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Abstract

Multi-modal Large Language Models (MLLMs) have dra-
matically advanced the research field and delivered pow-
erful vision-language understanding capabilities. However,
these models often inherit deep-rooted social biases from
their training data, leading to uncomfortable responses with
respect to attributes such as race and gender. This pa-
per addresses the issue of social biases in MLLMs by i)
introducing a comprehensive counterfactual dataset with
multiple social concepts (CMSC), which complements ex-
isting datasets by providing 18 diverse and balanced social
concepts; and ii) proposing a counter-stereotype debiasing
(CSD) strategy that mitigates social biases in MLLMs by
leveraging the opposites of prevalent stereotypes. CSD in-
corporates both a novel bias-aware data sampling method
and a loss rescaling method, enabling the model to effec-
tively reduce biases. We conduct extensive experiments with
four prevalent MLLM architectures. The results demon-
strate the advantage of the CMSC dataset and the edge of
CSD strategy in reducing social biases compared to existing
competing methods, without compromising the overall per-
formance on general multi-modal reasoning benchmarks.

1. Introduction

Multi-modal Large Language Models (MLLMs) have revo-
lutionized the field of general-purpose vision-language un-
derstanding. Representative models, such as LLaVA [38],
Qwen-VL [3], and Bunny [25], exhibit remarkable zero-
shot performance and can be easily fine-tuned for diverse
downstream applications.

Despite MLLMs’ widespread use, it is imperative to rec-
ognize that these models can exhibit severe social biases
with respect to attributes such as race and gender [18, 65].
Figure 1a illustrates one example that a biased MLLM is

*Corresponding author.
1We manually visualize the bounding boxes from LLaVA’s text output.
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Figure 1. Social bias examples. Left: Gender-biased prediction on
Nurse from LLaVA-7B1. Right: Maximum Skews across different
human attributes on the FairFace dataset from Qwen-VL-7B and
LLaVA-7B. As a metric for measuring model bias, a larger Skew
implies a higher degree of social bias. Our CSD method outper-
forms existing approaches by a significant margin.

much more likely to associate the role of nurse with fe-
male rather than male, which may be stereotypical. Such bi-
ased predictions often occur unconsciously within MLLMs,
making them difficult to detect and avoid by explicit rules.
A key reason for this issue lies in the composition of the
MLLM training data, which can contain content related to
violence or racism [6]. These inappropriate samples may
collectively demonstrate some stereotypes, resulting in sub-
tle yet uncomfortable responses [8, 63].

Existing studies on mitigating the social bias problem in
MLLMs remain largely under-explored. A naive approach
is to collect attribute-balanced vision-language counterfac-
tual datasets [24, 34], which can be used to directly fine-
tune biased models to predict fairer distributions. However,
as demonstrated in Table 1, existing large-scale datasets are
limited by their focus on a single social concept, such as
occupation [27], without attending to multifaceted social
stereotypes [62]. This significantly hampers the model in
learning more comprehensive representations. Therefore,
we are motivated to construct a more extensive and di-
verse counterfactual dataset. From a methodological per-
spective, directly fine-tuning on a counterfactual dataset as-
signs equal importance to instances receiving different so-
cial biases, resulting in sub-optimal debiasing performance
(as demonstrated in Section 6.2). Analogy to a common
solution in chemistry—neutralizing acidic water requires
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Dataset Venue Type #Images Social Concepts

CoCo-Counterfactuals [34] NeurIPS’23 General 34K No annotations
FairFace [33] WACV’21 Social 108K No annotations
VisoGender [24] NeurIPS’23 Social 0.6K Occupation
PATA [55] CVPR’23 Social 5K Occupation
SocialCounterfactuals [27] CVPR’24 Social 171K Occupation
MM-Bias [31] EACL’23 Social 3K 14 minorities
CMSC (Ours) – Social 60K 18 balanced concepts

Table 1. Comparison of CMSC with mainstream datasets used for
model debiasing. Existing datasets are limited either by scale or
by the number of social concepts they cover. Type – The category
of biases the dataset focuses on.

adding an alkaline substance rather than plain water—we
are prompted to speculate: Can we leverage the opposite of
the suffered social bias to build a fairer model?

To address these two issues, we first construct a large-
scale, high-quality Counterfactual dataset with Multiple So-
cial Concepts (CMSC). As demonstrated in Table 1, our
CMSC dataset narrows the gap in data scale and concept
richness. We conduct extensive experiments on four differ-
ent MLLM architectures [3, 25, 38] using several existing
counterfactual datasets as well as our CMSC. The results
demonstrate that MLLMs fine-tuned on CMSC exhibit sig-
nificantly lower social bias compared to those fine-tuned on
single-concept datasets. For instance, LLaVA-7B [38] fine-
tuned on CMSC achieves a 64% debiasing effect, which
significantly outperforms the 30% bias reduction achieved
when fine-tuned on the SocialCounterfactuals dataset [27]2.
This indicates that fine-tuning the models with a rich set of
social concept is beneficial in MLLM debiasing.

Furthermore, to implement the idea of ‘debiasing with
the opposite of the social biases’, we propose a Counter-
Stereotype Debiasing strategy (CSD) to effectively reduce
social biases in MLLMs. Our CSD is equipped with two
techniques: 1) we design a novel data sampling method
based on the bias level, 2) we rescale the previously used
autoregressive loss function to a new Social Fairness Loss
(SFLoss). In this manner, previously under-represented
cases, e.g., male nurses, will receive more attention, serving
as new ‘alkaline’ ones to counteract the bias of MLLMs that
prefer female nurses. The experimental results demonstrate
that our CSD method is an effective debiasing strategy. As
illustrated in Figure 1b, our method reduces the bias by over
50% for the Qwen-VL-7B model compared to prior training
strategies, especially naive fine-tuning. Additionally, CSD
does not compromise the original model performance on
general multi-modal benchmarks.

