed is tested on
one A100 GPU with BF16 Precision. Throughput: Measured with batch=10. Latency: Measured with batch=1. We highlight the best and
second best entries. † indicates that distinct models are required for different inference steps.

Methods Inference Throughput Latency Params FID ↘ CLIP ≃ GenEval ≃steps (samples/s) (s) (B)
Pr

e-
tr

ai
n

M
od

el
s SDXL [45] 50 0.15 6.5 2.6 6.63 29.03 0.55

PixArt-” [5] 20 0.4 2.7 0.6 6.15 28.26 0.54
SD3-medium [10] 28 0.28 4.4 2.0 11.92 27.83 0.62
FLUX-dev [23] 50 0.04 23.0 12.0 10.15 27.47 0.67
Playground v3 [30] - 0.06 15.0 24 - - 0.76
SANA 0.6B [63] 20 1.7 0.9 0.6 5.81 28.36 0.64
SANA 1.6B [63] 20 1.0 1.2 1.6 5.76 28.67 0.66

D
ist

ill
at

io
n

M
od

el
s

SDXL-LCM [36] 4 2.27 0.54 0.9 10.81 28.10 0.53
PixArt-LCM [7] 4 2.61 0.50 0.6 8.63 27.40 0.44
PCM [60]† 4 1.95 0.88 0.9 15.55 27.53 0.56
SD3.5-Turbo [9] 4 0.94 1.15 8.0 11.97 27.35 0.72
SDXL-DMD2 [69]† 4 2.27 0.54 0.9 6.82 28.84 0.60
FLUX-schnell [23] 4 0.5 2.10 12.0 7.94 28.14 0.71

SANA-Sprint 0.6B 4 5.34 0.32 0.6 6.48 28.45 0.76
SANA-Sprint 1.6B 4 5.20 0.31 1.6 6.54 28.45 0.77

SDXL-LCM [36] 2 2.89 0.40 0.9 18.11 27.51 0.44
PixArt-LCM [7] 2 3.52 0.31 0.6 10.33 27.24 0.42
SD3.5-Turbo [9] 2 1.61 0.68 8.0 51.47 25.59 0.53
PCM [60]† 2 2.62 0.56 0.9 14.70 27.66 0.55
SDXL-DMD2 [69]† 2 2.89 0.40 0.9 7.61 28.87 0.58
FLUX-schnell [23] 2 0.92 1.15 12.0 7.75 28.25 0.71

SANA-Sprint 0.6B 2 6.46 0.25 0.6 6.54 28.40 0.76
SANA-Sprint 1.6B 2 5.68 0.24 1.6 6.50 28.45 0.77

SDXL-LCM [36] 1 3.36 0.32 0.9 50.51 24.45 0.28
PixArt-LCM [7] 1 4.26 0.25 0.6 73.35 23.99 0.41
PixArt-DMD [5]† 1 4.26 0.25 0.6 9.59 26.98 0.45
SD3.5-Turbo [9] 1 2.48 0.45 8.0 52.40 25.40 0.51
PCM [60]† 1 3.16 0.40 0.9 30.11 26.47 0.42
SDXL-DMD2 [69]† 1 3.36 0.32 0.9 7.10 28.93 0.59
FLUX-schnell [23] 1 1.58 0.68 12.0 7.26 28.49 0.69

SANA-Sprint 0.6B 1 7.22 0.21 0.6 7.04 28.04 0.72
SANA-Sprint 1.6B 1 6.71 0.21 1.6 7.69 28.27 0.76

and Fig. 4. Our SANA-Sprint models focus on timestep
distillation, achieving high-quality generation with 1-4 in-
ference steps, competing with the 20-step teacher model, as
shown in Fig. 5. More details about the timestep setting are
given in Appendix F.2.

