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Abstract

Recent advancements in reasoning optimization have
greatly enhanced the performance of large language models
(LLMs). However, existing work fails to address the com-
plexities of audio-visual scenarios, underscoring the need
for further research. In this paper, we introduce AURE-
LIA, a novel actor-critic based audio-visual (AV) reasoning
framework that distils structured, step-by-step reasoning
into AVLLMSs at test time, improving their ability to process
complex multi-modal inputs without additional training or
fine-tuning. To further advance AVLLM reasoning skills, we
present AVReasonBench, a challenging benchmark compris-
ing 4500 audio-visual questions, each paired with detailed
step-by-step reasoning. Our benchmark spans six distinct
tasks, including AV-GeolQ, which evaluates AV reasoning
combined with geographical and cultural knowledge. Evalu-
ating 18 AVLLMs on AVReasonBench reveals significant lim-
itations in their multi-modal reasoning capabilities. Using
AURELIA, we achieve up to a 100% relative improvement,
demonstrating its effectiveness. This performance gain high-
lights the potential of reasoning-enhanced data generation
for advancing AVLLMs in real-world applications.

1. Introduction

Multi-agent Al systems powered by LLMs have excelled in
structured reasoning tasks, including mathematical problem-
solving [63, 74, 84, 86], coding assistance [95], and drug
discovery [64]. These systems often employ systematic
problem decomposition, as in chain-of-thought (CoT) rea-
soning [78]. More advanced approaches optimize reasoning
through outcome reward models [87, 93], which refine so-
lutions based on final results, and process reward models
[39, 47, 91], which assess and improve intermediate steps.
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the instrument
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originate from
is Japan.
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Video LLaMA 2
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Figure 1. Effect of injecting reasoning steps. AURELIA enhances
the ZS capabilities of audio-visual models (e.g., VideoLLaMA?2).
The conventional pipeline struggles in audio-visual comprehension,
leading to incorrect responses. In contrast, AURELIA systematically
breaks down the problem into intermediate reasoning steps, guiding
the model toward more accurate and interpretable answers.

Real-world reasoning extends beyond structured text-
based tasks, often requiring multimodal integration, espe-
cially in audio-visual (AV) environments. Identifying a mu-
sic performance’s origin, for instance, involves both visual
cues (e.g., attire, instruments) and audio cues (e.g., melody,
language). AV reasoning is crucial for capturing abstract
nuances that text or images alone cannot convey. Despite
advancements in multimodal LLMs [9, 40, 60, 65, 66, 68,
75, 94], most benchmarks remain image-text focused, over-
looking audio’s role and its interplay with visual signals.
AV reasoning presents unique challenges. Firstly, unlike
static images, AV data unfolds over time, requiring models
to track events, infer temporal relationships, and integrate
multi-frame context. Secondly, audio often lacks direct tex-
tual mappings, making structured interpretation harder. For
example, a roaring crowd may signal excitement at a concert



or unrest at a protest—context is essential for disambiguation.
Current models often struggle with AV reasoning, relying
on biases rather than deep cross-modal comprehension.
Moreover, current AVLLMs are susceptible to cultural,
contextual, and perceptual biases embedded in their training
data. As illustrated in Fig. 1, an AVLLM might incorrectly
associate a musical instrument with Japan due to the presence
of East Asian musicians and a Japanese track, even when the
actual answer is Italy. This highlights the models’ tendency
to depend on dominant visual or auditory cues rather than
true reasoning. While recent advances in test-time reasoning
33, 78, 97] have significantly improved text-based LLMs,
these techniques remain largely unexplored for AV models.
To address these shortcomings, we introduce AURELIA,
a test-time multi-agent reasoning distillation framework for
addressing challenges in audio-visual cross-modal compre-
hension by mitigating visual and auditory biases without
the need for additional training. Specifically, AURELIA
employs an interactive LLM-based multi-agent framework
that harnesses the reasoning capabilities of LLMs to iter-
atively generate high-quality reasoning data required for
multimodal audio-video understanding. By leveraging the
reasoning data, our approach distills structured reasoning
into AVLLMs, enhancing their capabilities in multimodal
audio-video commonsense reasoning, geographical under-
standing, music comprehension, and humor understanding.
To rigorously assess AVLLMs’ reasoning capabilities,
we further introduce AVReasonBench, a comprehensive
benchmark comprising 4500 audio-visual questions, each
paired with detailed step-by-step reasoning solutions gener-
ated through our pipeline. Our benchmark suite spans six
distinct tasks, including the novel AV-GeolQ task for ge-
ographical and cultural reasoning. Evaluating 18 existing
AVLLMs on AVReasonBench reveals significant deficien-
cies in their ability to process dynamic audio-video content.
However, incorporating AURELIA-generated reasoning solu-
tions significantly enhances AVLLMs’ performance, high-
lighting the impact of structured test-time reasoning. We
summarize our contributions below:

* We present AURELIA, a scalable and automated pipeline
for generating high-quality Audio-Visual reasoning data,
serving as both an evaluation resource and to the best of
our knowledge, the first training-free reasoning distillation
framework for Audio Visual LLMs.

* Leveraging our proposed reasoning data generation
pipeline, we introduce AVReasonBench, a comprehensive
AV benchmark featuring 4500 audio-visual samples with
detailed step-by-step reasoning solutions across six diverse
tasks, encompassing multimodal commonsense reasoning,
music comprehension, and humor detection. Addition-
ally, as a part of our benchmark, we introduce a novel
task AV-GeolQ for geographical understanding and curate
1,000 AV-Compositional and 100 AV-Meme understanding

samples through careful manual inspection.