In summary, our contributions are three-fold:
• We construct a high-quality counterfactual dataset that in-

cludes 18 social concepts, which demonstrated to be su-
perior to existing ones on MLLM social debiasing.

• We propose a novel approach that applying counter-
stereotype debiasing to mitigate social biases. To the best

2In this paper, we interchangeably use debiasing and bias reduction.

of our knowledge, this is the first research effort dedi-
cated to addressing the social bias problem in autoregres-
sive MLLMs.

• We apply our debiasing strategy to four multi-modal
LLMs architectures to show the generalization capability
and effectiveness of our method.

2. Related Work

2.1. Multi-modal Large Language Model
With the rapid development of LLMs [9, 51, 57, 60, 64], in-
creasing efforts have been dedicated to extending the pow-
erful reasoning capabilities of LLMs to multi-modal appli-
cations [1, 10, 14, 28, 32, 35, 40, 42, 58, 70, 71]. Specifi-
cally, MLLMs utilize LLMs as the foundational base, align-
ing features from other modalities with text embeddings to
enable LLMs to perceive multi-modal inputs. For instance,
BLIP-2 [36] utilizes a Q-Former to align vision encoders
with LLMs. LLaVA [38, 39] presents to directly map vi-
sion features to the word embedding space of Vicuna [11].
Qwen-VL [3] employs a single-layer cross-attention mod-
ule as the vision-language adapter, and introduces multi-
task pre-training to improve the model performance. These
approaches significantly enhance multi-modal understand-
ing capabilities. However, some studies highlight the exis-
tence of social biases in pre-trained LLMs [7, 8, 18]. These
biases often manifest as harmful spurious correlations re-
lated to human attributes such as gender and race, which
significantly undermine the fairness. For instance, LLMs
may ‘efficiently’ filter resumes based on race rather than the
candidates’ qualifications [61]. Nevertheless, research on
social biases in MLLMs remains largely unexplored [68].

2.2. Social Bias Reduction
We roughly categorize the bias mitigation strategies into
two groups: data-based and objective-based.
Data-based debiasing typically refers to data augmenta-
tion techniques. For instance, Chuang et al. [12] employ
mixup [69] to construct interpolated samples among groups
with different distributions. Ramaswamy et al. [52] utilize
perturbed GAN-generated images [21] in latent space to
augment the original dataset. Moreover, some studies col-
lect fair datasets across human attributes for continual fine-
tuning [5, 24, 31, 34, 54, 72, 75]. In particular, FairFace [33]
contains 108K images that are balanced for the race at-
tribute. Socialcounterfactuals [27] collects 171K image-
text pairs to probe biases across race, gender, and physi-
cal characteristics. However, these collected counterfactual
datasets often focus on only one common concept - occu-
pation, which hinders effective debiasing [67]. Though a
few datasets involve several concepts, they nevertheless, are
largely limited by their data scale (e.g., 3K [31]), making it
less feasible to fine-tune MLLMs.
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Figure 2. Image Generation Pipeline. Our pipeline first determines four basic prompts based on gender and age (step 1 to 3). Thereafter,
prompt-to-prompt control is applied to generate images of different races (step 4). Finally, we filter out low-quality images (step 5).

Objective-based debiasing modifies the model training
process to achieve better fairness. Early studies are pro-
posed to reduce social bias within uni-modal models [2,
17, 19, 44, 45, 66]. For example, Bolukbasi et al. [7] op-
timizes word embeddings to remove gender stereotypes.
In contrast, multi-modal debiasing methods often focus
on contrastive learning-based vision language models, e.g.,
CLIP [50]. Representative approaches are to rectify the
modality similarity matrix in VLMs [15] via learning ad-
ditive adapters [55, 73], eliminating biased directions [13],
and using adversarial samples [4]. However, among these
methods, uni-modal approaches often require re-training
the full model. This operation, though plausible for pre-
vious small-scale models, is less practical for existing
MLLMs with billions of parameters [53]. On the other
hand, mainstream multi-modal techniques cannot be uti-
lized for these models due to the divergent training objec-
tives between MLLMs and previous CLIP-style models. In
particular, MLLMs are mostly trained in an autoregressive
way rather than through contrastive learning.

3. CMSC Dataset Construction

As demonstrated in Table 1, existing counterfactual datasets
are either restricted by their small scale [24] or a narrow
coverage of concepts [33]. To bridge this gap between lim-
ited existing datasets and diverse real-world stereotypes,
we introduce the CMSC dataset, encompassing 60k high-
quality images across eighteen social concepts.

