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Abstract

Zero-shot image restoration (IR) methods based on pre-
trained diffusion models have recently achieved significant
success. These methods typically require at least a para-
metric form of the degradation model. However, in real-
world scenarios, the degradation may be too complex to
define explicitly without relying on crude approximations.
To handle this general case, we introduce the DIffusion Im-
age Prior (DIIP). We take inspiration from the Deep Image
Prior (DIP) [17], since it can be used to remove artifacts
without the need for an explicit degradation model. How-
ever, in contrast to DIP, we find that pretrained diffusion
models offer a much stronger prior, despite being trained
without knowledge from corrupted data. We show that, the
optimization process in DIIP first reconstructs a clean ver-
sion of the image before eventually overfitting to the de-
graded input, but it does so for a broader range of degrada-
tions than DIP. In light of this result, we propose a blind im-
age restoration (IR) method based on early stopping, which
does not require prior knowledge of the degradation model.
We validate DIIP on various degradation-blind IR tasks, in-
cluding JPEG artifact removal, waterdrop removal, denois-
ing and super-resolution with state-of-the-art results.

1. Introduction

One of the most well-known dataset training-free and degra-
dation blind methods for image restoration is Deep Image
Prior (DIP) [17]. A notable feature of DIP is its applica-
bility in cases where the degradation model is too complex
to be accurately modeled, such as with JPEG compression.
DIP leverages the implicit prior embedded within a convo-
lutional neural network (CNN). It demonstrates that through
an iterative reconstruction process of a corrupt image with
an untrained CNN (by using direct matching, since the
degradation model is unknown), one can recover a clean im-
age. Inspired by this approach, we explore a similar investi-
gation, where we also exploit the reconstruction process of

*Corresponding author.

Input DreamClean [20]

Ours (DIIP) Ground-truth

Figure 1. In many applications, such as JPEG artifacts removal,
image degradation is often unknown and challenging to model. In
comparison to the recent state-of-the-art DreamClean [20], DIf-
fusion Image Prior (DIIP) consistently produces results that more
effectively preserve the original nature of the image.

a degraded image, but use instead a frozen pre-trained (dif-
fusion) model (see Figure 1). Although our reconstruction
optimizes only the input noise to the model, while in DIP
the CNN parameters were optimized, we find that the two
processes share the same property of reconstructing a clean
image before converging to the corresponding degraded in-
put. Surprisingly, we find that while in DIP this property
holds primarily for high frequency degradations such as
noise, with pre-trained diffusion models this phenomenon
is observed across a wider range of degradations, including
low-frequency ones such as blurring. This happens despite
the fact that the diffusion model was never exposed to such
degraded data during training to either generate it or to be
adversarial to it. We call this property the DIffusion Image
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Prior (DIIP).
DIIP has immediate applicability in image restoration

(IR), where the aim is to reconstruct a clean image from
its degraded version. While DIP can handle only im-
age corruption processes that inject high-frequency artifacts
in an image without using the degradation operator, DIIP
can handle a broader range of artifacts. Recently, Dream-
Clean [20] has also demonstrated the remarkable capability
of restoring images without knowledge of the degradation
model for a wide range of cases. However, as shown in
Figure 1, DIIP yields reconstructions that are more faith-
ful to the original image. The capability of the above three
methods drastically simplifies the solution of IR tasks, as
they do not require any collection of specialized datasets
for supervised training [12, 18], which can be costly and
time-consuming, nor the use of additional knowledge about
the artifacts [3–6, 9, 11, 14], which is often not available in
practice.

