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Abstract

This paper explains out-of-distribution (OOD) detection
from a novel view, i.e., interactions between different in-
put variables of deep neural networks (DNNs). Specifically,
we provide a unified understanding of the effectiveness of
current training-time OOD detection methods, i.e., DNNs
trained with these methods all encode more complex in-
teractions for inference than those trained solely with the
cross-entropy loss, which contributes to their superior OOD
detection performance. We further conduct empirical anal-
yses and verify that complex interactions play a primary
role in OOD detection, by developing a simple-yet-efficient
method to force the DNN to learn interactions of specific
complexities and evaluate the change of OOD detection per-
formances. Besides, we also use interactions to investigate
why near-OOD samples are more difficult to distinguish
from in-distribution (ID) samples than far-OOD samples,
mainly because compared to far-OOD samples, the distri-
bution of interactions in near-OOD samples is more similar
to that of ID samples. Moreover, we discover that training-
time OOD detection methods can effectively decrease such
similarities.

1. Introduction

Out-of-distribution detection is a task to identify whether or
not a given test sample is drawn out of the training distribu-
tion, which is crucial for ensuring the robustness and relia-
bility of DNNSs in real-world applications. To this end, a rich
line of literature has dedicated to enhancing OOD detection,
and one typical direction is to adjust model training strat-
egy to make OOD samples more distinguishable directly at
training [10, 11, 16, 25, 33, 37], which is commonly re-
ferred to as training-time OOD detection methods [39, 42].

Existing training-time OOD detection methods are usu-
ally designed based on different observations and intuitions.
For example, LogitNorm [37] employed logit normaliza-
tion during training to produce distinguishable confidence
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scores between ID and OOD samples, while T2FNorm [25]
performed feature normalization to improve OOD detec-
tion. Some methods [33, 35] added distributionally-shifted
augmentations into training to enhance OOD detection. De-
spite their effectiveness in OOD detection, it is unclear
whether a common mechanism underlies the effectiveness
of these differently designed methods.

Thus, in this paper, we make the first attempt to explain
the common mechanism behind the effectiveness of differ-
ent training-time OOD detection methods, as well as the
underlying reason why near-OOD samples are more diffi-
cult to distinguish from ID samples than far-OOD samples,
from a novel perspective of interactions, which shed new
light on understanding OOD detection.

To this end, we use interactions between different input
variables of DNNs to explain OOD detection. It is because
given a sample x, the DNN usually does not employ each
single input variable of & independently to identify whether
it is in distribution or out of distribution. Instead, the DNN
lets each input variable interact with each other to form a
certain pattern for inference. For a better understanding,
let us consider the toy example in Fig. 1(a). The DNN
v encodes the interaction between a set of input variables
S = {x1,x2} of the input sample x to form the dog ear
for inference. Each interaction represents an AND relation-
ship between input variables in S. That is, only when all
two variables in S are all present, the dog ear is activated
and makes a numerical effect 1(S|x) to the network output
v(x). The absence/masking' of any variable in S will de-
activate the interaction, and remove its corresponding effect
I(S|x).

Faithfulness of the interaction-based explanation.
More crucially, Ren et al. [28] have derived two theorems
to justify the faithfulness of taking such interactions as sym-
bolic primitive inference patterns encoded by the DNN for
inference. Specifically, it is proven that a well-trained
DNN usually encodes a few interactions, and its network
output v(x) can be well explained as the sum of numer-
ical effects of these interactions, v(x) = Y . I(S|x), as
shown in Fig. 1(a). Besides, Li and Zhang [20] have empir-
ically verified the generalization property of the interaction
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Figure 1. (a) Illustration of interactions between different input variables encoded by the DNN. The network output is proven to be faithfully
explained as the sum of interaction effects. Thus, we use interactions to explain the effectiveness of current training-time OOD detection
methods in (b), and explore why near-OOD samples are more difficult to detect than far-OOD samples in (c).

(c.f. Section 3.1). These findings serve as convincing evi-
dences to ensure the faithfulness of interaction-based expla-
nations.