* Leveraging our curated reasoning dataset, we demonstrate
up to 100% relative improvement in AVLLM performance
through zero-shot reasoning distillation, demonstrating the
effectiveness of our approach in enhancing the reasoning
capabilities of AV models.

2. Related Work

Reasoning in Multimodal LLMs. Researchers have been
optimizing CoT reasoning for MLLMs to tackle com-
plex tasks. Most studies focus on extracting graphical
[15, 22, 30, 71], logical [16, 32, 76, 81, 96], or textual
[3, 8, 83] information from images to solve mathemat-
ical problems. LLaVA-CoT [83] explores improved al-
gorithms for reasoning paths, while Virgo [17] examines
fine-tuning data and text-to-image reasoning transferabil-
ity,. MAmmoTH-VL [25] developed a large multimodal
instruction-tuning dataset for enhanced question-answering.
In contrast, our approach specifically targets general video
understanding, where various AV information aspects are
continuously referenced during reasoning.

Benchmarks for Audio-Visual LLMs. The rapid advance-
ment of MLLMs [28, 42, 55, 57, 58, 67, 98] has driven
the development of increasingly challenging video under-
standing benchmarks, shifting the focus from basic video
description and perceptual abilities [5, 7, 11, 34, 49, 52, 59]
to reasoning capabilities [ 13, 18, 20, 37, 38, 43]. Specifically,
NEXT-QA [80] emphasizes causal reasoning while Video-
MME [20] features questions that necessitate integrating
both audio and visual cues for effective reasoning. Our pro-
posed AVReasonBench presents more challenging questions
that demand deeper reasoning, extensive world knowledge,
and a more seamless integration of AV information.
Reasoning Benchmarks While text-based benchmarks like
GSMS8K [14] and MMLU [31] assess logical and common-
sense reasoning, multimodal benchmarks are still developing.
Recent efforts such as MathVista [46] and VideoQA datasets
[19, 36, 77, 82] introduce vision-based tasks, but focus more
on perception than deeper reasoning. Existing benchmarks
also lack comprehensive challenges requiring integration of
multiple modalities, such as audio, video, and world knowl-
edge. Some works propose assessing reasoning quality in
LLMs, like logical consistency checks [23, 45, 70] and ad-
versarial reasoning tasks [13, 50], but mainly measure static
performance rather than adaptive reasoning. Although multi-
agent systems [20, 29, 51, 89] and collaborative reasoning
frameworks [4, 62, 72] show potential, their evaluations re-
main fragmented across different domains.

Our work addresses these gaps by introducing a compre-
hensive benchmark to evaluate multimodal reasoning skills
in LLMs, integrating text, vision, audio, and external knowl-
edge. Unlike purely visual tasks, audio-visual reasoning
poses unique challenges such as temporal synchronization
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The video features a live musical performance with multiple
instruments being played. The drum set, which is the loudest
instrument in the scene, is centrally positioned. To its
right, a violinist is actively playing. The sound of the drum
set dominates the audio, while the violin adds melodic
accompaniment. The video visually focuses on the musicians and
their instruments, capturing their performance in detail. No
explicit mention of food should be present in the video.
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food in Italy which

The most popular
food of the
country in eoe

is the country in
question.

Summarizer

question is Pasta.

Figure 2. Overview of AURELIA: Our proposed AURELIA consists of a multi-agent interactive framework that functions in sync and
generates reasoning steps that are then distilled inside the target model. The input set consisting of the audio, video, and question is first fed
into the reasoning generator agent, which generates an initial set of reasoning steps that provide a structured pathway to reach the final
answer. These reasoning steps are synthesized into a detailed caption by a Summarizer agent. The Evaluator agent then outputs a score that
measures the relevance of the caption with the input audio and video. A feedback mechanism then provides supervision to the Reasoning
generator based on the evaluation score, which adjusts its output to maximize the evaluation score. This actor-critique framework continues
until the evaluation score exceeds a specific threshold or the number of iterations are exhausted.

of cues, ambiguity in auditory semantics, and the need for
deeper cross-modal understanding.

3. Method

In this section, we will first provide an overview of audio-
video multi-modal agents in Sec. 3.1, followed by a detailed
description and working of AURELIA in Sec. 3.2.

3.1 Audio-Video Multi-Agent System

Our interactive audio-video multi-agent system is structured
as a tuple (R, S, £, F), where multiple LLM-based agents
collaboratively operate on the dataset comprising of video,
audio and textual query, represented as (V, A4, Q), to en-
hance the performance of the target model M. As shown in
Fig. 2, the reasoning generator agent R processes the input
video v € V and audio a € A and produces a sequence of
reasoning steps r necessary for answering the given question
q € Q. Leveraging this information, the summarizer agent
S extracts key cues and synthesizes them into a concise cap-
tion s that encapsulates the core content of both the video
v € V and the audio ¢ € A. The relevance of the reason-
ing steps generated by R is assessed by the quality of the
caption produced by S. This assessment is conducted by the
evaluation agent £, a multi-modal model that takes {v, a, c}
as input and assigns a score quantifying the correctness and
coherence of the reasoning steps. Based on this evaluation,
a feedback mechanism (F) iteratively refines the reasoning
process by guiding R toward more effective reasoning paths.
This interaction functions as an actor-critic framework, con-
tinuously optimizing until a satisfactory evaluation score is
achieved. Ultimately, the refined reasoning steps, along with
the original inputs (v, a, ¢, ), are fed into the target model

M. This process enhances the model’s internal reasoning
mechanism, leading to improved overall performance. We
further present AURELIA mathematically in Algorithm 1.
3.2 AURELIA

Our proposed AURELIA enhances the performance of
AVLLMS through a combination of multi-modal agents that
interact with each other and generate a set of reasoning steps
which distills the knowledge into the model in a training-free
manner. Below, we describe the different components of
AURELIA and their working in detail.

