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Abstract

The Reflow operation aims to straighten the inference tra-
Jjectories of the rectified flow during training by constructing
deterministic couplings between noises and images, thereby
improving the quality of generated images in single-step or
few-step generation. However, we identify critical limita-
tions in Reflow, particularly its inability to rapidly generate
high-quality images due to a distribution gap between im-
ages in its constructed deterministic couplings and real im-
ages. To address these shortcomings, we propose a novel al-
ternative called Straighten Viscous Rectified Flow via Noise
Optimization (VRFNO), which is a joint training frame-
work integrating an encoder and a neural velocity field.
VRFNO introduces two key innovations: (1) a historical
velocity term that enhances trajectory distinction, enabling
the model to more accurately predict the velocity of the cur-
rent trajectory, and (2) the noise optimization through repa-
rameterization to form optimized couplings with real im-
ages which are then utilized for training, effectively mitigat-
ing errors caused by Reflow’s limitations. Comprehensive
experiments on synthetic data and real datasets with vary-
ing resolutions show that VRFNO significantly mitigates
the limitations of Reflow, achieving state-of-the-art perfor-
mance in both one-step and few-step generation tasks.

1. Introduction

Diffusion models (DMs) [9, 23, 25] have attracted sig-
nificant attention due to their remarkable generative capa-
bilities and stable optimization process. DMs have out-
performed traditional models such as generative adversar-
ial networks (GANSs) [1, 4] and Variational autoencoders
(VAEs) [30] in various generation tasks. DMs work by
designing a forward noise-adding scheme, which progres-
sively transforms the target distribution into the initial dis-
tribution (usually a Gaussian distribution), thereby con-
structing a Probability Flow (PF) from complex to simple
distributions. DMs learn the inverse process of PF, and
then they can sample Gaussian noises and generate sam-
ples that approximate the target distribution through multi-

ple inference steps. Currently, various forward noise-adding
schemes have been developed for DMs. Among them, the
most straightforward approach is the Rectified Flow (RF)
[14, 15, 22]. The core idea of RF is to add noise to the data
in a linear manner, constructing a deterministic PF from the
Gaussian distribution to the target distribution. The model
only needs to learn the velocity field of the straight-line in-
terpolation trajectories between the noises and the samples,
Once trained, the model can efficiently generate samples
that approximate the target distribution.

Generating samples with DMs typically requires multi-
ple inference steps that consume substantial computational
resources and time. RF constructs straight-line interpolation
trajectories between noises and samples as the reference,
and it theoretically learns a straight flow from the Gaussian
distribution to the target distribution. The straight flow im-
plies that RF learns a constant velocity field, which enables
few-step or even single-step sampling in an ideal scenario.
However, during actual training, the RF struggles to learn
a constant velocity field, and the resulting PF trajectories
remain curved. Therefore, RF still relies on multiple steps
to generate the desired images. RF attributes the curvature
to the crossing of reference trajectories during training and
employs a Reflow operation to mitigate this issue.

In this paper, we observe that during the actual training
process, the probability of crossing between the straight-
line interpolation trajectories of randomly matched noises
and images at a given time step ¢ is P ~ O(e=¢("x™),
which is very small in high-dimensional data space (Theo-
rem 1). Therefore, we are more inclined to believe that the
curvature arises because the neural network model is not
an exact solver, intermediate states along different trajecto-
ries may become “approximately crossing” due to their high
similarity in statistical property, thereby interfering with the
model predictions. Furthermore, we conducted an in-depth
analysis of the factors that contribute to the success of Re-
flow, as well as its limitations, detailed in Section 2.2.