Thus, owing to the guaranteed faithfulness of the inter-
action, we use it to progressively analyze the working prin-
ciple behind OOD detection as follows.

e Unified understanding of the effectiveness of cur-
rent training-time OOD detection methods. We discover
a clear and shared difference between models trained with
different training-time OOD detection methods to enhance
OOD detection performance (abbreviated as enhancement
models) [25, 33, 35, 37] and models trained solely with the
cross-entropy loss, without incorporating any training-time
methods (abbreviated as baseline models). As shown in
Fig. 1(b), Fig. 2 and Fig. 3, different training-time OOD
detection methods all share a common mechanism that
they all make the enhancement model encode more com-
plex interactions than baseline models, although they are
originally designed based on different observations and in-
tuitions. This provides a unified view to understand the ef-
fectiveness of these training-time methods in boosting OOD
detection performance. Notably, we define the complexity
of an interaction as the number of input variables in S. As
shown in Fig. 1(a), a complex interaction usually represents
the complex AND relationship between a large number of
variables.

e Verifying the primary role of complex interactions
in OOD detection. Intrigued by the above finding, we fur-
ther conduct empirical analyses and verify that complex
interactions play a primary role in OOD detection, by
proposing a new loss function to force the DNN to learn in-
teractions of specific complexities, and comparing the OOD
detection performance of DNNs with and without com-
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plex interactions. Such an interesting conclusion, validated
across diverse DNNs and diverse OOD datasets, may to
some extent show a common factor for OOD detection.

¢ Explaining why near-OOD samples is more difficult
to distinguish from ID samples than far-OOD samples.
We also investigate this important-yet-underexplored prob-
lem from a new perspective of interactions. As Fig. 1(c) il-
lustrates, we discover that the similarity between the dis-
tribution of interactions in near-OOD samples and ID
samples is higher than that between far-OOD and ID
samples, which increases the difficulty of detecting near-
OOD samples. Besides, we also discovered that training-
time OOD detection methods can effectively reduce such
similarity.

Contributions of this paper are summarized follows. (1)
We provide a unified understanding of the effectiveness of
current training-time OOD detection methods based on in-
teraction metrics. (2) We develop a simple-yet-efficient
method to verify the primary role of complex interactions
in OOD detection. (3) We explain the difficulty of detecting
near-OOD samples from a new perspective of interactions.

2. Related Work

Explanation of OOD detection. Due to the importance
of OOD detection in real-world scenarios, existing works
were mainly dedicated to designing effective methods to
boost OOD detection performance, by empirically explor-
ing the differences in how DNNs encodes ID samples and
OOD samples from different perspectives, such as logits or
probabilities [25, 37], features or activations [19], parame-
ter gradients [38], loss landscape [12], etc. However, only
few previous works paid attention to explaining OOD de-
tection. Kirichenko et al. [16] attributed the failure of nor-



malization flows in detecting OOD samples to their inability
to learn latent representations for images based on seman-
tic content. Du et al. [10, 11] considered the information in
labels could help OOD detection.

Howeyver, there still lacked a clear and unified under-
standing of the effectiveness of different training-time OOD
detection methods, as well as the difficulty of detecting
near-OOD samples. Thus, we made the first attempt to ad-
dress both issues from a novel view of interactions, so as to
provide insightful explanations for this field.

Interaction-based explanation. Although DNNs have
achieved remarkable performances on different tasks [22,
34], their underlying decision-making process still remains
opaque and uninterpretable to humans. Post-hoc explana-
tions of DNNs [21, 31, 32] is a typical direction in explain-
able Al but its faithfulness may be disappointing [1, 30].
Fortunately, Li and Zhang [20], Ren et al. [27, 28] pro-
posed interactions as a new perspective to analyze DNNs,
and further empirically verified and theoretically proven a
set of properties of interactions to ensure the faithfulness
of the interaction-based explanation, which also served as
the theoretical foundation of this paper. Thus, a series of
studies employed the interaction to explicitly quantify con-
cepts/knowledge encoded in the DNN [5, 20, 27, 28], to
mathematically explain the representation capacity of the
DNN [3, 23, 26, 29, 45], to unify the common underly-
ing mechanisms behind various adversarial transferability
methods [36, 44] and diverse attribution methods [9], and
to explain the elementary mechanism of previous classical
explanation metrics [27], such as the Shapley value [32], the
Shapley interaction index [13], and efc.

In comparison, this paper aims to use interactions to an-
alyze the shared mechanism behind different training-time
OOD detection methods and the difficulty of detecting near-
OOD samples to better understand OOD detection.