We demonstrate DIIP on several IR problems, non-
uniform deformation, waterdrop removal, different noise
distributions (mixtures of Gaussian and speckle noise),
JPEG compression and superresolution. Our findings in-
dicate that in all these degradation cases the reconstruction
of the initial noise through a pre-trained and frozen diffu-
sion model initially generates clean reconstructions before
overfitting to the degraded images. This suggests that DIIP
can be used in a similar fashion to DIP via early stopping.
In this paper, we present some self-supervised early stop-
ping criteria that result in state of the art performance on all
the above IR tasks despite their simplicity. In summary, our
contributions are
• We conduct a study showing the implicit priors of a frozen

pretrained diffusion model when used for image recon-
struction in the case of a wide range of degradations that
either remove high-frequency details or introduce high-
frequency artifacts; we show that trained diffusion mod-
els exhibit a similar implicit prior behavior as observed
with DIP, but on a broader range of cases;

• Based on our findings, we propose a new dataset training-
free and fully blind image restoration method, DIIP,
which does not assume any prior knowledge of the degra-
dation model, making it broadly applicable to a wide
range of complex image restoration tasks;

• We demonstrate state-of-the-art performance on CelebA
and ImageNet benchmarks for several blind image
restoration tasks, including denoising, waterdrop re-
moval, super-resolution, and JPEG artifact removal.

2. Related Work
Image restoration has a long and rich history in the litera-
ture. We focus on image restoration methods that are simi-
lar to our approach in terms of their training paradigm (test-
time training methods) and blindness (fully blind).

2.1. Test-Time Image Restoration

Recently, test-time training methods have gained popularity.
These methods eliminate the need for a training dataset and
are applied directly to the degraded image at test time. We
can further classify these methods based on their level of
blindness of the degradation model.

Non-blind and partially-blind image restoration. Non-
blind methods assume that the degradation model is fully
known; for example, in image deblurring, they assume the
degradation takes the form of a blur kernel and that the en-
tries of this kernel are known. Some recent non-blind meth-
ods include [4, 11, 19]. DDRM [11] introduces a variational
inference objective and proposes an inverse problem solver
based on posterior sampling to learn the posterior distribu-
tion of the inverse problem. DDNM [19] presents a zero-
shot framework for image restoration tasks using range-
null space decomposition, refining only the null-space con-
tents during the reverse diffusion process to both ensure
data fidelity and realism. DPS [4] offers a more general
framework that addresses both non-linear and noisy cases.
However, these methods assume complete knowledge of the
degradation model, which is rarely available in real-world
scenarios. On the other hand, partially blind methods relax
this assumption by only requiring knowledge of the para-
metric form of the degradation model. These methods in-
clude [3, 6, 9, 15]. GibbsDDRM [15] extends DDRM to
scenarios where only partial information about the degra-
dation is available. BlindDPS [6] builds on the work of
[4], addressing blind deblurring by jointly optimizing the
blur operator and the sharp image during the reverse diffu-
sion process. BIRD [3] proposes a fast diffusion inversion
method that simultaneously inverts the diffusion model and
infers the degradation model. In contrast, DIIP handles the
fully degradation-blind case, i.e., when we do not assume
knowledge of the degradation’s parametric form. Moreover,
BIRD uses a fixed stopping criterion (i.e., a fixed number of
iterations), whereas DIIP relies on a self-supervised stop-
ping criterion.

Fully-blind image restoration methods. There have been
a few attempts to solve image restoration in a zero-shot
manner when the explicit parametric form of the degrada-
tion is unknown. One such method is Deep Image Prior
(DIP), which can handle complex degradation scenarios de-
spite its reliance on just the implicit prior of untrained neu-
ral networks. Recently, DreamClean [20], a fully blind
image restoration method based on a pre-trained diffusion
model, was introduced. DreamClean works by inverting
the input image and iteratively moving the intermediate la-
tents through an additional variance-preserving step during
the reverse diffusion sampling process. DIIP instead uses
a pre-trained diffusion model by reconstructing the initial
noise (and by making the diffusion process deterministic).
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Figure 2. DIIP on several degradation-blind image restoration tasks. Top: Input image. Middle: Our prediction. Bottom: Ground truth.

3. The DIffusion Image Prior
3.1. Image Restoration: Problem Statement

We aim to solve the task of image restoration in a test-time
training and fully blind manner. Given a degraded input
image y, our goal is to recover the degradation-free (clean)
image x. We leverage a pre-trained diffusion model, specif-
ically DDIM [16], a class of diffusion models that enables
deterministic mapping from noise space to data space. g de-
notes the deterministic version of DDIM mapping a Gaus-
sian vector to a data sample from the target distribution.