3.1. Social Attributes and Concepts
A counterfactual dataset for social bias reduction and eval-
uation typically contains two key aspects: Social Attribute
(SA) and Social Concept (SC). The former, i.e., SA, is de-
fined as characteristics shared by a group of people [33].
Specifically, we investigate three types of attributes: i) gen-
ders: {Male, Female}; ii) races: {White, Black, Indian,
Southeast Asian, East Asian, Middle Eastern, Latino}; and
iii) ages: {Young, Old}. These attributes are intrinsic to in-
dividuals3. For each image Ii in CMSC, three SA labels are
provided with respect to these three types of SA, and are

3All SAs are perceived, made by human annotators or models. We
acknowledge that the SAs are not representative of all people [27, 33].

combined as a SA set Ai.
As for the SC, we define it as the societal label at-

tributed to an individual. Drawing from the sociological re-
search [16, 46, 48, 59, 74], we employ 18 SCs in CMSC. In
particular, these SCs are categorized into three groups: per-
sonality, responsibility, and education. Specifically, person-
ality relates to concepts pertaining to an individual’s char-
acter. We use five concepts: {compassionate, belligerent,
authority, pleasant, unpleasant}. Responsibility is the roles
or duties that individuals are expected to fulfill in society or
family. We identify six concepts: {tool user, weapon user,
career, family, chef working, earning money}. Education
pertains to the level of education a person has received. We
include seven concepts: {middle school, high school, uni-
versity, good student, bad student, science, arts}. Each im-
age in CMSC is annotated with one SC label ci ∈ C, where
C is the union of the concepts from all above groups.

In summary, each instance Pi in our dataset consists of
an image Ii, a set of SA labelsAi, and a SC label ci. To the
best of our knowledge, CMSC is the first large-scale coun-
terfactual dataset that includes a variety of social concepts.

3.2. Image Generation Pipeline
We employ Stable Diffusion XL (SDXL) [49] to gener-
ate instances in CMSC. For each SC, we carefully design
prompts that provide a detailed explanation of the concept.
These prompts not only help eliminate potential ambiguities
associated with the SC but also enhance the quality of the
generated images [29]. For instance, for the SC ‘pleasant,’
we use the prompt: ‘A photo of a pleasant [race] [gen-
der] person at [age], who has a friendly smile, a relaxed
posture, and ...’ To ensure diverse and representative im-
age generation, these prompts are randomly modified by
replacing words with synonyms during image generation.
Subsequently, the intersectional generation strategy [27] is
applied. As illustrated in Figure 2, we first determine gen-
der and age (Step 2) and generate four base images (Step 3).
Thereafter, we apply Prompt-to-Prompt (P2P) control [26]
to produce visually similar images that vary only in terms
of race (Step 4). For each SC, we create 28 prompts across
attribute combinations. Each prompt helps generate 100 im-
ages. To ensure image quality, we apply a rigorous image
filtering mechanism (step 5). First, we use CLIP-Score [50]
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to filter out images that are semantically misaligned with the
prompts. Subsequently, a panel of three experts conducts a
voting process to remove low-quality and NSFW content.
If the generated images perform poorly on a specific SA,
the entire set of images (including those of other SAs) will
be discarded. Moreover, we observe that the model can
generate high-quality images for certain SCs or SAs, while
struggling to do so for others. As a result, we filter out
excessively generated ones for balanced distribution. Our
filtering process is very strict. For instance, the testing set
initially contains over 50,000 images, but only 12,019 im-
ages are finally used in CMSC. A similar process is applied
to the training set, which comprises 48,134 images. In total,
our dataset contains 60K images.

4. CMSC Dataset Evaluation
4.1. Experiment Settings
Evaluation Protocols. We employed four different MLLM
architectures, i.e., LLaVA-7B [38], LLaVA-13B [38],
Qwen-VL-7B [3], and Bunny-8B [25], to evaluate our
CMSC dataset. For each MLLM, we used the same tem-
plate to collect their responses: ‘Based on the race, gender,
and age of the face <image>, do you think the person is
{SCs}? Respond with one of them.’ Here, <image> is
the image from the dataset, and {SCs} represents the list of
used SCs. For instance, when testing personality, {SCs} in-
cludes ‘pleasant,’ ‘unpleasant,’ etc. After collecting these
predictions, we used them to compute MaxSkew@C and
MinSkew@C (which will be elaborated in the following
section) to measure bias.
Metrics. We employ Skew-based [20] metrics to quantify
the extent of social biases. Specifically, for a given dataset
D, we define the subset containing instances with a specific
SC label c′ as Dc′ ,

Dc′ = {Pi|Pi ∈ D, ci = c′}. (1)

From Dc′ , we further extract the subset consisting of in-
stances with a specific SA label a′ as Da′|c′ ,

Da′|c′ = {Pi|Pi ∈ Dc′ , a
′ ∈ Ai}. (2)

We then utilize the aforementioned template to guide
MLLMs in predicting the SC label corresponding to each
Pi. We denote the predicted SC label as ĉi. By applying
this process to the entire dataset D, we can construct a new
predicted set D̂ = {P̂i}Ni=1, where P̂i = {Ii,Ai, ĉi}, and
N = |D|. In D̂, subsets D̂c′ and D̂a′|c′ can be derived with
Equation (1) and Equation (2), respectively. The Skew for
SC c′ and SA a′ could be formulated as

Skewa′|c′ = log(
γ̂a′|c′

γa′|c′
), (3)

Figure 3. Performance of MLLMs when evaluated on FairFace. In
each model, the bars labeled ‘FT w SCounter’ and ‘FT w CMSC’
represent the model fine-tuned on SocialCounterfactuals and our
CMSC, respectively.

where  γ̂a′|c′ =
|D̂a′|c′ |
|D̂c′ |

,

γa′|c′ =
|Da′|c′ |
|Dc′ |

.
(4)

When Skewa′|c′ > 0, the MLLM tends to predict in-
stances with attribute a′ as concept c′. For instance, in
Figure 1a, SkewFemale|Nurse > 0. In contrast, when
Skewa′|c′ < 0, the MLLM is inclined to not predict these
instances containing SA a′ as SC c′, e.g., predicting male
as nurse. A fair MLLM should have Skew close to 0 across
all concepts and attributes, i.e.,

∑
a,c |Skewa|c| → 0.