Specifically, with 4 steps, SANA-Sprint 0.6B achieves
5.34 samples/s throughput and 0.32s latency, with an FID of
6.48 and GenEval of 0.76. SANA-Sprint 1.6B has slightly
lower throughput (5.20 samples/s) but improves GenEval to
0.77, outperforming larger models like FLUX-schnell (12B),
which achieves only 0.5 samples/s with 2.10s latency. At 2
steps, SANA-Sprint models remain efficient: SANA-Sprint
0.6B reaches 6.46 samples/s with 0.25s latency (FID: 6.54),
while SANA-Sprint 1.6B achieves 5.68 samples/s with 0.24s
latency (FID: 6.76). In single-step mode, SANA-Sprint
0.6B achieves 7.22 samples/s throughput and 0.21s latency,

maintaining an FID of 7.04 and GenEval of 0.72, comparable
to FLUX-schnell but with significantly higher efficiency.

These results demonstrate the practicality of SANA-
Sprint for real-time applications, combining fast inference
speeds with strong performance metrics.

4.3. Analysis
In this section, we apply a 2-step sampling starting at tmax =
φ/2 with an intermediate step t = 1.0.
Schedule Transfer. To validate the effectiveness of our
proposed schedule transfer in Sec. 3.1, we conduct ablation
studies on a flow matching model SANA [63], comparing
its performance with and without schedule transformation to
TrigFlow [34]. As shown in Fig. 3 (d), removing schedule
transfer leads to training divergence due to incorrect sig-
nals. In contrast, incorporating our schedule transfer enables

16191

Table 3. Comparison of loss
combination.

sCM LADD FID ⇐ CLIP ⇒
↭ 8.93 27.51

↭ 12.20 27.00
↭ ↭ 8.11 28.02

Table 4. Comparison of CFG
training strategies.

CFG Setting FID ↘ CLIP ≃

w/o Embed 9.23 27.15
w/ Embed 8.72 28.09

Table 5. sCM and LADD loss
weighting.

sCM:LADD FID ⇐ CLIP ⇒
1.0:1.0 8.81 27.93
1.0:0.5 8.43 27.85
1.0:0.1 8.90 27.76

Table 6. Comparison of max-time
weighting strategy.

Max-Time FID ⇐ CLIP ⇒
0% maxT 9.44 27.65
50% maxT 8.32 27.94
70% maxT 8.11 28.02

the model to achieve decent results within 5,000 iterations,
demonstrating its crucial role in efficiently adapting flow
matching models to TrigFlow-based consistency models.
Influence of CFG Embedding. To clarify the influence of
Classifier-Free Guidance (CFG) embedding in our model,
we maintain the setting of incorporating CFG into the teacher
model, as established in previous works [14, 34, 36]. Specifi-
cally, during the training of the student model, we uniformly
sample the CFG scale of the teacher model from the set
4.0, 4.5, 5.0. To integrate CFG embedding [39] into the stu-
dent model, we add it as an additional condition to the time
embedding, multiplying the CFG scale by 0.1 to align with
our denser timestep embeddings. We conduct experiments
with and without CFG embedding to evaluate its role. As
shown in Tab. 4, incorporating CFG embedding significantly
improves CLIP score by 0.94.
Effects of sCM and LADD. We evaluate the effectiveness
of each component by comparing models trained with only
the sCM loss or the LADD loss. As shown in Tab. 3, train-
ing with LADD alone results in instability and suboptimal
performance, achieving a higher FID score of 12.20 and a
lower CLIP score of 27.00. In contrast, combining both sCM
and LADD losses improves model performance, yielding a
lower FID score of 8.11 and a higher CLIP score of 28.02,
demonstrating their complementary benefits. Using sCM
alone achieves a FID score of 8.93 and a CLIP score of
27.51, indicating that while sCM is effective, adding LADD
further enhances performance. The weighting ablations for
sCM and LADD loss are shown in Tab. 5, with additional
timestep distribution ablations provided in Appendix F.2
Additional Max-Time Weighting. We validate the pro-
posed max-time weighting strategy in LADD (see Sec. 3.3)
through experiments with both sCM and LADD losses. As
shown in Tab. 6, this weighting significantly improves per-
formance. We test the strategy at 0%, 50%, and 70% max-
time (t = φ/2) probabilities, finding that 50% is the best
balance, while higher probabilities provide only marginal
gains. However, considering the qualitative results, we fi-
nally choose 50% as the default max-time weighting.