To retain the advantages of Reflow while mitigating its
drawbacks, we propose a new method called Straighten
Viscous Rectified Flow via Noise Optimization (VRFNO).
VRFNO introduces a historical velocity term (HVT) as in-
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put to the neural velocity field, allowing the model to distin-
guish the direction of the RF in the presence of approximate
crossing. By incorporating historical velocity information,
the model can more accurately predict the velocity. More-
over, VRFNO directly uses the original dataset to avoid the
distribution gap and achieves more appropriate matches be-
tween the noises and the images (we refer to it as optimized

coupling) by noise optimization. Specifically, we propose a

joint training framework for an encoder and a neural veloc-

ity field. The encoder first encodes images from randomly
matched noise-image pairs and then outputs the correspond-
ing mean and variance matrices. The mean and variance
matrices are combined with the noise using the reparameter-
ization technique to generate a new noise, which is then fed
into the neural velocity field for training. This joint train-
ing approach enables the encoder to adjust the mean and
variance of the noise based on the image, thereby optimiz-
ing the matches between the noises and the images, which
in turn achieves optimized couplings. By using these op-
timized couplings to train the velocity field, the model can
more efficiently straighten the inference trajectory during
training, enabling one-step or few-step generation.

In summary, our contributions are as follows:

* We propose a new method VRFNO to straighten the in-
ference trajectories for higher quality few-step and single-
step generation.

* We introduce an HVT as the auxiliary information to en-
hance the model’s accuracy in velocity prediction when
the flow approximates crossing.

* We construct optimized couplings by optimizing the noise
to train the neural velocity field. This avoids relying on
deterministic couplings used in Reflow, which will con-
strain the model’s generation quality.

2. Preliminary

2.1. Rectified Flow

RF is an ordinary differential equations (ODE)-based DM
that aims to learn the mapping between two distributions, mg
and 7. In image generation tasks, 7y typically represents a
standard Gaussian distribution, while 71 corresponds to the
target image distribution. For empirical observations X ~
7o and X; ~ 7y on time ¢ € [0, 1], RF is defined as:

dXt = U(Xt7t)dt, (1)

where intermediate state X; = tX; + (1 — t) X, repre-
sents a time-differentiable interpolation between X, and
X1, v : R™™ x [0,1] — R™ ™ denotes the velocity field
defined on the data-time domain. Since RF uses simple
straight-line interpolation to connect X and X1, its trajec-
tory has a constant velocity field v,..y = X1 — Xo. Thus,
the training process optimizes the model by solving a least-
squares regression problem, i.e., fitting v,y to neural ve-
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Figure 1. Comparison between Reflow and Vanilla training
mode. The top illustrates the Reflow training mode, where noises
generate images via a pre-trained model, forming deterministic
couplings for training. These couplings are reused during training
by randomly sampling different intermediate states along the tra-
jectories. The bottom describes the vanilla training mode, where
noises and images are randomly sampled to form arbitrary cou-
plings for training, without reusing data during training.

locity field vyg:
minEx, x,mnsep(o) |[0rer = vo(X0 D], @)

where  represents the coupling of (Xg, X1), p(¢t) denotes
the time distribution defined on [0, 1]. During the inference
process, the ODE usually needs to be discretized and solved
via the Euler method, expressed as:

Xt+At = Xt+At'7)g(Xt, t), t e {0, At, ey (N - 1)At} 5

3)
where At = %, N represents the total number of steps.
Generally, a larger NV results in higher-quality generated im-
ages, but it requires more computational resources for sam-
pling. The reference trajectory of RF is a straight flow. If RF
can converge to the straight flow through training, it can sig-
nificantly minimize numerical errors in the ODE solver, en-
abling few-step or single-step generation: as the state moves
along the trajectory with uniform linear motion, the veloc-
ity at a single time step equals the average velocity over
the entire trajectory. As long as the cumulative sum of all
time increments throughout the motion equals unity, the fi-
nal endpoint of the trajectory will remain consistent.

2.2. Analysis of Reflow

The inference trajectory of RF exhibits a curved pattern
when trained using the vanilla method. While RF at-
tributes this phenomenon to the crossing of reference tra-
jectories [13] and proposes Reflow as a solution (with im-
plementation details provided in Appendix C), our exper-
iments (Fig.2) and analysis suggest that the effectiveness
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Figure 2. Impact of coupling type and data reuse on RF’s
performance. Training RF from scratch with different coupling
types, we control the data volume to construct different data reuse
scenarios and observe the impact of coupling type and data reuse
on model performance under the same training iterations. Each it-
eration samples 500 data pairs, ensuring that the total data volume
seen by the model remains the same across different reuse scenar-
ios under the same training iterations.