Although Skew can effectively measure MLLMs’ bias
towards a particular SA-SC pair, a counterfactual dataset
often contains hundreds of such combinations, e.g., our
CMSC includes 198 SA-SC pairs. This confounds the com-
prehensive assessment of MLLM bias. Therefore, we pro-
pose two variants of Skew to enable a more thorough anal-
ysis. Specifically, we first identify the maximum and mini-
mum Skew values for each SC across all SAs [13],{

MaxSkewc′ = Maxai∈A{Skewai|c′},
MinSkewc′ = Minai∈A {Skewai|c′}.

(5)

For all c′ ∈ C, we separately calculate the average of
MaxSkewc′ and MinSkewc′ , resulting in two aggregated
Skew values. We refer to these two values as MaxSkew@C
(MaxS@C) and MinSkew@C (MinS@C), which represent
the overall bias level of the MLLM. Both of these metrics
indicate better fairness as they approach zero.
Datasets. We compared our dataset with the previous state-
of-the-art counterfactual dataset. Specifically, we sepa-
rately fine-tuned MLLMs on CMSC and SocialCounterfac-
tual [27] to evaluate their effectiveness in mitigating bias.
The SocialCounterfactual dataset focuses on the SC of oc-
cupation and contains 171K high-quality synthetic images.
Moreover, we employed the FairFace dataset [33], which
contains 108K images with a balanced distribution of SAs,
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FT w/ SC Per. Res. Edu.

MinS@C MaxS@C MinS@C MaxS@C MinS@C MaxS@C

L
L

AV
A × -0.9486 2.4950 -0.7662 2.2188 -0.8569 3.9821

+ FT Per. -0.8469 1.6675 -0.5915 2.2025 -0.6094 3.1794
+ FT Res. -0.9152 1.7409 -0.4921 1.4397 -0.8158 2.7705
+ FT Edu. -0.9756 1.7842 -0.6872 1.5719 -0.5257 2.4362

Q
w

en
-V

L × -2.4688 2.5772 -2.5301 2.2663 -2.8242 2.4059
+ FT Per. -0.7386 1.2509 -1.9077 0.3470 -2.5524 2.3506
+ FT Res. -0.7384 1.9044 -1.3205 0.1202 -2.8545 2.3872
+ FT Edu. -0.8431 1.6817 -1.8759 0.2236 -2.4706 2.3502

Table 2. Performance comparison of LLaVA-7B and Qwen-VL-
7B when fine-tuned and tested on SCs in CMSC. Per.: Personality,
Res.: Responsibility, Edu.: Education, ×: Original performance.

as an additional testing set to assess the cross-dataset de-
biasing performance of models fine-tuned on CMSC and
SocialCounterfactual [55].

4.2. Comparison on Fine-tuning

We reported MinSkew@C and MaxSkew@C of several
MLLMs in Figure 3. The models, i.e., LLaVA [38], Qwen-
VL [3], and Bunny [25], are fine-tuned on the SocialCoun-
terfactuals and CMSC datasets individually and evaluated
on the FairFace dataset, respectively. For clarity, we took
the absolute values of both metrics. From Figure 3, we
observed that models fine-tuned on CMSC exhibit supe-
rior debiasing effects. For instance, LLaVA-13B achieves
a MinSkew@C of -1.3132, a significant advantage over that
from the model fine-tuned on SocialCounterfactuals. This
implies that the broader range of social concepts in CMSC
enables the model to learn fairer distributions.

4.3. Fine-tuning with Specific SC Group

As discussed in Section 3.1, we split the SCs in CMSC into
three groups: personality, responsibility, and education. We
applied LLaVA and Qwen-VL to fine-tune separately on
these subsets. The results are reported in Table 2. It can be
observed that in intra-subset evaluations, i.e., fine-tuned and
tested on the same subset, the model can generally achieve
lower biases. For instance, when fine-tuning and evaluating
Qwen-VL on the personality subset, it achieves a MaxS@C
of 1.2509, showing an absolute difference of 0.65 and 0.43
compared to performance when fine-tuned on the responsi-
bility and education subsets, respectively.

4.4. Comparison on Image Distribution

We calculated the Fréchet Inception Distance (FID) scores
for the synthetic counterfactual datasets SocialCounterfac-
tuals and our CMSC. Specifically, we randomly sampled
1,000 synthetic images from each dataset and then com-
puted the distributional differences with the same set of
1,000 real images. A lower FID signifies better image qual-
ity. With this process, the two datasets received FID scores
of 27.17 and 24.35, respectively. This indicates that the im-
ages in our dataset bear a closer resemblance to reality.

5. Counter-stereotype Debiasing
5.1. Preliminaries
Before introducing our proposed method, we first revisit the
training objectives of MLLMs. Subsequently, we introduce
the concept of Skew(Pi) to measure stereotypes associated
with specific instances, upon which we base the reformula-
tion of the autoregressive fine-tuning paradigm of MLLMs.