5. Related Work
We put a relatively brief overview of related work here, with
a more comprehensive version in the appendix. Diffusion
models have two primary paradigms for step distillation:
trajectory-based and distribution-based methods. Trajectory-
based approaches include direct distillation[35] and progres-

1
St
ep

2
St
ep
s

4
St
ep
s

Te
ac
he
rM
od
el

20
St
ep
s

Figure 5. Visual comparison among SANA-Sprint with different
inference steps and the teacher model SANA. SANA-Sprint can
generate high-quality images with one or two steps and the images
can be better when increasing steps.
sive distillation[39, 49]. Consistency models [54] include
variants like LCM [36], CTM [20], MCM [13], PCM [60],
and sCM [34]. Distribution-based methods involve GAN-
based distillation [12] and VSD variants [37, 46, 50, 62, 66].
Recent improvements include adversarial training with DI-
NOv2 [41][52], stabilization of VSD[70], and improved
algorithms like SID [75] and SIM [38]. In real-time image
generation, techniques like PaGoDA[21] and Imagine-Flash
accelerate diffusion inference. Model compression strategies
include BitsFusion[55] and Weight Dilation[32]. Mobile
applications use MobileDiffusion[74], SnapFusion[26], and
SnapGen[16]. SVDQuant[25] combined with SANA[63]
enables fast image generation on consumer GPUs.

6. Conclusion
In this paper, we introduced SANA-Sprint, an efficient diffu-
sion model for ultra-fast one-step text-to-image generation
while preserving multi-step sampling flexibility. By employ-
ing a hybrid distillation strategy combining continuous-time
consistency distillation (sCM) and latent adversarial distil-
lation (LADD), SANA-Sprint achieves SoTA performance
with 7.04 FID and 0.72 GenEval in one step, eliminating
step-specific training. This unified step-adaptive model en-
ables high-quality 1024→1024 image generation in only 0.1s
on H100, setting a new SoTA in speed-quality tradeoffs.

Looking ahead, SANA-Sprint’s instant feedback unlocks
real-time interactive applications, transforming diffusion
models into responsive creative tools and AIPC. We will
open-source our code and models to encourage further ex-
ploration in efficient, practical generative AI systems.

16192

References
[1] Michael S Albergo and Eric Vanden-Eijnden. Building nor-

malizing flows with stochastic interpolants. arXiv preprint
arXiv:2209.15571, 2022. 3

[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Qinsheng Zhang, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image dif-
fusion models with an ensemble of expert denoisers. arXiv
preprint arXiv:2211.01324, 2022. 3

[3] Han Cai, Muyang Li, Qinsheng Zhang, Ming-Yu Liu, and
Song Han. Condition-aware neural network for controlled
image generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7194–7203, 2024. 4

[4] Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang,
Haotian Tang, Muyang Li, Yao Lu, and Song Han. Deep com-
pression autoencoder for efficient high-resolution diffusion
models. arXiv preprint arXiv:2410.10733, 2024. 4

[5] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao,
Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, and
Zhenguo Li. Pixart-ω: Weak-to-strong training of diffusion
transformer for 4k text-to-image generation. arXiv preprint
arXiv:2403.04692, 2024. 7, 4

[6] Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao,
Enze Xie, Zhongdao Wang, James Kwok, Ping Luo, Huchuan
Lu, and Zhenguo Li. Pixart-ϑ: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. In
International Conference on Learning Representations, 2024.
4

[7] Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul,
Ping Luo, Hang Zhao, and Zhenguo Li. Pixart-{\delta}: Fast
and controllable image generation with latent consistency
models. arXiv preprint arXiv:2401.05252, 2024. 6, 7

[8] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024. 4

[9] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim En-
tezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz,
Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. In Forty-first
International Conference on Machine Learning, 2024. 2, 5,
7, 4