Reasoning Generator. The first component of AURELIA
is a multi-modal reasoning generation agent, denoted as R.
Since our proposed method operates in a zero-shot setting,
let (z,y) € D' represent samples from the test set, where
each input z in D*** is a tuple (v, a, ¢), comprising a video
v, an audio a, and a question g. The agent R processes this
input tuple and produces three key outputs: a sequence of
reasoning steps, a justification for these steps, and the final
answer to the question. Formally,

r= {7’1,7“2,7”3} = R(vuan)a (D

where r; represents the reasoning steps, ro provides their
justification, r3 is the final answer to the question q.

Summarizer. The summarizer agent, denoted as S, pro-
cesses the reasoning information r generated in the previous
stage along with the question ¢ and synthesizes them into
a caption ¢ such that ¢ = S(r, ¢). This caption provides a
comprehensive summary of the video and its corresponding
audio, encapsulating key details in a concise manner. The
accuracy and relevance of the generated caption ¢ depend on
both the reliability of reasoning steps and the final answer
produced by the reasoning generator agent. To ensure con-
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sistency and correctness, we introduce an evaluation agent £
that assesses caption in relation to given audio and video.
Evaluator. The reliability of the reasoning steps and the gen-
erated answer directly impact the summarizer agent, which
synthesizes the content into a detailed caption. Consequently,
the quality of the caption is inherently tied to the correctness
of the reasoning process. We hypothesize that an accurate
caption aligns closely with well-formed reasoning steps, ul-
timately leading to a correct final answer.

To assess this alignment, we introduce a multi-modal
evaluation agent &£ that serves as a judge. This agent receives
the video v, audio a, and the corresponding caption c as input
and assigns an evaluation score e based on their coherence.
The score ranges from 1 to 10, where 1 indicates minimal
alignment between the caption and the input data, while 10
signifies a perfect match.

e=E&E(v,a,c), 2)

where e € [1,10] quantifies the relevance of the caption to
the input signals and, by extension, evaluates the effective-
ness of the reasoning steps in deriving the final answer.

Feedback Mechanism. Based on the evaluation score ob-
tained in the previous step, we follow an Actor-Critic frame-
work that facilitates iterative agent improvement through a
feedback loop. In this case, the Actor is the Reasoning gen-
erating agent R which is evaluated by another agent £ acting
as a judge and based on the evaluation score, the Critic agent
provides feedback to guide the Actor Agent in regenerating
improved solutions. Let F be the feedback mechanism fa-
cilitating the interaction between the Actor and Critic, then
the goal of the feedback mechanism is to maximize the eval-
uation score e such that e is above a certain threshold 7.

r* —argmax e®, st e >r t<T. 3)

NO)

If e¥) > B at any iteration ¢, the process terminates and
returns the corresponding reasoning steps r*. Otherwise, the
system continues iterating, refining () through F until T
iterations are exhausted.

Reasoning Distillation. The optimal reasoning steps 7*,
obtained through the multi-agent interaction process, serve
as a structured sequence of logical inferences and contextual
cues that can enhance the target model (M) response. These
steps encapsulate the essential knowledge relationships and
transformations necessary to bridge the input modalities to
derive an accurate and well-grounded solution. In other
words, the knowledge inside the reasoning information is
distilled in a training-free manner inside the target model M
which now receives a refined and enriched input containing
reasoning steps, in addition to the raw audio, video and the
question, that highlight key features, intermediate conclu-
sions, and decision pathways. By conditioning the target
model M on the distilled reasoning steps r*, we facilitate
a more structured decision-making process, reducing am-
biguity and improving model interpretability. The optimal

solution s* is formulates as,

s =M(,a,q,r") “4)

V" AURELIA is the first multi-agent framework capable
of reasoning distillation in Audio Visual LLMs through an
iterative actor-critique mechanism.

V" AURELIA systematically mitigates visual and auditory
biases by enforcing a structured reasoning process, leading
to more objective and reliable cross-modal comprehension.
V" AURELIA can scale and generalize to diverse audio-
visual reasoning tasks due to zero-shot nature, where fine-
tuning methods often fail due to training biases.