5.1.1. Traning Objective of MLLMs
Current mainstream MLLMs employ pre-trained LLMs [11,
60] as the output interface [3, 25, 38, 43]. Under this con-
text, the base LLM is often trained in an autoregressive way,

P(x1:T ; θ) =

T∏
t=1

P(xt | x<t; θ), (6)

where x is a text sequence with T tokens, and θ denotes the
model parameters. During pre-training, the LLM predicts
the t-th token xt based on all preceding ones, i.e., x<t. Af-
ter that, another instruction tuning stage [47] is often fol-
lowed to enable LLMs to better understand user intentions,

P(y1:T |xins; θ) =

T∏
t=1

P(yt|y<t,xins; θ), (7)

where xins and y are textual instructions and responses, re-
spectively. MLLMs extend the inputs of LLMs with the
supplement of image features ximg that are extracted using
pre-trained vision encoders such as ViT [30, 50],

P(y1:T |xins,ximg; θ)=

T∏
t=1

P(yt|y<t,xins,ximg; θ), (8)

where ximg is aligned with text features via a connector,
e.g., a trainable projection matrix. To optimize the pipeline,
previous cross-entropy loss from LLMs is directly inherited,

L(y,xins,ximg;θ)=−
T∑

t=1

logP(yt|y<t,xins,ximg;θ). (9)

5.1.2. Stereotype Measurement
Recall that Skewa|c quantifies the degree of social biases
in an MLLM across the entire dataset. In this section, we
are more interested in the social bias degree for each spe-
cific instance Pi. We then define Skew(Pi) as a selected
Skewa|c with the maximum absolute value across all SAs
for instancePi. For example, suppose thatPi contains three
SA labels: {‘White,’ ‘Female,’ ‘Young’}, along with one
SC label: ‘Nurse.’ Skew(Pi) is the one with the highest ab-
solute value from {SkewWhite|Nurse, SkewFemale|Nurse,
SkewY oung|Nurse}. It describes the SA that receives the
most severe bias, thereby indicating the level of bias in Pi.
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Skew(Pi), guiding the model to focus on overlooked instances.

: Parameter updates based on a specific loss function.

5.2. CSD Approach
As illustrated in Figure 4, vanilla fine-tuning approach in-
volves sampling images from a balanced dataset and up-
dating MLLMs through the original autoregressive objec-
tive. We argue that this method, which treats all instances
equally, is ineffective in addressing the social bias prob-
lem in MLLMs. Therefore, we propose an CSD method
from the view of counter-stereotype. Specifically, our CSD
is composed of two components: i) Dataset Resampling,
which enhances the data sampling process to include more
underrepresented instances. ii) Loss Rescaling, where we
adjust the loss function to place larger emphasis on in-
stances that are overlooked in terms of social attributes.
Dataset Resampling. The debiasing approach, e.g., di-
rectly fine-tuning, utilizes counterfactual datasets that are
balanced across all SAs. We believe that such datasets make
it difficult for MLLMs to recognize which SAs are sub-
jected to greater bias and which are not4. To address this, we
resample the dataset to increase the frequency of instances
that MLLMs tend to ignore and reduce the frequency of em-
phasized ones, thereby ‘neutralizing’ social biases.

Skew(Pi) serves as an indicator for dataset resampling.
As demonstrated in Algorithm 1, for each instancePi, when
Skew(Pi)>0, i.e., Pi has received more attention – such as
the ‘female-nurse’ in Figure 1 – we reduce its probability in
the resampled dataset Dr for the following training epoch,

Dr=

{
Dr∪Pi, rand(0,Skew(Pi)+τ1)>Skew(Pi),

Dr, rand(0,Skew(Pi)+τ1)≤Skew(Pi),
(10)

where rand(·) is to randomly draw from 0 to Skew(Pi)+
τ1, and τ1 is a pre-defined threshold. As such, a larger
Skew(Pi) corresponds to a lower chance of being included
byDr. In contrast, for instances with Skew(Pi)≤0, we be-
lieve that increasing their proportion in the new dataset Dr

is beneficial for the MLLM to learn the features of these
overlooked parts, thereby achieving a fairer distribution.

4Collecting an imbalanced datasets is impractical, as different MLLMs
may exhibit different biases.

Algorithm 1 Dataset Resampling with Skew(Pi)

Input: The original dataset D = {Ii,Ai, ci}, the social
attribute sets A, the social concept set C

Output: The resampled dataset Dr

1: Dr ← [],AcmSkewai|ci ← 0; ▷ Initialization
2: for Pi ∈ D do
3: if Skew(Pi) > 0 then
4: if Rand(0,Skew(Pi)+τ1)>Skew(Pi) then
5: Dr ← Dr ∪ Pi;
6: end if
7: else ▷ Skew(Pi) ≤ 0
8: Dr ← Dr ∪ Pi;
9: AcmSkewai|ci←AcmSkewai|ci + |Skew(Pi)|;

10: if AcmSkewai|ci > τ2 then
11: Dr ← Dr ∪ Pi; ▷ Over-resampling
12: AcmSkewai|ci ← 0;
13: end if
14: end if
15: end for
16: return Dr;

To this end, these instances are directly accepted into Dr.
Moreover, we design an over-resampling mechanism to fur-
ther increase the occurrence frequency of these instances.
Specifically, for each Pi, we employ an accumulative value,
AcmSkew, to gradually accumulate the current Skew(Pi),

AcmSkewai|ci = AcmSkewai|ci + |Skew(Pi)|, (11)

where ci and ai are SC label and SA label correspond-
ing to Skew(Pi), respectively. When AcmSkewai|ci ex-
ceeds a threshold τ2, we add the Pi into Dr again. The
AcmSkewai|ci can then be set to 0 for a new round of
accumulation. With the above operations, instances with
Skew(Pi) ≤ 0 will be resampled multiple times. This
resampling process is executed once before each training
epoch. For evaluation, we employ the balanced testing set
to ensure a fair comparison.
Loss Rescaling. During MLLM fine-tuning, we rescale the
autoregressive loss in Equation (9) to a new Social Fairness
Loss (SFLoss) for effective debiasing. Specifically, the em-
pirical risk during training can be represented as