[10] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim En-
tezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz,
Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. In Forty-first
International Conference on Machine Learning, 2024. 7, 4

[11] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt.
Geneval: An object-focused framework for evaluating text-to-
image alignment. Advances in Neural Information Processing
Systems, 36:52132–52152, 2023. 6, 5

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 1, 5, 8, 4

[13] Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Mul-
tistep consistency models. arXiv preprint arXiv:2403.06807,
2024. 1, 8, 4

[14] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 8

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 2

[16] Dongting Hu, Jierun Chen, Xijie Huang, Huseyin Coskun,
Arpit Sahni, Aarush Gupta, Anujraaj Goyal, Dishani Lahiri,
Rajesh Singh, Yerlan Idelbayev, et al. Snapgen: Taming
high-resolution text-to-image models for mobile devices
with efficient architectures and training. arXiv preprint
arXiv:2412.09619, 2024. 8, 4

[17] Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain
Paris, Suha Kwak, Jaesik Park, Eli Shechtman, Jun-Yan Zhu,
and Taesung Park. Distilling diffusion models into conditional
gans. In European Conference on Computer Vision, pages
428–447. Springer, 2024. 1

[18] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in neural information processing systems,
35:26565–26577, 2022. 3, 4, 5

[19] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten,
Timo Aila, and Samuli Laine. Analyzing and improving the
training dynamics of diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24174–24184, 2024. 4

[20] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Mu-
rata, Yuhta Takida, Toshimitsu Uesaka, Yutong He, Yuki
Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ode trajectory of diffusion. arXiv
preprint arXiv:2310.02279, 2023. 1, 5, 8, 4

[21] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta
Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji,
and Stefano Ermon. Pagoda: Progressive growing of a one-
step generator from a low-resolution diffusion teacher. Ad-
vances in Neural Information Processing Systems, 37:19167–
19208, 2025. 8, 4

[22] Jonas Kohler, Albert Pumarola, Edgar Schönfeld, Artsiom
Sanakoyeu, Roshan Sumbaly, Peter Vajda, and Ali Thabet.
Imagine flash: Accelerating emu diffusion models with back-
ward distillation. arXiv preprint arXiv:2405.05224, 2024.

[23] Black Forest Labs. Flux, 2024. 2, 5, 7, 4
[24] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao

Xu, and Suhail Doshi. Playground v2. 5: Three insights to-
wards enhancing aesthetic quality in text-to-image generation.
arXiv preprint arXiv:2402.17245, 2024. 6, 5

[25] Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu
Li, Junxian Guo, Enze Xie, Chenlin Meng, Jun-Yan Zhu,
and Song Han. Svdquant: Absorbing outliers by low-
rank components for 4-bit diffusion models. arXiv preprint
arXiv:2411.05007, 2024. 8, 4

[26] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun
Fu, Yanzhi Wang, Sergey Tulyakov, and Jian Ren. Snapfusion:
Text-to-image diffusion model on mobile devices within two
seconds. Advances in Neural Information Processing Systems,
36:20662–20678, 2023. 8, 4

16193

[27] Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin
Long, Xinchi Deng, Yingfang Zhang, Xingchao Liu, Minbin
Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-
resolution diffusion transformer with fine-grained chinese
understanding. arXiv preprint arXiv:2405.08748, 2024.

[28] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv
preprint arXiv:1705.02894, 2017. 5

[29] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian
Nickel, and Matt Le. Flow matching for generative modeling.
arXiv preprint arXiv:2210.02747, 2022. 2

[30] Bingchen Liu, Ehsan Akhgari, Alexander Visheratin, Aleks
Kamko, Linmiao Xu, Shivam Shrirao, Joao Souza, Suhail
Doshi, and Daiqing Li. Playground v3: Improving text-to-
image alignment with deep-fusion large language models.
arXiv preprint arXiv:2409.10695, 2024. 7, 4

[31] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight
and fast: Learning to generate and transfer data with rectified
flow. arXiv preprint arXiv:2209.03003, 2022. 2

[32] Xuewen Liu, Zhikai Li, and Qingyi Gu. Dilatequant: Accu-
rate and efficient diffusion quantization via weight dilation.
arXiv preprint arXiv:2409.14307, 2024. 8, 4

[33] Cheng Lu. Research on reversible generative models and their
efficient algorithms, 2023.