We focus on degradations that are rarely addressed by
existing test-time and blind methods, as these degradations
are either too complex to model in a test-time setting or sim-
ply unknown. Examples include noise with unknown distri-
butions (e.g., correlated noise or non-Gaussian/Poisson dis-
tributions), JPEG compression artifacts, and non-uniform
blur (see also Figure 2). In such cases, the IR task can be
formulated as an energy minimization problem of the form

x∗ = arg min
x

E(x; y) +R(x), (1)

where E(x; y) is a data fidelity term that measures how well
x matches the observed image y, and R(x) is a regulariza-
tion term that enforces prior knowledge about the distribu-
tion of x.

3.2. Revisiting the Deep Image Prior

Deep Image Prior (DIP) addresses the optimization prob-
lem in Eq. (1) by introducing an implicit prior captured
by a class of neural networks, specifically, deep Convolu-
tional Neural Networks (CNNs), and by employing early
stopping, as follows

θ∗ = argmin
θ

∥fθ(z)− y∥2, with x∗ = fθ∗(z), (2)

where we imply E(fθ(z); y) = ∥fθ(z) − y∥2. The min-
imizer θ∗ is obtained using an iterative optimizer such as
gradient descent, and starts from a random initialization of
the parameters of a convolutional neural network fθ fed a
fixed input noise vector z (which is not optimized). [17] ap-
plies early stopping to avoid overfitting the degraded image
y. This is implemented by defining a fixed and reasonable
number of iterative steps Tmax. The early stopped solution
θ∗ is then used to compute the restored image x∗ = fθ∗(z).

3.3. Implicit Priors of a Pretrained Diffusion Model

Motivated by the findings of [17] on the implicit prior of
an untrained CNN, a relatively weak model due to its lack
of training, we aim to explore a much stronger alternative:
a diffusion model pre-trained on clean data. More specifi-
cally, we aim to address two key questions:
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(a) Gaussian noise

Input Iter = 0 Iter = 25 Iter = 50 Iter = 500 Iter = 1500

(b) Gaussian blur

Figure 3. Intermediate outputs of the iterative reconstruction of a degraded image in the case of DIP (top) and our proposed optimization
scheme using a frozen pretrained diffusion model (bottom). In the case of a pre-trained diffusion model, the optimization consistently
produces clean images at an intermediate stage irrespective of the type of degradation ((a) noise or (b) blur).

Q1: Does a pre-trained diffusion model exhibit similar im-
plicit priors to those observed in DIP?

Q2: If such implicit priors exist, how do they differ from
those in DIP?

To investigate these questions, we explore the task of re-
constructing a degraded image using a pre-trained diffusion
model, where g represents its induced mapping from noise
to image space. Moreover, while DIP fixes the network in-
put z and trains the network parameters, here we keep the
pre-trained diffusion model frozen and optimize with re-
spect to the input z alone. The optimization objective is
then equivalent to

z∗ = argmin
z

∥g(z)− y∥2, with x∗ = g(z∗), (3)

where we also let E(g(z); y) = ∥g(z)−y∥2. In general, the
degradation can either remove high-frequency details (re-
sulting in smoothing) or add high-frequency artifacts (e.g.,
noise). Here, we empirically investigate the behavior of
the optimization described in Eq. (3) under synthetic degra-
dations that either add high-frequency artifacts (Gaussian
noise) or remove high-frequency details (Gaussian blur).
For this study, we randomly select images from the FFHQ
[10] dataset and apply: (1) Gaussian noise, and (2) Gaus-
sian blur. We frame this as a pure reconstruction task and
examine how the optimization in Eq. (3) behaves when re-
constructing the degraded images versus the original ref-
erence (clean) images. Our ultimate goal is to generalize
these findings to more complex degradations, such as JPEG
artifacts and non-uniform blur. We run the optimization un-
til it converges (this occurs with N = 1500 iterations). In
the case of a diffusion model, the mapping g(z) could be
computationally demanding, and this could make the iter-
ative reconstruction in Eq. (3) unfeasible. To enable this
optimization, we adopt the efficient inversion strategy used
in [3], which was originally proposed in [16]. However, in
contrast to [3] our final objective is not to use the inversion
to reconstruct the clean image, but rather the degraded one.
Also, unlike [3] we do not use any degradation model. The

detailed algorithm for our optimization is provided in Sec-
tion 1 of our supplementary material. Our findings are that
the answer to Q1 is positive and the answer to Q2 can be
split into the following two observations