4. AVReasonBench: Audio-Visual Reasoning
Benchmark

4.1 Why Designing AV Reasoning Tasks are Difficult?
Limitations in Forming Question-Answer Pairs for AV
Setup. In vision-language tasks, the formation of question-
answer pairs is relatively simple since objects have visible
attributes (e.g., "What color is the book?"). However, in
audio-visual reasoning, many objects do not make an in-
herent sound, making it harder to design meaningful QA
pairs. For instance, "What does the book sound like?" lacks
relevance unless an action (e.g., flipping pages) is involved.
This necessitates carefully crafting interactions where both
audio and visual cues contribute meaningfully.
Ambiguity in Audio-Visual Associations. Interpreting emo-
tional tone in audio-visual tasks is challenging because the
same visual cue, such as laughter, can convey different mean-
ings depending on the accompanying audio. Cheerful mu-
sic may indicate joy, while eerie background sounds might
suggest nervousness or fear. Unlike vision-language tasks,
where textual cues explicitly define emotions, AV models
must infer meaning from the interplay of sound and visuals,
requiring deeper multi-modal understanding. To encompass
these scenarios we incorporate AV compositional understand-
ing, meme understanding and dance matching tasks.
Cultural and Contextual Understanding. Object recog-
nition and language understanding can often be generalised
across cultures. If an image contains sushi, the model can
easily label it as "sushi" using object detection and language
mapping. However, AV tasks require deeper cultural and
contextual awareness. For example, in music-dance match-
ing, Flamenco music should pair with Flamenco dance rather
than Hip-Hop. Similarly, laughter in a scene could indicate
humour, but it could also indicate nervousness, depending on
the visual cues. To address this gap we introduce AV-GeolQ.
Audio-visual tasks pose additional challenges compared
to only language or vision-language tasks due to the need for
temporal synchronization [12], ambiguity resolution, noise
handling, and cultural grounding. These challenges demand
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Algorithm 1 AURELIA

1: Input: Data: D?¢*!, Reasoning generator R, Summa-
rizer S, Evaluator &, Iterations T, Threshold 7
Output: Optimized Reasoning Steps r*

Sample data: (Audio a, Video v, Question ¢) C Dtest
Set iteration counter, t = 1

whilee < 7and ¢t < T do

Generate Reasoning Steps, r®) = R(v, a, q)

AT R

7: Generate Caption, c®) = S(r(®), q)
8: Evaluate Generated Caption, e®) = & (v,a, C(t))

9; Feedback (Repeat Steps 6-8), F (v, a, q, e®)
10: Updatet <t +1

11: | Select Optimal Reasoning, r* = arg max, . e(*)

12: return r*

more sophisticated models that can process and align multi-
modal inputs dynamically over time, making AV reasoning
a significantly harder problem than L/VL reasoning.

4.2 Task Overview

Audio-Visual Question Answering. Audio-visual question
answering (AVQA) focuses on responding to questions that
require both auditory and visual understanding. To construct
our dataset, we gather question-answer pairs from AVSD
[1] and MusicAVQA [35] enhancing them with detailed
reasoning steps. We carefully curate samples which require
strong audio-visual comprehension in terms of their interplay,
association, dependency, etc.

Audio-Visual Captioning. This task involves generating
detailed textual descriptions based on audio-visual inputs.
Unlike image- or audio-only captioning methods, it demands
robust multimodal understanding and advanced reasoning
capabilities. We obtain samples from VALOR [6] for this
task and augment them with reasoning annotations.

Audio-Visual Compositional Attribute Understanding.
Inspired by [13], in this task we ensure each AV pair contains
two separate events which are associated with two different
attributes. For example, ‘a cow is mooing’ and a ‘sheep is
bleating’. Here the answer choices contain the same words
but in a different sequence (‘cow is bleating’ and ‘sheep is
mooing’). An AVLLM must have a strong AV and linguistic
understanding to comprehend the constituent modalities and
semantically align them with the correct attributes.

AV-GeolQ. We introduce AV-GeolQ, a novel audio-visual
reasoning task that integrates commonsense understand-
ing with geographical and country-specific knowledge.
This task challenges models to process and reason over
multimodal inputs, requiring the alignment of audio
cues, visual elements, and world knowledge. Unlike
standard audio-visual question-answering tasks, AV-GeolQ

extends beyond perceptual understanding by incorporating
reasoning over cultural and geographic attributes. For
example, a question like "What is the most famous drink
of the country where the instrument to the left of the
louder sounding instrument originates?" necessitates
multiple reasoning steps: identifying the loudest instrument,
determining the relative position of another instrument,
recognizing its country of origin, and retrieving cultural
knowledge about that country’s famous drinks—leading
to the answer Sangria. Such questions require deep
multimodal comprehension, contextual association, and
factual world knowledge. AV-GeolQ (Fig. 1) serves as
a benchmark to evaluate the reasoning capabilities of
AVLLMs in handling complex, real-world scenarios that go
beyond direct perception.

AV Meme Understanding. Inspired by AV-Odyssey Bench
[24], we include AV-Meme a task that challenges models to
interpret humour, sarcasm, and the context in multimodal
memes by analyzing visual elements, audio cues, and text.
Unlike traditional meme analysis, AV-Meme requires grasp-
ing subtle relationships between sound effects, expressions,
and captions. For example, dramatic music over an ordinary
event or mismatched audio-visual pairings creates irony, de-
manding nuanced cultural awareness. This task serves as a
benchmark for evaluating AVLLMs in recognizing implicit
meanings and internet humour.

Dance and Music Matching. We also include Dance-Music
Matching (DM-Match) [24], a task that evaluates a model’s
ability to align dance movements with appropriate musical
styles by analyzing audio-visual correlations. Unlike stan-
dard motion or music classification, DM-Match requires
understanding rhythm, tempo, and movement patterns to
determine whether a given dance sequence matches the ac-
companying music. For instance, a ballet performance set to
fast-paced electronic music may indicate a mismatch, while
a tango paired with traditional tango music would be cor-
rect. This task serves as a benchmark for assessing AVLLMs
in capturing temporal synchronization, genre compatibility,
and expressive coherence between dance and music.