3. Understanding OOD Detection via Interac-
tions

First, let us revisit OOD detection. Given a DNN wv trained
for the classification task, let X be the input space, and
P, be the marginal distribution of X'. Notably, to enhance
OOD detection performance, people usually employ differ-
ent training-time OOD detection methods when training the
model v. Then, the goal of OOD detection is to use this
trained model to classify whether a given test sample x is
from in-distribution P, or out-of-distribution P,.q, as fol-

lows.

S(x) is a scoring function calculated based on the DNN v,
and ) is a threshold. A high score S(x) represents that the
sample z is from ID, and vice versa.

In-distribution,
Out-of-distribution,

S(@) = A,
S(x) < A

g9(x) = 6]
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3.1. Preliminary: interactions

In this section, we introduce the interaction metric, as well
as a set of properties that mathematically support the faith-
fulness of using interactions to explain DNNs. These serves
as the theoretical foundation for the explanation of training-
time OOD detection enhancement methods in subsequent
sections.
Definition of interactions. Given a well-trained DNN
v : R™ — R for the classification task, and an input sample
x with n variables indexed by N = {1,2,...,n}, let v(x) €
R denote the scalar output of the DNN or a certain output
dimension of the DNN. Note that people can apply various
settings for v(x). Here, we follow [8, 28] to set v(x) as the
confidence of classifying the input sample « to the ground-
truth category ywun in multi-category classification tasks, as
follows. ( )
PY = Yuun |
viw) = logy— P(Y = Yorun|) @
Then, Ren et al. [28] employed the Harsanyi Dividend [14],
a fundamental metric in game theory, to quantify the numer-
ical effect of the interaction between a set S C N of input
variables on the network output.

1(8le) =32, (D @), 3

where 1 denotes the masked sample. xr is generated by
masking variables in N \ T to baseline values', and keeping
other variables in 7" C N unchanged.

Understanding of interactions. Each interaction with
the numerical effect I(S|x) represents an AND (co-
appearance) relationship between input variables in S. For
a better understanding, let us consider a toy example in
Fig. 1(a). The co-appearance of two variables in S
{1, 22} forms the semantic pattern of dog ear, and makes a
numerical effect I(S|z) = v({z1,z2}) —v({z1}) —v({z2}) +
v(zg) on the network output, according to Eq. (3), where x
represents the image with all patches masked. The masking
of any variable in S will deactivate the dog ear interaction,
and removes the numerical effect, i.e., making I(S|x) = 0.

Faithfulness of the interaction-based explanation.
The theoretically proven sparsity property and universal-
matching property, along with the empirically verified gen-
eralization property of interactions, mathematically ensure
that the inference logic of the DNN for a given input sample
can be faithfully explained as interactions.

Sparsity property. According to Eq. (3), a DNN can en-
code 2" interactions w.rt. all 2" different subsets V.S C N?

UIn practice of masking input variables in N \ T, people usually use
baseline values {b;} to replace the original values of these variables [2,
7, i.e., setting z; = b; if i € N \ T. Here, we follow the widely-used
setting in [7, 28] to set the baseline value of each variable b; as the mean
value of this variable over all samples in image classification.

2To reduce the computational cost, we follow [20, 27, 28] to select
a relatively small number of input variables to calculate interactions in
experiments. Please see the supplementary material for details.



at most. However, Ren et al. [28] have proven that un-
der some common conditions’, a well-trained DNN usually
encodes very sparse interactions, i.e., only a few interac-
tions make salient effects |I(S|x)| on the network output v.
In contrast, all other interactions make negligible effects,
|I(S|x)| ~ 0, which can be considered as noise patterns.

Theorem 1 (universal-matching property). Given an input
sample x € R", there are totally 2" different masked sam-
ples T w.r.t. all subsets T C N. Given a threshold 7, let
Q= {S C N :|I(S|z)| > 7} denote the set of salient in-
teractions, s.t. |QQ| < 2". Then, Ren et al. [28] have proven
that

~
~

@) =3 ISR~y o TSlE) @)

Theorem 1 indicates that we can use a small number of
salient interactions in €2 to universally match the network
outputs v(x7) on all 2" masked samples {xr|T" C N}.

Generalization property. Li and Zhang [20] have veri-
fied the generalization power of interactions. That is, inter-
actions extracted from different samples in the same cate-
gory or extracted from different models trained for the same
task are often similar, and discriminative for classification.