E =
1

N

N∑
i=1

L(yi,xi
ins,x

i
img; θ), (12)

where N = |D| is the dataset size, and yi,xi
ins,x

i
img are

the predicted responses, text instructions, and image fea-
tures for the i-th instance Pi, respectively. However, as we
discussed before, treating each instance equally does lim-
ited help in addressing the model bias toward overly repre-
sented SAs and SCs. Our solution to this issue is inspired by
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Model #Params SocialCounterfactuals FairFace CMSC VQAv2 MMBench TextVQA
MinS@C MaxS@C MinS@C MaxS@C MinS@C MaxS@C

LLaVA

7B

-2.0567 0.3973 -2.8792 0.6457 -1.6159 1.4817 78.50 64.69 58.21
LLaVA+POPE -0.5101 0.4833 -1.5933 0.6056 -2.5424 1.1154 - - -
LLaVA+FT -0.4727 0.3625 -1.0199 0.4865 -0.7142 0.8058 78.11 63.88 58.20
LLaVA+CSD -0.3509 0.3110 -0.8622 0.3950 -0.4933 0.5633 78.16 64.20 58.39

LLaVA

13B

-2.5730 0.3799 -3.3604 0.5863 -1.6730 0.5350 80.0 67.70 61.30
LLaVA+POPE -0.3840 0.4410 -0.9508 0.4051 -2.2542 1.1454 - - -
LLaVA+FT -0.4748 0.4051 -1.3123 0.4066 -1.5107 0.4605 79.17 67.28 61.02
LLaVA+CSD -0.3113 0.3718 -0.7114 0.3752 -0.8167 0.4192 79.75 68.30 61.42

Qwen-VL

7B

-0.6117 0.5966 -1.6305 0.8469 -1.5114 1.0961 79.37 74.14 61.39
Qwen-VL+POPE -0.3064 0.5399 -1.3167 0.9207 -2.2438 1.7575 - - -
Qwen-VL+FT -0.2801 0.3966 -1.3925 0.6916 -0.8166 1.0227 79.37 74.82 60.86
Qwen-VL+CSD -0.2422 0.2921 -0.7672 0.2607 -0.6193 0.7180 79.37 75.59 60.88

Bunny

8B

-0.4255 0.6064 -1.1375 0.5349 -1.5829 1.4173 82.60 76.46 65.31
Bunny+POPE -0.3370 0.5899 -1.3670 0.4918 -2.8085 1.7269 - - -
Bunny+FT -0.4202 0.5851 -1.0035 0.4199 -0.8237 0.9026 82.48 76.39 65.20
Bunny+CSD -0.4001 0.5532 -0.9003 0.2632 -0.7745 0.1575 82.42 76.28 65.20

Table 3. Performance comparison. All models are fine-tuned on our CMSC dataset. Among the six datasets, SocialCounterfactuals,
FairFace, and CMSC are employed to evaluate social bias; and VQAv2, MMBench, and TextVQA are general benchmarks. Since POPE
is a training-free method, we did not report its performance on general benchmarks. #Params: the scale of the base LLM’s parameters.

the approaches that have been proven effective in the class
imbalance research area [23]. Instead of scaling loss based
on the class frequency, we leverage the stereotype quantifi-
cation metric Skew to rescale the loss value,

Efair =
1

N

N∑
i=1

e−Skew(Pi)L(yi,xi
ins,x

i
img; θ). (13)

In this scenario, when Skew(Pi) > 0, i.e., the MLLM
tends to predict the input instance as the SC label ci, the fair-
ness term e−Skew(Pi) is less than 1.0. Consequently, this in-
stance will receive less attention during training. Similarly,
when Skew(Pi)<0, the fairness term will make the model
pay more attention to this overlooked instance. This opera-
tion allows the model to dynamically adjust weights during
fine-tuning based on the Skew of input instances, enabling
the model to learn a fairer distribution.

6. Experiments
6.1. Settings
Datasets. In addition to the three social bias datasets men-
tioned in Section 4.1, we also employed three recent bench-
mark datasets to evaluate MLLMs’ original zero-shot ca-
pabilities. Among them, VQAv2 [22] and TextVQA [56]
are benchmarks for general visual question answering and
text-oriented visual question answering, respectively. MM-
Bench [41] evaluates the model robustness with comprehen-
sive multiple-choice answers.
Baselines. Given the limited exploration of debiasing
strategies for MLLMs, we compared our CSD with the di-
rect fine-tuning (FT), i.e., fine-tuning the model on balanced
counterfactual dataset [63]. Moreover, we adapt POPE [37],
which addresses hallucinations in MLLMs, as a baseline.
Implementation Details. Both thresholds τ1 and τ2 in Sec-
tion 5.2 are set to 1.0. We trained the models on 8*A800

GPUs. Each training session takes ∼18 GPU hours.

6.2. Main Results
We reported MaxSkew@C and MinSkew@C of the four uti-
lized MLLMs in Table 3, wherein we have three main ob-
servations: i) Compared to the baselines, our CSD demon-
strates the best debiasing effectiveness across four different
MLLM architectures. In intra-dataset evaluation, i.e., fine-
tuning and testing on the CMSC dataset, LLaVA-13B+CSD
achieved a MinSkew@C of -0.8167, improving by 46%
compared to LLaVA-13B+FT. In cross-dataset evaluation,
our CSD also outperforms the two baselines by a signif-
icant margin. For example, Qwen-VL-7B+CSD attains a
MaxSkew@C of 0.2607 on the FairFace dataset, showing
a reduction of 0.6 in absolute value. ii) A model with a
larger size does not necessarily correspond to a lower social
bias. This might because the increased scale of parame-
ters makes the model to better learn the biases present in
the pre-training dataset. iii) POPE’s debiasing effectiveness
underperforms FT. One possible reason is that POPE is a
training-free method, causing its predictions to remain bi-
ased towards the pre-training data distribution.