4.3 AVReasonBench Size

We carefully curate 1000 samples each from Music-AVQA,
AVSD, and VALOR which are suitable for AV reasoning. For
the AV compositional understanding task, we collect 1000
samples from the web through careful manual inspection.
For AV-GeolQ we again tailor-make 200 samples which
require strong AV reasoning capabilities. We augment more
videos to the original AV-meme set to make a total of 100 test
samples while we adapt 200 samples of DM-Match to make
the total size of our reasoning benchmark, AVReasonBench
to 4500. We add further details in the supplementary.

4.4 Reasoning Data Generation
For each test sample comprising an audio, a video, and a
question, we supplement the input with reasoning informa-
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Models

AV-QA

AVSD { AV-Captioning ‘ AV-Compositional ‘

AV-GeolQ

AV-Meme

DM-Match

Music-AVQA |
Closed-Source Models
Gemini 1.5 Pro 70.6 /68.9 7477725 8497827 38.97/36.8 71.2768.0 52.0749.0 4347415
Reka Core ‘ 67.9/64.3 ‘ 74.5169.5 83.2/80.4 38.6/35.3 ‘ 45.7142.5 24.0/19.0 ‘ 35.8/32.5
Open-Source Models in ZS
PandaGPT (I13B) 35.8/33.7 29.1726.1 67.8764.7 28.8724.1 1727125 25.0721.0 30.2727.0
Macaw-LLM (7B) 347/31.8 38.4/34.3 67.7/65.9 26.1/24.3 17.2/14.0 18.0/14.0 24.5720.0
VideoLLaMA (7B) 39.1/36.6 40.0/36.7 68.4/66.2 28.8/25.8 19.3/16.5 18.0/16.0 26.6/23.0
ImageBind-LLM 44.2/43.9 42.7/39.2 69.0/66.9 28.8/25.4 18.0/13.0 17.7/15.0 26.2/22.5
X-InstructBLIP (13B) 47.8144.5 43.9/40.1 69.5/66.1 27.5/259 27.6/14.5 18.7/15.0 27.3/24.5
AV-LLM (13B) 48.2/45.2 55.4/52.6 70.1/67.6 29.6/26.1 18.0/14.5 24.4/20.0 29.4/27.0
OneLLM (7B) 49.9/47.6 52.3/49.8 71.6/68.1 29.7126.3 209/17.0 24.5/18.0 28.81/26.5
AVicuna (7B) 51.6/49.6 56.2/53.1 71.2/67.9 29.6/26.6 19.7/16.5 28.4/23.0 29.6/27.0
CREMA (4B) 56.8/52.6 62.3/58.6 73.8/68.4 31.6/27.0 23.8/19.0 29.0/26.0 31.5/28.5
VideoLLaMA2 (7B) - - 70.4/68.3 29.7126.8 25.7/22.0 27.5/23.0 28417255
AnyGPT (7B) 53.7/50.7 59.2/56.9 72.5/68.1 28.8/26.2 25.7/122.5 24.0/19.0 28.9/255
NEXxT-GPT (7B) 53.5/50.9 58.4/56.3 68.7/67.9 28.0/26.4 23.8/22.0 19.5/16.0 32.3/28.0
Unified-I0-2 L (6.8B) 58.3/55.1 60.0/57.9 73.8/70.1 31.8/272 25.6/21.5 26.5/22.0 29.3/217.5
Unified-I0-2 XL 61.3/57.2 59.71758.6 73.7/171.8 30.0/28.5 24.7122.5 29.0/26.0 29.6/27.0
Bay-CAT (7B) 55.6/53.8 58.3/56.5 71.91769.5 31.9/282 24417205 22.0/18.0 29.8/217.5
Video-SALMONN (7B) 56.8/54.9 58.7/57.2 71.1/70.2 29.8/217.5 24.7/22.0 21.0/17.0 27.5/26.5
VITA (7B) 59.0/58.6 61.2/60.1 73.8/72.9 30.1/29.2 26.7/25.5 44.0/41.0 29.2/27.5
Open-Source Models with AURELIA
PandaGPT (13B) 41‘94-1-1'33”,’1 32.74-25.38"/: 72‘94-]2'()7‘71 2846”8'67% 25.0+|()()"/é 25.04-1‘)'()4(,} 31'0+|4.8|C§
Macaw-LLM (7B) 41.63081% 3g.1+11.07% 73.5+11.53% 09,3+20.57% 05.5+82.14% 04.0+7142% 08 5+42.5%
VideoLLaMA (7B) 45.8+2513% 41.5+13:07% 74, +12.08% 09, G+1472% 8.5+72.72% 8. (+75:0% 29, (+26.08%
ImageBind_LLM 49.7+|3.2|’/? 44.2+|2.75‘,’r 72.8+8.Xl‘/r 30.1+|K.51)‘/E 28.0+|1)1)’/F 23.045333% 31.0+37.771/2
X-InstructBLIP (13B) 52‘3“7'52‘,4 46.9+|(7.9)‘/: 72.6#) 83% 29.8“5.()5‘,4 29.0+|()()‘,4 27.0+X().l)‘w' 30.0+22.45‘~’
AV-LLM (13B) 50 7+1659% 57.+1007% 73 4*8.57% 31.1+19:15% 8 5+8387% 29, (H45:0% 34.072592%
OneLLM (7B) 54.1+13.65% 55.3+11.04% 73.G+851% 30.7+16.73% 9. (#70:58% 29.(*61-11% 33.5+2641%
AViCuna (7B) 55 3+| 1.49% 57 8+8.?\'5‘/’r 73 1+7.65% 30 4+|4.2?\"/'r 29 5+79.(i9‘/r 34 0+47.8(|‘/r 34 5+27.7?<"}
CREMA (4B) 59:8+|3.(78‘,’r 67.’2”4 67% 742+8 47% 3 1 :9+IX. 14% 325+7 1.05% 4O:O+53.?§4‘/(’ 34:0+|9.29‘?}
VldeOLLaMA2 (7B) . _ 74.74-‘).37",’: 3 1 46+ 17.91% 38.0-*72'72(/; 35-04-4().()5«’ 34'54-35.1‘)"/4
AnyGPT (7B) 56.2+1084% 62.5+9-84% 73.3+7.63% 31.4+19-84% 35.5+57.77% 33.(+73.68% 33.0729:41%
NEXT—GPT (7B) 57.8+|3 55% 60'8+7.‘)‘)’/? 73.5+8.25% 3 1 .8+ZU 45% 36'0+(’)3.(73’,’r 32.0+]U()’/é 33.5“‘).()4‘/&
Uniﬁed—IO—2 L (68B) 61.9+|2.34’/? 62.0+7.1)8‘,’r 74.6+6.41‘/r 32.4+|‘).| 1% 36.5+6‘).7h‘r 35.0+§L).(|‘)‘/'r 33.5+2|.3|[/(
Uniﬁed—IO—Z XL (68B) 62.3%{ 91% 62.8+7'|6(i 75.6+5 29% 33.6+|7.8L)‘,§ 38.5+71'| 1% 40.()*33'84(/; 34.0+25.92‘~’
Bay-CAT (7B) 58.5+8.73% 61.1+814% 75.0*701% 30 7+1595% 34,(*6585% 35,(9440% 30 5+18.18%
Video-SALMONN (7B) 50.g+892% 61.7+7-86% 75.+712% 30, 5+18.18% 37.5+7045% 30.(+88:23% 33.0+24-52%
VITA (7B) 62.66:52% 66.5+10:64% 78.8+8.09% 33.8+1575% 39 (5294% 50.0721-95% 35.0%2727%