1. There are two distinct regimes observed during the re-
construction, regardless of degradation type. Interest-
ingly, a key difference when using a pre-trained diffusion
model compared to vanilla DIP is that, irrespective of the
type of degradation (noise or blur), the optimization con-
sistently produces clean images at an intermediate stage,
even though it is purely a reconstruction process with no
integrated degradation model. Specifically, there are two
distinct regimes observed: (I) an initial regime where the
generated images are clean, realistic, and progressively
approach the clean reference images, followed by (II) a
regime where the generated images start to reflect the
degradation, becoming either blurred or noisy. This be-
havior is illustrated in Figure 3, by showing an example
of intermediate reconstructions obtained during our op-
timization and that of DIP. In the case of DIP, in contrast,
the reconstruction path is not consistent across the degra-
dations. DIP fails to produce sharp and clean images
during the iterative reconstruction in the case of blurry
images.

2. There is a high inertia to reconstructing high-frequency
artifacts (e.g., from noise). One commonality observed
between DIP and our proposed optimization scheme is
the tendency to resist overfitting to high-frequency arti-
facts (such as noise). This behavior is illustrated in Fig-
ure 3, where the intermediate image remains clean until
a late stage of the optimization (iteration = 500) when
reconstructing an image corrupted with Gaussian noise.

A crucial requirement for leveraging the findings from
the previous section is an automated method to determine
when to stop the optimization. In the next paragraphs, we
outline two simple and effective procedures to do so.
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Figure 4. Stopping criterion in the case of degradations that introduce high-frequency artifacts. We study the optimization trend
across varying levels of degradation that introduce high-frequency artifacts, focusing specifically on input images with different noise
levels.(a) shows the normalized slopes of the loss functions for input images with increasing noise levels. (b) shows the Peak Signal-to-
Noise Ratio (PSNR) relative to the clean reference image as optimization progresses for various noise intensities. We observe that the
slopes in (a) reach their minima at iterations corresponding to the points where the PSNR in (b) is maximal. For noise-based degradations,
which introduce high-frequency artifacts, the slope in (a) can serve as an indicator of peak performance, providing guidance on the optimal
stopping point for the optimization process.

3.4. Self-Supervised Stopping Criteria

3.4.1 Degradations removing high-frequency content

Identifying an absolute measurement to characterize image
sharpness is challenging. However, it is more manageable
to assess the relative change in the sharpness of intermedi-
ate reconstructions. Inspired by Chao et al. [2], who demon-
strated that the variance of the Laplacian (LV) provides a
robust measure of image sharpness, we adopt LV to detect
blurriness. Notably, we track the trend of LV over opti-
mization iterations, rather than its absolute value, to assess
whether the image is losing sharpness. In our first finding,
we observed that during regime (I) the generated images
are realistic and sharp. Therefore, as the optimization pro-
gresses, we can detect when intermediate reconstructions
begin to lose sharpness by using the variance of the Lapla-
cian of the reconstructed image as a sharpness score. In
Figure 6, we illustrate the trend of the variance of the Lapla-
cian (LV) operator throughout our optimization process. In
the case of a blurry image, aside from a transient phase in
the initial iterations, the variance steadily decreases as the
image becomes less sharp, indicating a transition to over-
fitting. We define a minimum number of iterations kmin to
avoid the transitory regime and we keep track of the itera-
tion number that corresponds to the last peak of sharpness.
If the iteration k > kmin and σ2[k + 1] < σ2[k], where
σ2[k]

.
= LV (g(zk)), we stop the optimization. In this case,

the optimal reconstruction is not necessarily at the current
iteration (k), rather the one with the last highest sharpness
(i.e., the highest LV).