[34] Cheng Lu and Yang Song. Simplifying, stabilizing and
scaling continuous-time consistency models. arXiv preprint
arXiv:2410.11081, 2024. 1, 3, 4, 5, 7, 8

[35] Eric Luhman and Troy Luhman. Knowledge distillation in it-
erative generative models for improved sampling speed. arXiv
preprint arXiv:2101.02388, 2021. 1, 8, 4

[36] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang
Zhao. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023. 1, 3, 7, 8, 4

[37] Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun,
Zhenguo Li, and Zhihua Zhang. Diff-instruct: A universal ap-
proach for transferring knowledge from pre-trained diffusion
models. Advances in Neural Information Processing Systems,
36:76525–76546, 2023. 1, 8, 4

[38] Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter,
and Guo-jun Qi. One-step diffusion distillation through score
implicit matching. Advances in Neural Information Process-
ing Systems, 37:115377–115408, 2025. 8, 4

[39] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14297–14306, 2023. 1, 8, 4

[40] OpenAI. Dalle-3, 2023.
[41] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo,

Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel
Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2:
Learning robust visual features without supervision. arXiv
preprint arXiv:2304.07193, 2023. 8, 4

[42] William Peebles and Saining Xie. Scalable diffusion models
with transformers. arXiv preprint arXiv:2212.09748, 2022. 4

[43] Stefano Peluchetti. Non-denoising forward-time diffusions,
2022. 2

[44] Pablo Pernias, Dominic Rampas, Mats L. Richter, Christo-
pher J. Pal, and Marc Aubreville. Wuerstchen: An efficient
architecture for large-scale text-to-image diffusion models,
2023. 4

[45] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann,
Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach.
Sdxl: Improving latent diffusion models for high-resolution
image synthesis. arXiv preprint arXiv:2307.01952, 2023. 7

[46] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.
Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988, 2022. 1, 8, 4

[47] Jingjing Ren, Wenbo Li, Haoyu Chen, Renjing Pei, Bin Shao,
Yong Guo, Long Peng, Fenglong Song, and Lei Zhu. Ul-
trapixel: Advancing ultra-high-resolution image synthesis to
new peaks. arXiv preprint arXiv:2407.02158, 2024. 4

[48] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 4

[49] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022. 1, 8, 4

[50] Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel
Hoogeboom. Multistep distillation of diffusion models via
moment matching. Advances in Neural Information Process-
ing Systems, 37:36046–36070, 2025. 8, 4

[51] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas
Blattmann, Patrick Esser, and Robin Rombach. Fast high-
resolution image synthesis with latent adversarial diffusion
distillation. In SIGGRAPH Asia 2024 Conference Papers,
pages 1–11, 2024. 1, 5, 4

[52] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin
Rombach. Adversarial diffusion distillation. In European
Conference on Computer Vision, pages 87–103. Springer,
2024. 1, 8, 4

[53] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equations.
arXiv preprint arXiv:2011.13456, 2020. 1, 2

[54] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
Consistency models. arXiv preprint arXiv:2303.01469, 2023.
1, 3, 8, 4

[55] Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao,
Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey Tulyakov, and Jian
Ren. Bitsfusion: 1.99 bits weight quantization of diffusion
model. arXiv preprint arXiv:2406.04333, 2024. 8, 4

[56] Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong
Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao Lu, and
Song Han. Hart: Efficient visual generation with hybrid
autoregressive transformer. arXiv preprint arXiv:2410.10812,
2024.