Table 1. Performance comparison of various models across multiple tasks in AVReasonBench. The lower section highlights the
performance improvement using AURELIA. The numbers in teal denotes relative gains over ZS results. Video-LLamA?2 zero-shot is not
reported because the publicly available model is already fine-tuned on the dataset. For ZS evaluation A/B represents best/mean of 3 runs

evaluation. AV-Captioning values denote CIDEr scores.

Table 2. Evaluation results

Model AV-Captioning
BLEU@4t METEORT ROUGET of five models on the AV-
Zero-shot Captioning. The top section
AVLLM 102 18.1 34.6 o .
OneLLM 13 197 31 indicates ZS inference results
AVicuna 106 19.1 354 of models. The bottom section
CREMA 11.5 20.1 36.9 . . f
VITA 129 g ws indicates results after reason-
Zero-shot with AURELIA ll'lg distillation with AURELIA.
AVLLM 128 29 47 (Clearly, the quality of the cap-
OneLLM 14.1 243 42.1 . . .
e o B 45 tions improves with our reason-
CREMA 13.8 249 433 ing pipeline.
VITA 14.5 26.0 46.4

tion at inference time before feeding it into the target model
through a structured multi-agent pipeline. This ensures that
model decisions are grounded in logical deductions rather
than implicit associations, enhancing both accuracy and in-
terpretability. For instance, in Fig. 2, the video showcases
people playing musical instruments, accompanied by audio,
and the question to identify the most popular food of the
country through a complex audio-visual referral. To answer

Category
Subset  Modality ~ Knowledge  Film & Sports Artistic Life  Multilingual ~ Overall
Television Competition  Perf Record
Short 78 814 87.5 78.7 86.7 856 867 84.4
SO AURELIA - 85.6 91.3 81.2 88.0 889 894 87.4
Medium zs 80.2 83.9 72.1 843 768 1000 82.8
WML AURELIA 833 86.5 759 87.1 782 1000 85.16
Lone A 81.1 732 726 63.3 667 833 733
O"8 4 AURELIA 855 77.4 75.7 67.1 699 863 76.98
Overall zs 80.9 824 746 78.8 780 897 80.7
+AURELIA 834 85.3 77.8 81.0 823 926 83.73

Table 3. Performance of VITA across Video-MME. Table shows
the performance of VITA on 6 major categories of Video-MME.
The evaluation is done on audio-visual inputs.

this, the model must first identify the loudest instrument via
audio analysis followed by determining spatial relationships
to locate the musical instrument. Once the instrument is
located, the model must infer the instrument’s origin, and
finally retrieve the corresponding cuisine. This structured
reasoning provided by our AURELIA enforces logical pro-
gression, reducing errors and hallucinations while enhancing
interpretability. We defer more details to supplementary.
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Reason Gen. Summ. Eval. | AV-GeolQ AV-Comp DM-Match
Gemini Gemini  Gemini 36.5 30.2 33.0
Gemini GPT-40 Gemini 38.0 31.6 34.5

Table 4. Effect of using a combination of agents. Using a
combination of different closed-source LLLMs as agents proves
beneficial compared to using a single type of LLM.