3.4.2 Degradations adding high-frequency content

In the case of degradations that introduce high-frequency
artifacts, such as noise (as shown in Figure 3), the recon-
structed image quickly captures the correct structure and
the loss drops significantly during the initial iterations. For
example, in Figure 3 the reconstructed face rapidly con-
verges to the correct identity. However, due to the model’s
slow convergence to high-frequency artifacts, the loss takes
a long time to approach zero. This behavior motivates the
use of the normalized loss slope, i.e., the change in loss
normalized by the loss itself as a criterion for detecting re-
sistance to high-frequency artifacts like noise. In Figure 4,
we display the normalized slope

∆k =
E(zk; y)− E(zk−1; y)

E(zk−1; y)
, (4)

where k is the iteration number, in log scale (a) and the
PSNR trend (b) relative to the clean reference image for in-
put images with varying noise levels. We can immediately
notice that the locations at which the slope ∆ in (a) reach
a minimum correspond to the maxima of the reconstruction
in (b). Thus, a self-supervised stopping criterion based on
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Algorithm 1 DIIP

Require: Degraded image y, g,η, kmin, ϵ
Ensure: Restored image x̂

1: k = 0, LastSharpnessPeakIter = 0,
detectedH = false, detectedL = false

2: while NOT detectedH and NOT detectedL do
3: zk+1 = zk − η∇z∥g(zk)− y∥2
4: Compute the Laplacian variance σ2[k] of g(zk)
5: //keep track of the iteration with last sharpness peak
6: if σ2[k] < σ2[k − 1] and σ2[k − 2] < σ2[k − 1]

then
7: LastSharpnessPeakIter = k − 1
8: end if
9: //Low frequency degradation stopping criterion

10: if k > kmin and σ2[k] < σ2[k − 1] then
11: detectedL = true
12: n∗ = LastSharpnessPeakIter
13: end if
14: //High frequency degradation stopping criterion
15: if k > 0 and ∆k < ϵ then
16: detectedH = true
17: n∗ = k
18: end if
19: end while
20: Return the restored image x̂ = g(zn

∗
)

the normalized slope of the loss can effectively detect when
to halt optimization, maximizing reconstruction quality be-
fore overfitting occurs. For simplicity and robustness, our
stopping criterion detectedH is triggered (true) when the
normalized loss decrease is below a threshold ϵ. Formally,
when ∆k < ϵ, we stop and return the reconstruction g(zk).

3.5. Restoration via the DIffusion Image Prior

Based on previous work, we propose a simple algorithm for
image restoration. Given a degraded image y, we perform
the optimization defined in Eq. (3) using gradient descent
with a randomly initialized latent code z. At each itera-
tion, we take a gradient step and check whether either of the
two stopping criteria is satisfied. One criterion targets high-
frequency artifacts, and the other targets low-frequency ar-
tifacts. To handle low-frequency artifacts, we monitor the
Laplacian variance over time. If a minimum number of it-
erations has been reached and the Laplacian variance is still
decreasing, we stop the optimization and return the inter-
mediate prediction corresponding to the last local peak in
the Laplacian variance. To address high-frequency artifacts,
we track the loss reduction. Specifically, if the normalized
slope of the loss falls below a predefined threshold ϵ, we ter-
minate the optimization. The full procedure is summarized
in Algorithm 1.

Table 1. Effect of kmin on DIIP performance. PSNR (dB) is re-
ported when using different kmin values.

kmin Non-uniform deformation Waterdrop removal

50 22.18 22.48
100 23.45 23.78
150 23.52 23.82

Table 2. Effect of ϵ on DIIP performance. PSNR (dB) is reported
when using different ϵ values.