[57] Yao Teng, Yue Wu, Han Shi, Xuefei Ning, Guohao Dai, Yu
Wang, Zhenguo Li, and Xihui Liu. Dim: Diffusion mamba
for efficient high-resolution image synthesis. arXiv preprint
arXiv:2405.14224, 2024. 4

[58] Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu,
and Yunhe Wang. U-dits: Downsample tokens in u-shaped

16194

diffusion transformers. arXiv preprint arXiv:2405.02730,
2024. 4

[59] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural computation, 23(7):1661–
1674, 2011. 2

[60] Fu-Yun Wang, Zhaoyang Huang, Alexander William
Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach,
Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al.
Phased consistency model. arXiv preprint arXiv:2405.18407,
2024. 1, 7, 8, 4

[61] Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu
Chen, and Mingyuan Zhou. Diffusion-gan: Training gans
with diffusion. arXiv preprint arXiv:2206.02262, 2022. 5

[62] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. Advances in Neural Information Processing Systems,
36:8406–8441, 2023. 1, 8, 4

[63] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang,
Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu,
et al. Sana: Efficient high-resolution image synthesis with lin-
ear diffusion transformers. arXiv preprint arXiv:2410.10629,
2024. 5, 7, 8, 4

[64] Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng
Zhu, Yujun Lin, Zhekai Zhang, Muyang Li, Junyu Chen, Han
Cai, et al. Sana 1.5: Efficient scaling of training-time and
inference-time compute in linear diffusion transformer. arXiv
preprint arXiv:2501.18427, 2025. 6, 5

[65] Saining Xie and Zhuowen Tu. Holistically-nested edge detec-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 1395–1403, 2015.

[66] Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou,
Ying Nian Wu, Kevin Patrick Murphy, Tim Salimans, Ben
Poole, and Ruiqi Gao. Em distillation for one-step diffusion
models. arXiv preprint arXiv:2405.16852, 2024. 8, 4

[67] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai
Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward:
Learning and evaluating human preferences for text-to-image
generation. Advances in Neural Information Processing Sys-
tems, 36, 2024.

[68] Jing Nathan Yan, Jiatao Gu, and Alexander M Rush. Diffusion
models without attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8239–8249, 2024. 4

[69] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang,
Eli Shechtman, Fredo Durand, and William T Freeman. Im-
proved distribution matching distillation for fast image syn-
thesis. arXiv preprint arXiv:2405.14867, 2024. 1, 7

[70] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shecht-
man, Fredo Durand, William T Freeman, and Taesung Park.
One-step diffusion with distribution matching distillation. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6613–6623, 2024. 8, 4

[71] Biao Zhang and Rico Sennrich. Root mean square layer
normalization. Advances in Neural Information Processing
Systems, 32, 2019. 5

[72] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In

Proceedings of the IEEE/CVF international conference on
computer vision, pages 3836–3847, 2023. 6

[73] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
586–595, 2018. 3

[74] Yang Zhao, Yanwu Xu, Zhisheng Xiao, Haolin Jia, and
Tingbo Hou. Mobilediffusion: Instant text-to-image genera-
tion on mobile devices. In European Conference on Computer
Vision, pages 225–242. Springer, 2024. 8, 4

[75] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang,
Mingzhang Yin, and Hai Huang. Score identity distillation:
Exponentially fast distillation of pretrained diffusion models
for one-step generation. In Forty-first International Confer-
ence on Machine Learning, 2024. 8, 4

[76] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2223–2232, 2017.
1

[77] Lianghui Zhu, Zilong Huang, Bencheng Liao, Jun Hao Liew,
Hanshu Yan, Jiashi Feng, and Xinggang Wang. Dig: Scalable
and efficient diffusion models with gated linear attention.
arXiv preprint arXiv:2405.18428, 2024. 4

[78] Le Zhuo, Ruoyi Du, Han Xiao, Yangguang Li, Dongyang
Liu, Rongjie Huang, Wenze Liu, Lirui Zhao, Fu-Yun Wang,
Zhanyu Ma, et al. Lumina-next: Making lumina-t2x stronger
and faster with next-dit. arXiv preprint arXiv:2406.18583,
2024.

16195