Iteration (7)) AV-Cap AV-Meme AV-GeolQ AV-Comp DM-Match Time

1 68.8 25.0 27.5 273 26.5 16.28
3 73.2 30.0 34.0 32.0 31.5 45.66
5 74.7 35.0 38.0 31.6 34.5 74.01

Table 5. Effect of number of iterations. The results improve as
the number of feedback iterations increase. Time: time required to
generate reasoning steps per sample

Threshold () AV-Cap AV-Meme AV-GeolQ AV-Comp DM-Match Time

4 69.6 26.5 28.5 27.9 28.5 23.90
6 722 30.0 325 29.7 32.0 47.15
8 74.7 35.0 38.0 31.6 345 61.28
10 74.8 35.0 38.0 31.4 34.5 65.81

Table 6. Effect of Threshold Value. A larger threshold for the
evaluation score shows positive trend on the performance.

5. Experiments and Results

5.1 Baselines
We extensively evaluate VideoLLaMA [92], VideoL-

LaMA2 [10], Reka Core [69], Gemini 1.5 Pro [56],
Unified-10-2 [44], X-InstructBLIP [53], PandaGPT [58],
OneLLM [27], AnyGPT [90], NExT-GPT [79], VITA [21],
VideoSALMONN [61], ImagebindLLM [28], MacawLLLM
[48], CAT [85], AVicuna [67], CREMA [88]. AVLLM [57]
on AVReasonBench.

5.2 Metrics

For AV-QA, AV-Comp, AV-GeolQ, AV-Meme, and DM-
Match, we report the Top-1 accuracy as the metric by ex-
tracting the model outputs using a choice extraction strategy
outlined in the supplementary. We report the performance of
AV captioning tasks on several established metrics, includ-
ing BLUE@4 [54], METEOR [2], ROGUE [41], and CIDEr
[73]. We employ GPT-based evaluation for AV-GeolQ and
AVSD which has open-ended answers.

5.3 Main Results

We extensively compare the performance of the baseline
AVLLMs in Tab. 1 across all 6 AV tasks of our AVRea-
sonBench benchmark. The experimental results reveal that
closed-source models consistently outperform open-source
ones in every reasoning task. Specifically, among the two
closed-source models, we observe that Gemini 1.5 Pro sur-
passes Reka Core, likely due to its superior audio compre-
hension capabilities. This suggests that our AVReasonBench
benchmark presents challenging scenarios that require strong
audio-visual joint understanding. By leveraging the zero-
shot reasoning distillation through AURELIA, we observe
consistent boost in the performance of all the AVLLMs as
seen from the experimental results with relative improve-
ments up to 100% for X-InstructBLIP. Furthermore, for
more challenging tasks such as AV-GeolQ, AV-Meme, and
DM-Match, we observe substantial improvements highlight-

ing the importance of AURELIA’s step by step reasoning
distillation in deriving answers to complex AV queries.

We further note that recent approaches such as Unified-
I0-2 XL and VITA demonstrate improved reasoning abilities
over the other methods due to their stronger LLM backbone,
which is capable of capturing finer multimodal informa-
tion. Models with more robust audio encoders, such as
AVicuna and Video-SALMONN, outperform alternatives
like PandaGPT and Macaw-LLM. This highlights the criti-
cal role of the audio modality in leveraging the strengths of
AVReasonBench.

Tab. 2 presents the AV-captioning results for five
AVLLMs across three additional captioning metrics. As
shown in the table, all models exhibit consistent improve-
ments, highlighting the effectiveness of our reasoning-
enhanced data in the dense captioning task.

Results on other benchmarks. Tab. 3 results demonstrate
that our reasoning pipeline is generalizable across other
benchmarks. We select VideoMME [20] as an alternative
benchmark due to its tasks, which demand advanced rea-
soning abilities. Notably, the greatest improvements are ob-
served in the long video Knowledge assessment categories,
further emphasizing the generalizability of AURELIA.

5.4 Ablation Study

Combination of Agents. The multi-agent framework of
AURELIA offers the flexibility to integrate various existing
multi-modal LLMs as specialized agents. To assess the
impact of different LLMs on reasoning generation, summa-
rization, and evaluation, we conduct an analysis on three
datasets across target model VideoLLaMA-2 ( Tab. 4). Our
findings indicate that leveraging a combination of models,
specifically GPT-40 alongside Gemini yields superior per-
formance compared to employing Gemini alone for all three
agents roles as is evident from the higher accuracy scores in
case of combination of agents. This suggests that while Gem-
ini excels in processing multi-modal inputs such as video
and audio, GPT-40 demonstrates stronger capabilities in tex-
tual comprehension and reasoning. The synergy between
these models enhances the overall effectiveness of AURELIA,
underscoring the advantages of a diversified agent selection.