Thus, the sparsity property, the universal-matching
property, and the generalization property of interac-
tions ensure that the interaction can be faithfully consid-
ered as the primitive inference pattern encoded by the
DNN for inference, thereby guaranteeing the trustwor-
thiness of interaction-based explanations for DNNs.

Complexity of interactions. The complexity of an in-
teraction .S is defined as the number of input variables in-
volved in the interaction, which is also termed as the order
of the interaction, i.e., order(S) = |S|. Thus, as shown
in Fig. 1(a), low-order interactions usually represent simple
AND relationships between a small number of input vari-
ables, while high-order interactions often represent com-
plex AND relationships between a large number of input
variables.

3.2. Unified Understanding of Training-Time OOD
Detection Methods

Training-time OOD detection methods usually adjust model
training strategy to improve the distinguishability of OOD
samples, such as incorporating feature or logit normaliza-
tion during training [25, 37]. Despite their effectiveness in
boosting OOD detection performance, a clear and unified
explanation for their effectiveness still remains lacking. To
this end, with theoretically guaranteed faithfulness of the
interaction, we use it to dive deeply into the common mech-
anism behind the effectiveness of these different training-
time OOD detection methods.

3Please see the supplementary material for the detailed introduction of
common conditions.
“#In experiments, we follow [20, 28] to set 7 = 0.05 - maxg |I(S|x)|.
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We discover that although many training-time OOD de-
tection methods [25, 33, 35, 37] are originally designed
based on different intuitions and observations, they all
share a common mechanism that they all make the en-
hancement model encode more high-order interactions
to improve the OOD detection performance than the
baseline model. Here, we refer to a DNN trained with
a certain training-time OOD detection method as an en-
hancement model, and a DNN trained solely with the cross-
entropy loss as a baseline model, for simplicity. Thus, this
finding presents a unified view to understand the effective-
ness of current training-time OOD detection methods.

Specifically, given an OOD sample xoop, we com-
pare the difference AR™ between the relative interaction
strength of each complexity (order) encoded by the en-
hancement model vepnance, and those encoded by the base-
line model vp,geline, as follows.

_ pm

baseline ?

AR(™ — pm™

‘enhance

(m) EmooD []ESQNJS\:mHI(m) (S|wOOD7 Uenhance)m

enhance ~

> [Baoon [Esc v, s1=m: [[1™) (S|Zoop, venhance) |]]

R(m) IEZBOOD [ESQNJS\:m [|I(m) (S|mOOD» Ubasclinc) H]

baseline —

> [Bagop [Esc v, s1=m 1™ (S]|Zoob, vbasenne)(%])]
where the m-order interaction 1™ (S|&oop, Venhance) OF the
enhancement model is calculated by revising Eq. (2)
tO Venhance = logp(ymax|w00D)/(1 _p(ymax‘mOOD)), consid-
ering the fact that the OOD sample xoop does not
have an ID label. ym.x denotes the category predicted
with the maximum probability, and the m-order inter-
action 1™ (S|@oop, Venhance) is defined as the interaction
I(S|2o0oD, Venhance) among the set VS C N involving m
input variables, |S]| The m-order interaction
T (S|oop, Vbaseiine) €ncoded by the baseline model can be
computed in a similar way.

Experiments. In order to explain the effectiveness
of current training-time OOD detection methods, we fol-
lowed [25, 37] to conduct experiments on ResNet-18,
ResNet-34 [15], and WideResNet-40-2 [43] models. While
not exhaustive, we trained five versions for each DNN,
which contained a baseline model trained merely with
the cross-entropy loss, and four enhancement models
learned with different classical training-time OOD detec-
tion methods, including the CSI [33], LogitNorm [37],
T2FNorm [25], and DAL [35] methods. Please see the sup-
plementary material for training details. We followed [25]
to use the CIFAR-10 and CIFAR-100 [17] datasets as
ID datasets, and employed three widely-used benchmarks,
namely SVHN [24], Textures [6], and Tiny-ImageNet [18],
as OOD datasets. We set the CIFAR-10 dataset as the OOD
dataset if the CIFAR-100 dataset was used as the ID dataset,
and vice versa.

Fig. 2 and Fig. 3 show the difference AR™) between

m.
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Both the enhancement model and the baseline model are trained on CIFAR-10 dataset.