Pertaining to the model results on general multi-modal
benchmarks, we observed that our CSD method has a neg-
ligible impact, with the effect on all architectures across the
three datasets being less than 0.5%. This indicates that our
CSD method enhances the model’s social fairness without
significantly sacrificing its general capabilities.

6.3. Ablation Studies
6.3.1. Comparison on Ablated CSD
Our CSD method consists of two key components: the
dataset resampling and the rescaled SFLoss. In Table 4,
we reported the performance of them. We observe that
both components help alleviate social bias. For example,
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Model SocialCounterfactuals FairFace CMSC

MinS@C MaxS@C MinS@C MaxS@C MinS@C MaxS@C

L
L

AV
A

-7
B × -2.0567 0.3973 -2.8792 0.6457 -1.6159 1.4817

+FT -0.4727 0.3625 -1.0199 0.4865 -0.7142 0.8058
+Resample -0.4455 0.3327 -0.9238 0.4838 -0.6979 0.7741
+SFLoss -0.3851 0.3453 -0.8904 0.4246 -0.5385 0.5838
+CSD -0.3509 0.3110 -0.8622 0.3950 -0.4933 0.5633

L
L

AV
A

-1
3B × -2.5730 0.3799 -3.3604 0.5863 -1.6730 0.5350

+FT -0.4748 0.4051 -1.3123 0.4066 -1.5107 0.4605
+Resample -0.3603 0.3844 -0.8154 0.3823 -1.0364 0.4292
+SFLoss -0.3470 0.3905 -1.0546 0.3946 -1.0398 0.4388
+CSD -0.3113 0.3718 -0.7114 0.3752 -0.8167 0.4192

Q
w

en
-V

L
-7

B × -0.6117 0.5966 -1.6305 0.8469 -1.5114 1.0961
+FT -0.2801 0.3966 -1.3925 0.6916 -0.8166 1.0227
+Resample -0.2428 0.3631 -0.8012 0.3207 -0.7414 0.7813
+SFLoss -0.2580 0.3004 -0.7688 0.3311 -0.6386 0.8041
+CSD -0.2422 0.2921 -0.7672 0.2607 -0.6193 0.7180

B
un

ny
-8

B × -0.4255 0.6064 -1.1375 0.5349 -1.5829 1.4173
+FT -0.4202 0.5851 -1.0035 0.4199 -0.8237 0.9026
+Resample -0.4158 0.5670 -0.9875 0.3127 -0.8141 0.4008
+SFLoss -0.4171 0.5534 -0.9448 0.2789 -0.7941 0.4155
+CSD -0.4001 0.5532 -0.9003 0.2632 -0.7745 0.1575

Table 4. The performance of ablated CSD. FT: Directly fine-
tuning. Resample: Fine-tuning with resampling. SFLoss: Fine-
tuning with SFLoss. The best performance is highlighted in bold.

(a) Qwen-VL-7B (b) Bunny-8B

-55%
-83%

Figure 5. MaxSkews of (a) Qwen-VL-7B and (b) Bunny-8B
across occupations in SocialCounterfactuals for different races.

LLaVA-7B+SFLoss achieves a 70% MinSkew@C improve-
ment on FairFace. On CMSC, Qwen-VL-7B+Resample
achieves a MinSkew@C of -0.6193, reducing the absolute
Skew value by more than 0.9. A notable observation is that
either of the SFLoss and data resampling shows better de-
biasing effect compared to the naive FT strategy.

6.3.2. Comparison on SAs
In Figure 5, we illustrate the MaxSkews [13] of Qwen-VL-
7B and Bunny-8B across different races in the SocialCoun-
terfactuals dataset. We can observe that both models exhibit
significant social bias without any fine-tuning. For instance,
Qwen-VL-7B has a Skew value of approximately 0.76 for
White, indicating a strong preference for predicting occupa-
tions for this race. Our CSD method achieves better debias-
ing effects across all races for both models.

6.3.3. Skew Distributions
In Figure 6, we illustrate the MaxSkew distribution across
different SCs in CMSC. It can be observed that LLaVA-
13B exhibits larger mean and median MaxSkew values,
along with significant outliers in certain attributes. For in-
stance, in the ‘personality’ category, the Skew value for
Old-Belligerent reaches 1.6. After direct fine-tuning, the
average degree of social bias decreases. However, the out-
lier issue remains unresolved. In contrast, applying our
CSD method achieves a more optimized Skew distribution

Old, Weapon

Southeast 
Asian, Tool White, University

Middle Eastern, 

Compassionate

White, 
Belligerent

Male, Earning 

Money

Southeast Asian, 
Weapon
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Good Student
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Young, Career Young, 
High School
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University

0.0
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0.4
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1.2

1.4
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Old,
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with SA and SC

Male,

Young, 

Middle School

Figure 6. MaxSkew distribution for LLaVA-13B on the CMSC
dataset. Each box represents the different Skewa|c values. Our
CSD method achieves the most optimized Skew distribution.

across different concepts. Furthermore, noticeable outlier
are eliminated, indicating that CSD provides a comprehen-
sive debiasing effect for MLLMs.