ϵ Denoising JPEG-deartifacting

0.005 27.25 22.38
0.001 28.37 25.29
0.0005 28.14 25.02

Table 3. Performance gap when using optimal stopping. PSNR
(dB) is reported for our stopping criterion and an optimal stopping
criterion that has access to ground-truth data.

Denoising Water-drop removal

Optimal stopping 28.63 23.73
Ours 28.37 23.45

4. Experiments

Experimental settings. We evaluate DIIP across various
image restoration (IR) tasks. For quantitative evaluation,
we conduct experiments on both structured degradations
(e.g., denoising, super-resolution) and complex unstruc-
tured degradations (e.g., non-uniform deformation, water
drop removal). We evaluate our method on images from
ImageNet 1K [7] and CelebA 1K [13] at a resolution of
256 × 256 pixels. For CelebA 1K, we use the model
pre-trained on CelebA by [14]. For ImageNet 1K , we
use the model pre-trained on ImageNet by [8]. To en-
sure a fair comparison, the same pre-trained models are
used across all methods. Performance is measured using
Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-
larity Index Measure (SSIM) for fidelity, and Learned Per-
ceptual Image Patch Similarity (LPIPS) for perceptual qual-
ity. DIIP is compared against state-of-the-art zero-shot and
partially-blind methods, including BlindDPS [6], GDP [9],
BIRD [3], and GibbsDDRM [15]. Additionally, we com-
pare against fully blind zero-shot methods such as DIP [17]
and the recent state-of-the-art DreamClean [20]. We em-
phasize that only a few methods have been proposed for un-
structured degradations (e.g., water drop removal), which
explains the smaller number of baselines in Table 5 com-
pared to Table 4. For super-resolution, we apply an 8 × 8
Gaussian blur followed by 8× downsampling. For denois-
ing, we use a mixture of Gaussian and speckle noise with
σ ≈ 0.3. JPEG artifact removal is performed using the
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Figure 5. Results of blind restoration methods applied to structured degradations. Top row: Denoising. Bottom row: 4× super-resolution.

Figure 6. Stopping criterion for degradations that remove
high-frequency details from the image. Here we show the trend
of the variance of the Laplacian operator throughout our optimiza-
tion scheme. After the first regime, in case of blurry image the
variance of the Laplacian keeps decreasing while in the case of a
sharp image the optimization adds more high frequency details and
the variance of the Laplacian does not decrease. A similar trend to
the clean image is observed for a noisy image, which shows that a
separate stopping criterion is needed.

ImageIO [1] Python library with a quality factor q = 5.
All tasks include additive Gaussian noise with σ = 0.02.
For generating unstructured degradations, we use an online
tool1 to create degraded inputs. We set kmin = 100 and
ϵ = 0.001. Optimization is performed using the Adam op-
timizer with a learning rate of 0.0015.
Quantitative and qualitative comparison. Tables 4 and
5 show the performance of DIIP compared to other meth-

1https://online.visual-paradigm.com/

ods in both the partially blind and fully blind settings. DIIP
consistently outperforms or matches the state-of-the-art ap-
proaches across different image restoration tasks. It is im-
portant to note that methods such as [3, 6, 9, 15] are not
applicable in the fully blind scenario, as they require knowl-
edge of the parametric form of the degradation model, and
therefore are not included in Table 5. Figure 5 presents a
visual comparison of CelebA images restored for image de-
noising and super-resolution tasks. Figure 7 showcases a vi-
sual comparison for unstructured restoration tasks. Despite
lacking prior knowledge of the degradation, DIIP produces
realistic reconstructions and generally preserves higher fi-
delity compared to other competing methods.