We discover that different training-time OOD detection methods all make the model essentially encode more high-order interactions to
boost OOD detection performance, although these methods are originally designed based on different observations and intuitions.

m-order interaction strength encoded by the enhancement
model and that encoded by the baseline model. We ob-
served AR > 0 for m > 0.75n, and AR™ < 0 for
m < 0.25n, which indicated that the enhancement model
encoded more high-order interactions and less low-order
interactions than the baseline model to improve OOD de-
tection performance. Moreover, such a phenomenon was
shared by different training-time methods, although they
were originally not designed to encode more high-order in-
teractions. This provides a unified view to understand the
effectiveness of training-time OOD detection methods.

The above shared phenomenon also implicitly reflected
that high-order interactions were useful for OOD detection,
which can be understood as follows. High-order interac-
tions were proven to represent complex features [4, 45],
which encoded sufficient discriminative information to dis-
tinguish OOD samples from ID samples. In comparison,
low-order interactions were proven to represent small-scale,
common and generalized features [4, 45] present in both the
OOD samples and ID samples (e.g., a small image patch of
the blue sky in the background), thus they were not discrim-
inative enough for OOD-ID differentiation.

3.3. Primary Role of High-Order Interactions in
OOD Detection

Intrigued by the above finding, in this section, we fur-
ther investigate the role of high-order interactions in OOD
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detection. To this end, we propose a simple-yet-efficient
method to examine whether high-order interactions can sig-
nificantly affect the OOD detection performance, by design-
ing a new loss function to force the DNN to encode interac-
tions of specific orders. We discover that high-order inter-
actions play a primary role in OOD detection. This may
provide new insights for the working principle of OOD de-
tection.

Specifically, motivated by Theorem 1 that the network
output v(xr) can be well approximated by interaction ef-
fects of different orders, we first consider the difference of
network outputs between different randomly masked sam-
ples, which is the foundation to design the loss.

A = B g rener . (@) — vl )],

|T1|=m1in,|Tz2|=man (6)
=E ncw, (en) —E newn, [vien)l,
|T2|=man [Ty |=m1n

where subsets 7; and 7> are randomly sampled from the
universal set N, and 0 < m; < mo < 1. Then, we prove in
Theorem 2 that the change of the network output Ay (™1:72)
mainly encodes interactions of the [0, man]-orders.

Theorem 2 (proven in the supplementary material). The
change of the network output Av(™™2) is proven to be
represented as the sum of interaction effects of different or-
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and that encoded by the baseline model R,gjjm Both the enhancement model and the baseline model are trained on CIFAR-100 dataset.

We discover that different training-time OOD detection methods all make the model essentially encode more high-order interactions to
boost OOD detection performance, although these methods are not originally designed for this purpose.

ders. two loss terms.
AvmmD =37 w™ Escsi—nlI(S]e)], L= Lo =X Lt ©)
Crign = Oy m < min, Experiment 1: analyzing effects of the loss L. ml m2)
w™ ={ cm min < m < man - .
man = ’ Before investigating the role of high-order mteractlons in

<n. . . .
0, mat <M S OOD detection, we first conduct experiments to examine

whether the proposed loss function L{™™) could force
the model to encode interactions of specific orders. To this
end, we trained ResNet-18, ResNet-34, and WideResNet-
40-2 models on CIFAR-10 and CIFAR-100 datasets, re-
spectively. For each DNN, we trained three versions, in-
cluding a baseline model trained merely with the cross-

entropy loss by setting A = 0, and two models trained to

(7

In this way, based on Theorem 2, we can propose a new
loss function LI(I:; ™2) to prevent the DNN from encoding
interaction of specific orders in the range of [0, man], by

maximizing the cross entropy calculated on Ayp(™1m2),

mq,m C mi,m
Lt ™) = —Ea[Y " [p(§ = c| A" ") (2))-

(8) penalize interactions by setting [m; = 0,m2 = 0.3] (shown
log(p(§ = ¢|Av{™1 ™2 (z)))]], as the green line in Fig. 4) and [m; = 0.7, m2 = 1.0] (shown
as the orange line in Fig. 4) in Lf‘ftzrl’m” with A = 0.1, re-