7. Discussion and Conclusion
Conclusion. In this paper, we present to address the noto-
rious social bias problem in MLLMs. Our first contribution
is a comprehensive dataset that covers more diverse social
concepts than previous datasets. In addition, we advocate
an counter-stereotype debiasing approach to perform both
dataset resampling and loss rescaling, thereby improving
fairness of MLLMs. Extensive experiments demonstrate
that our method is promising to alleviate the social bias
in MLLMs, with minimal negative impact on their original
general multi-modal understanding capabilities.
Social Impact. As MLLMs become increasingly inte-
grated into real-world applications, their societal influence
is poised to expand, particularly in sectors requiring sensi-
tive handling of human attributes and social concepts. How-
ever, intrinsic social biases within these models can under-
mine their trustworthiness, raising ethical concerns and po-
tential risks. This paper presents a bias mitigation approach
to enhance fairness in MLLMs, fostering trust and account-
ability by reducing harmful stereotypes. We hope our work
inspires further research on bias and fairness in MLLMs,
contributing to the development of more equitable models.
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Nellåker. Turning a blind eye: Explicit removal of biases
and variation from deep neural network embeddings. In EC-
CVW, pages 556–572, 2018. 3

[3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A versatile vision-language model for un-
derstanding, localization, text reading, and beyond. CoRR,
abs/2308.12966:1–15, 2023. 1, 2, 4, 5

[4] Hugo Berg, Siobhan Mackenzie Hall, Yash Bhalgat, Hannah
Kirk, Aleksandar Shtedritski, and Max Bain. A prompt ar-
ray keeps the bias away: Debiasing vision-language models
with adversarial learning. In AACL/IJCNLP, pages 806–822,
2022. 3

[5] Karan Bhanot, Miao Qi, John S. Erickson, Isabelle Guyon,
and Kristin P. Bennett. The problem of fairness in synthetic
healthcare data. Entropy, 23(9):1165, 2021. 2

[6] Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahem-
bwe. Multimodal datasets: misogyny, pornography, and ma-
lignant stereotypes. CoRR, abs/2110.01963:1–18, 2021. 1

[7] Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh
Saligrama, and Adam Tauman Kalai. Man is to computer
programmer as woman is to homemaker? debiasing word
embeddings. In NeurIPS, pages 4349–4357, 2016. 2, 3

[8] Jannik Brinkmann, Paul Swoboda, and Christian Bartelt. A
multidimensional analysis of social biases in vision trans-
formers. In ICCV, pages 4914–4923, 2023. 1, 2

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In NeurIPS, pages 1–40, 2020. 2

[10] Xi Chen, Xiao Wang, Soravit Changpinyo, A. J. Piergio-
vanni, Piotr Padlewski, Daniel Salz, Sebastian Goodman,
Adam Grycner, Basil Mustafa, Lucas Beyer, Alexander
Kolesnikov, Joan Puigcerver, Nan Ding, Keran Rong, Has-
san Akbari, Gaurav Mishra, Linting Xue, Ashish V. Thap-
liyal, James Bradbury, and Weicheng Kuo. Pali: A jointly-
scaled multilingual language-image model. In ICLR, pages
1–13, 2023. 2

[11] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhang-
hao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yong-
hao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality, 2023. 2, 5

[12] Ching-Yao Chuang and Youssef Mroueh. Fair mixup: Fair-
ness via interpolation. In ICLR, pages 1–11, 2021. 2

[13] Ching-Yao Chuang, Jampani Varun, Yuanzhen Li, Antonio
Torralba, and Stefanie Jegelka. Debiasing vision-language
models via biased prompts. CoRR, abs/2302.00070:1–13,
2023. 3, 4, 8

[14] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven C. H. Hoi. Instructblip: Towards general-
purpose vision-language models with instruction tuning. In
NeurIPS, pages 1–12, 2023. 2

[15] Sepehr Dehdashtian, Lan Wang, and Vishnu Naresh Boddeti.
Fairerclip: Debiasing clip’s zero-shot predictions using func-
tions in rkhss. In ICLR, pages 1–12, 2024. 3

[16] Richard B Felson and Noah Painter-Davis. Another cost
of being a young black male: Race, weaponry, and lethal
outcomes in assaults. Social Science Research, 41(5):1241–
1253, 2012. 3

[17] Kathleen C. Fraser and Svetlana Kiritchenko. Examining
gender and racial bias in large vision-language models using
a novel dataset of parallel images. In EACL, pages 690–713,
2024. 3

[18] Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab
Tanjim, Sungchul Kim, Franck Dernoncourt, Tong Yu, Ruiyi
Zhang, and Nesreen K Ahmed. Bias and fairness in large lan-
guage models: A survey. Computational Linguistics, pages
1–79, 2024. 1, 2

[19] Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James
Zou. Word embeddings quantify 100 years of gender and
ethnic stereotypes. PNAS, 115(16):E3635–E3644, 2018. 3

[20] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kentha-
padi. Fairness-aware ranking in search & recommendation
systems with application to linkedin talent search. In KDD,
pages 2221–2231, 2019. 4

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[22] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the V in VQA matter: El-
evating the role of image understanding in visual question
answering. In CVPR, pages 6325–6334, 2017. 7

[23] Yangyang Guo, Liqiang Nie, Harry Cheng, Zhiyong Cheng,
Mohan S. Kankanhalli, and Alberto Del Bimbo. On modality
bias recognition and reduction. ACM ToMM, 19(3):103:1–
103:22, 2023. 7

[24] Siobhan Mackenzie Hall, Fernanda Gonçalves Abrantes,
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