5. Ablations

We conduct different ablations to analyze the impact of each
component of DIIP. Specifically, we examine the influence
of the two hyperparameters, kmin and ϵ, in Algorithm 1.
Effect of the minimum number of iterations kmin. In Ta-
ble 1, we present the effect of the minimum iteration kmin

on DIIP. After approximately kmin = 100, the performance
stabilizes, making it a good trade-off between image quality
and efficiency.
Effect of the threshold ϵ. In Table 2, we show the effect of
the threshold ϵ. A higher ϵ causes earlier stopping than op-
timal, resulting in lower PSNR. Conversely, a very small
ϵ allows the process to continue longer, leading to high-
frequency artifacts. We found that ϵ = 0.001 yields the
best performance.
Gap to the optimal stopping. In Table 3, we quantify the
gap between our stopping criterion and the optimal one, as-
suming access to the clean target image. To determine the
optimal stopping point, we run our optimization and stop
when PSNR with respect to the ground truth stops improv-
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Table 4. Quantitative comparison with training free and zero-shot blind zero-shot methods on structured IR tasks on the CelebA validation
dataset. The best method is indicated in bold.

Method Denoising Superresolution (×4) Superresolution (×8)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

GDP [9] 27.73 0.817 0.232 24.21 0.708 0.337 21.66 0.618 0.374
Gibbsddrm [15] 27.38 0.809 0.255 24.38 0.689 0.330 21.45 0.605 0.364
BIRD [3] 27.92 0.821 0.238 25.26 0.751 0.294 22.63 0.626 0.352
BlindDPS [6] 27.56 0.813 0.246 24.51 0.722 0.324 21.73 0.620 0.360
DIP [17] 25.81 0.606 0.345 21.33 0.566 0.426 20.34 0.488 0.471
DreamClean [17] 27.05 0.771 0.236 23.44 0.663 0.322 21.33 0.586 0.344
Ours 28.37 0.842 0.224 25.14 0.764 0.301 22.86 0.651 0.336

Table 5. Quantitative comparison with training free and zero-shot blind methods on unstructured IR tasks. We note that[3, 6, 9, 15] could
not be applied to unstructured degradations. The best method is indicated in bold.

Method JPEG De-artifacting Non-uniform Deformation Water-drop Removal
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

DIP [17] 20.43 0.593 0.622 18.83 0.437 0.643 20.37 0.517 0.642
DreamClean [20] 23.92 0.691 0.342 22.16 0.612 0.398 22.94 0.643 0.361
Ours 25.29 0.783 0.325 23.45 0.689 0.392 23.78 0.702 0.377

Table 6. Runtime (in seconds) and Memory consumption (in Giga-
bytes) comparison of training-free methods on CelebA. The input
image is of size 256× 256.

Method Runtime [s] Memory [GB]

GDP [9] 168 1.1
BIRD [3] 234 1.2
BlindDPS [6] 270 6.1
DreamClean [20] 125 1.3
Ours 138 1.2

ing. DIIP lags behind this optimal point by approximately
0.3 dB in the denoising and water drop removal tasks.
Efficiency comparison. In Table 6, we compare the run-
time and memory consumption of training-free methods.
We run DIIP on 100 degraded images with different degra-
dation types and report the average runtime. Our method
achieves a good balance between image quality and compu-
tational efficiency while offering a broader range of appli-
cability than most existing methods.

6. Conclusion
IIn this work, we presented DIffusion Image Prior (DIIP),
a novel blind image restoration method that leverages pre-
trained diffusion models to handle a wide range of degra-
dation types without requiring explicit knowledge of the
degradation process. Drawing inspiration from Deep Im-
age Prior (DIP), we showed that pretrained diffusion mod-
els offer a much stronger prior for restoration tasks, en-
abling the reconstruction of clean images even under com-
plex and unknown degradations. Our experiments demon-
strated that the optimization process in DIIP consistently
produces high-fidelity restorations across various degrada-

Input DIP DreamClean Ours Target

Figure 7. Visual comparison of blind restoration methods on tasks
with unstructured degradations: non-uniform deformation (top),
JPEG de-artifacting (middle), and water-drop removal (bottom).

tion types, including JPEG artifact removal, waterdrop re-
moval, non-uniform deformation, and super-resolution. By
incorporating an early stopping strategy, we effectively pre-
vented overfitting to the degraded input, further enhancing
restoration quality. Overall, DIIP achieves competitive per-
formance in both restoration quality and robustness, offer-
ing a practical solution for real-world image restoration sce-
narios where degradation models are unknown or difficult to
specify.
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