where C and 3 denotes the total class number and the spectively.
predicted label, respectively. The probability p(g = Fig. 4 reports the relative interaction strength R™ (de-
c|AvS™ ™2 ()} of classifying the input sample x to fined in Eq. (5)). We discovered that the loss func-
the category c¢ is computed by inputing the vector tion Ll(n’t’e‘j ™2) could successfully penalize interactions of
[Ap{mm2) Agfmim2) L Aylmm2)) into the  softmax [min, men] orders, rather than [0, man] orders. Explicitly
functlon where Av(m ma) = ve(®T,) — ve(xr,) indicates speaking, when we trained the model to penalize interaction
the change of the logits of the category c. of [0,0.3n] orders ([0.7n, n] orders), its interaction strength
Thus, we can minimize the following function L to train R™ of [0,0.3n] orders ([0.7n,n] orders) was significantly
a DNN for classification with penalizing the learning of in- decreased, compared to the baseline model. Thus, for sim-
teractions of specific orders, where L. denotes the cross- plicity, we named these two types of models high-order
entropy loss, and the small constant A > 0 is used to balance models and low-order models, respectively, considering
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(a) trained on CIFAR-10 dataset

Low-order model

High-order model
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(b) trained on CIFAR-100 dataset

Figure 4. Distributions of the relative interaction strength R(™) of different DNNs. The baseline model is trained without penalizing
specific interactions. The low-order (high-order) model is trained to penalize [0.7n, n]-orders ([0, 0.3n]-orders) interactions, thus mainly

encoding low-order (high-order) interactions.

ResNet-18 ResNet-34 WideResNet-40-2
ID dataset Model

FPROYS | AUROC 1 FPROYS5 | AUROC 1 FPROYS | AUROC 1

Baseline model 62.03 88.48 50.09 89.12 56.99 §89.02
CIAFR-10 Low-order model 91.45+29_42 73.07_15_41 88.634_38,54 69.29_19_83 85.134_28.14 70-16—18.86
High-order model 53.05_8_98 89-53+0.85 51.32_;,_1.23 88.97_0_15 61.644_4,65 86.63_2.39

Baseline model 79.70 78.15 78.95 78.30 78.01 76.90
CIAFR-100 Low-order model 92.69+12_99 51'52—26.63 89.98+11_03 58.77_19_53 90.334_12.32 54.46_22.44
High—order model 75-82—3.88 79.45+1.3 81.51_5_2.56 77.28_1_02 82.514_4.5 7392—2.98

Table 1. OOD detection performance of different types of models averaged over four OOD datasets. The performance of low-order models
decreases significantly compared to the baseline model, which illustrates that OOD detection mainly relies on high-order interactions.
Notably, high-order models sometimes can even outperform the baseline model, which may inspire future research to further explore new

methods for OOD detection.

they mainly encoded high-order and low-order interactions.

Experiment 2: high-order interactions played a pri-
mary role in OOD detection. To this end, we com-
pared OOD detection performances between the baseline
model and models trained to mainly encode interactions of
specific order, i.e., high-order models and low-order mod-
els. If OOD detection performance of low-order models
(mainly encoding low-order interactions) dropped signifi-
cantly compared to the baseline model, we could consider
that high-order interactions played a primary role in OOD
detection.

Specifically, based on the trained models in experiment
1, we employed two widely-used metrics to evaluate OOD
detection performance averaged over four OOD datasets in-
troduced in Section 3.2. Two metrics were the false posi-
tive rate of OOD samples at 95% true positive rate of ID
samples (FPR95), and the area under the receiver operating
characteristic curve (AUROC). A lower FPR95 and a higher
AUROC value indicated better detection performance.

Table | shows that compared to the baseline model, low-
order models exhibited a significant decrease in OOD detec-
tion performance, while high-order models only displayed
a slight performance drop. Such a phenomenon illustrated
that high-order interactions played a primary role in OOD
detection, which also indicated that high-order interactions

could, to some extent, serve as an effective factor for OOD
detection. This might shed new light on understanding
OOD detection.

3.4. Explaining the Difficulty of Detecting Near-
OOD samples

In addition to explaining the shared mechanism of training-
time OOD detection methods, we also investigate another
important but underexplored problem: why near-OOD sam-
ples are more challenging to detect than far-OOD samples,
from a new perspective of interactions. We discover that
compared to far-OOD samples, the interaction distri-
bution of near-OOD samples is more similar to that of
ID samples, which increases the difficulty of distinguish-
ing near-OOD samples from ID samples.