Number of Generation Attempts. Our analysis reveals that
the choice of T significantly influences overall performance.
To evaluate this impact, we conduct an ablation study on
five datasets across VideoLLaMA-2 model, as presented
in Tab. 5. With just a single iteration, the obtained scores
are notably low, whereas increasing the iterations to five
yields substantial improvements across most datasets. This
suggests that additional iterations allow AURELIA to progres-
sively enhance its reasoning quality. However, considering
computational efficiency and latency constraints, we cap the
number of iterations at five for the final evaluation. AV-Cap
values are CIDEr scores.
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2 How many instruments are sounding in the video? GT Answer: Three

Zero-shot Response Zero-shot with AURELIA

Step 1. Identify all the visible instruments being
el played in the video.
Step 2. Determine if any instruments are being

[ Identifying the instruments in the
video
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s [video1]? Audio 1: Blues music, Audio 2: Folk music, Audio 3: Jazz music, Audio 4: Hip-hop music -

Zero-shot Response Zero-shot with AURELIA
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speed.
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)
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j

| music. Yes, steps naturally align with the rhythm of the
\audlo Audio 4: Hip-hop music

< Hip Hop Music
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[ & (Whatis the sequence of events n the video? A, A drons whiring followsd by # rashing sound GT Answer: A drone whirring Y4
g B. A drone crashing followed by a whirring sound C. Condenser followed by Louver followed by a crashing sound
Zero-shot Response H Zero-shot with AURELIA

@ Identify the object flying in the
<o video

Step 1. Identify the being controlled in the video.
B8 | Step 2. Describe the initial state or position of this object.
| Step 3. Note down all sounds from the video.

Step 3. Describe the final state or position of this object

and any sound it makes.

Adrone is seen flying in the

]
!
video ]

What happens after the drone
crashes?

{The object being controlled is a drone. The drone is initially flying. i
{There is a whirring sound coming from the video. In the end, the |
{drone crashes, making a crashing sound. Sequence of events in the |

B. A drone crashing followed o
by a whirring sound

]
& Ovone whirieg sound 3 {video is a drone whirring followed by a crashing sound.
j

N
-
=~ | Which continent is country located from which the maker of the sounding object is? GT Answer: Asia

Zero-shot Response Zero-shot with AURELIA

Step 1. Identify the object making the sound.
Step 2. Identify the brand name of the object.
Step 3. Determine the country of origin for that
brand.
Step 4. Identify the continent where that

| country is located.
L

Identifying the object making
sound

| The objecl making the soundisa |
{ clock ]

[ Identifying where the object was |
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| The object making the sound is an alarm clock. |
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Figure 3. Qualitative Visualizations. Figure shows the qualitative visualizations of effect of AURELIA’s reasoning distillation on the final

answer across four tasks. Compared to vanilla zero-shot inference, AUR
to the improved answers.

w... :m.mmm.. ding nstrument?

wen@  ((GT Answer: Australia P

Step 1. There are two animals in the video Step 1. The lo: sstrument here is the violin
Step 2. The animal not making the sound is the dog uments to the right of the violin
Step 3. The dog appears to be Siberian Husky Step 3. The instrument with second highest bass is piano

wen @  (GT Answer: Spain )

The country associated with this dog is Russia. % | The origin of piano is Italy. %

Figure 4. Examples of Failure Cases. (Left) AURELIA fails to
comprehend audio, focus on single modality i.e. video, leading to
incorrect reasoning chain. (Right) AURELIA fails to comprehend
the dynamics of the video.

Threshold Value. Evaluation score (7) quantifies the consis-
tency of the reasoning steps with multimodal input. To empir-
ically analyze the impact of the threshold (7), we present re-
sults in Tab. 6 on five datasets across VideoLLaMA-2 model.
As expected, a higher threshold value indicates stronger
alignment, leading to superior model performance. How-
ever, we observe that a threshold of 8 yields performance
comparable to the highest value, suggesting that setting the
threshold at 8 or above ensures optimal reasoning quality.
The increasing value of time required to generate the sam-
ples indicates to obtain improved reasoning steps we need
more iterations. AV-Cap report CIDEr values.

5.5 Qualitative Results

To visualize the effect of AURELIA’s reasoning distillation,
refer to Fig. 3. We compare the performance of various
AVLLMs on 4 tasks. We notice that in the absence of rea-
soning distillation, the target model faces difficulties in fig-
uring out answers to the given queries. For example, in the
AV-Captioning task, due to the step-wise guidance to the
AVLLM, the generated caption is dense and rick of contex-
tual information compared to ZS response. Similarly, for AV-
GeolQ, powered by the sequence of prompts, the AVLLM is

2290

ELIA augments the target model with reasoning capabilities, leading

able to correctly respond to the query whereas the response
in ZS is wrong. Empirical studies reveal, with the addition
of reasoning information, the decision-making capability of
model improves by structuring its response in accordance
with the reasoning steps, thereby leading to correct answers.
We add more qualitative results in the supplementary.

5.6 Failure Cases

Fig. 4 illustrates a few failure cases in our reasoning genera-
tion pipeline. In the first example, an error in interpreting the
animal sounds leads to the assumption that the dog is silent.
This assumption propagates through the reasoning steps, pro-
ducing an incorrect response. In the second example, the
pipeline fails to spot the instrument with the second highest
bass, resulting in an erroneous conclusion. We believe that
fine-grained AV comprehension and refining understanding
of language instructions can help mitigate these issues.

6. Conclusion

In this work, we introduce AURELIA, a novel test-time
framework designed to enhance the reasoning capabilities of
AVLLMs through interactive multi-agent system which dis-
tills structured, step-by-step reasoning into AVLLMs without
any training. To further advance the AVLLMs’ reasoning
abilities, we also present AVReasonBench, a comprehen-
sive benchmark consisting of six diverse tasks including the
novel AV-GeolQ for geo-cultural knowledge reasoning. The
samples in each task are paired with step-by-step reasoning
data, generated using AURELIA, which facilitates both the
evaluation and enhancement of existing AVLLMs. AURE-
LIA serves as an essential step toward more robust, context-
aware, and reasoning-driven multimodal Al, enabling future
advancements in artificial audio-visual intelligence.
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