To this end, we compare the similarity of the interaction
distribution between ID samples and OOD samples. Specif-
ically, for each input sample, let us enumerate its all possi-
ble subsets S C N and obtain d interactions in total. Let the
vector I]D(U) = [IID(Sll’U), IID(SQ|’U), ey IID(Sdlv)}T S
R¢ represents the distribution of interactions over differ-
ent ID samples, where the i-th dimension Iip(Silv) =
E.[I(Si|z,v)] denotes the averaged interaction effect. Sim-
ilarly, Inear0op(v) and Igoop(v) denote the interaction
distribution over various near-OOD samples and far-OOD
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Figure 5. The similarity of interaction distribution between ID samples and near-OOD samples ST M;car, and that between ID samples and
far-OOD samples ST Miy. ST Mpear and ST My, are averaged over two near-OOD datasets and two far-OOD datasets, respectively.

samples, respectively. Then, we employ the Jaccard similar-
ity to compute the similarity of the interaction distribution
between ID samples and near-OOD/far-OOD samples.

ST M, = I min(NjID(v), jjnear-OOD(U))Hl ,
| m?aX(~ 0(v), . near-00D (V)1 (10)
STM = [ mln(~[D(’U)7I~far-OOD(’U))H1 7
|| max(Iip(v), Tra-oon(v)) |1

where we expand the d-dimensional vector Ip(v) into
a 2d-dimensional vector Ip(v) = [(max(Iip(v),0))",
—(min(Ip(v),0))"] € R** to make it contain non-negative
elements. Correspondingly, we extend vectors Inear-0op(v)
and Toear00p(v) t0 Tnearoop(v) and Ipoop(v) without nega-
tive elements, respectively. A large SIMpear (SIMs) value
indicates that the interaction distribution of near-OOD sam-
ples (far-OOD samples) is similar to that of ID samples.

Experiments. We conducted experiments to examine
whether the distribution of interactions in near-OOD sam-
ples was more similar to that in ID samples than far-
OOD samples. To this end, we followed [25, 37] to train
ResNet-18, ResNet-34, and WideResNet-40-2 models on
the CIFAR-10 and CIFAR-100 datasets merely with the
cross-entropy loss, respectively. Following [33, 40], we
used the SVHN and Textures datasets as far-OOD datasets,
and employed the Tiny-ImageNet dataset as near-OOD
dataset, when CIFAR-10 and CIFAR-100 datasets were ID
datasets. We also used the CIFAR-100 dataset as a near-
OOD dataset for CIFAR-10, and vice versa.

Fig. 5 shows that the similarity SIM,.. between near-
OOD samples and ID samples was far more greater than the
similarity STMi,, between far-OOD samples and ID sam-
ples. This illustrated that the interaction distribution of
near-OOD samples was more similar to that of ID sam-
ples, which increased the difficulty of detecting ID samples.
Notably, this conclusion partially echoed heuristic findings
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in [41] that far-OOD samples had more obvious domain
shift to ID samples than near-OOD samples.

Fig 5 also compared the similarities ST Mycar and ST Mg,
computed using the baseline model with the similarities
ST Mpear, enhance a0d ST My, ennance  calculated using the en-
hancement model Vephanee in Eq. (10). Enhancement mod-
els were trained using CSI, LogitNorm, T2FNorm, and
DAL methods, respectively. We discovered that both
ST Myear, enhance and ST My, enhance Were lower than ST M,e,, and
SIMp., which indicated that training-time methods could
effectively decrease the similarity of interaction distribu-
tions between OOD samples and ID samples.

4. Conclusion and Discussions

This paper makes the first attempt to use theoretically ver-
ifiable interactions to provide a unified understanding of
the effectiveness of different training-time OOD detection
methods, all of which encode more high-order interactions
to improve OOD detection performance. We also explain
the primary role of high-order interactions in OOD detec-
tion by proposing a simple-yet-efficient method to force the
DNN to learn interactions of specific orders. Besides, we
investigate why near-OOD samples are more difficult to de-
tect than far-OOD samples based on interactions.

Our work provides avenues for future exploration. We
only focus on training-time OOD detection methods im-
plemented on ResNet-based models. However, applying
our interaction-based explanations to other types of OOD
detection methods or DNNs with other network architec-
tures for classification is theoretically feasible, as the in-
teraction metric is architecture-agnostic [28]. Notably, for
other methods, the setting of v(x) in Eq. (2) to compute
interactions may be changed. Nevertheless, we hope our
explanation can serve as a theoretical foundation, inspiring
future works to utilize it for OOD detection.
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