of Reflow cannot be solely explained by its ability to miti-
gate trajectory-crossing issues. This is particularly evident
given that trajectory crossings are extremely rare in high-
dimensional spaces, as we will elaborate in Section 3.1.
Through experimental and analytical investigations, the
success of Reflow can also be attributed to the following two
factors: (1) the images in the training data for Reflow are
generated by the pre-trained model, i.e., deterministic cou-
plings. This implies the existence of a deterministic trajec-
tory between a coupling that can be learned and inferred by
the model, as shown in the first row of Fig.1. Training/fine-
tuning with Reflow is analogous to learning this trajec-
tory during training and progressively aligning it with a
straight-line trajectory. In contrast, randomly matched data
pairs (arbitrary couplings) lack explicit trajectory relation-
ships, requiring the model to infer unknown trajectories
from noises and constrain them to straight lines, making the
training more complex and unstable. As demonstrated in
Fig.2, under identical data volume and training iterations,
RF trained with deterministic couplings achieves superior
image quality (green line vs. orange line). (2) Reflow
reuses data by sampling intermediate states from different
time steps of the same trajectory for training, as depicted in
the first row of Fig.l. This training strategy resembles the
multi-time-scale optimization methods employed in the dis-
tillation, both of which aim to enhance model performance
by leveraging multi-level information. Fig.2 demonstrates
that more data reuse iterations lead to better performance
under deterministic couplings (orange line vs. blue line).

More details and analyses can be found in Appendix B.
Additionally, the drawbacks of Reflow are evident. As
shown in Fig.1, there is a distribution gap between the gen-
erated images and the real images. Each iteration of training
utilizes images generated by the previous model as training
data, leading to the accumulation of errors over time. Con-
sequently, the quality of the images generated by the sub-
sequent model tends to degrade compared to the previous
one. To balance high image quality with computational ef-
ficiency, it is typically recommended to limit the iterative
training to 2 or 3 cycles. Furthermore, while data reuse is
effective, its effectiveness is influenced by the volume of
data. If the volume of reused data is small, it may not ad-
equately represent the true probabilistic distribution of the
data, thereby affecting the model’s learning of the PF [14].
On the other hand, excessive reused data will cause signif-
icant storage pressure, which increases the consumption of
computational resources and reduces training efficiency.

3. Method

We aim to develop an advanced training framework for RF
as a superior alternative to Reflow, further improving the
quality of generated images in single-step and few-step gen-
eration tasks. To achieve this, we propose a novel method
called VRFNO and the overview of VRFNO is shown in
Fig.3. Specifically, VREFNO introduces an HVT to effec-
tively improves the model’s capability to differentiate in-
ference trajectories, thereby substantially mitigating pre-
diction disturbances arising from intermediate state simi-
larities. Furthermore, to circumvent the use of pre-trained
model-generated images as training data during the train-
ing process, as employed in Reflow, and to ensure that ran-
domly matched noise-image data pairs (X, X1) exhibit de-
sirable characteristics akin to deterministic coupling. We
define a new concept “optimized coupling” and propose to
achieve optimized coupling by optimizing noise.

Definition 1. (X, X1) is called an optimized coupling if it
satisfies the following condition:

log(t X1 + (1 — 1) Xo) — (X1 — Xo)|| <e,

where € > 0 is a small positive constant.

3.1. Viscous Rectified Flow

RF attributes the curvature of inference trajectories to the
frequent crossings of reference trajectories. Specifically,
when noise-image pairs are randomly matched, multiple
reference trajectories may cross at the same point X at time
step t. During training, this causes different reference tra-
jectories to provide identical inputs to the model at time step
t, confusing the model and degrading its prediction accu-
racy. However, our calculations (Theorem 1) show that the
probability of trajectory crossings occurring during actual
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Optimized coupling (X,,X,) is obtained by optimizing the noise €
through the encoder using the reparameterization technique.

The historical velocity term v, is introduced into the neural velocity field,
and its result is obtained by the prediction method shown on the dotted line.
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Figure 3. Overview of VRFNO. The encoder and the neural velocity field form a joint training framework: randomly matched noise € and
image X (called arbitrary coupling) are optimized by the encoder to obtain optimized coupling (Xo, X1), which are then used to train the
neural velocity field. The introduction of the HVT wy,;s¢0ry enhances the distinction of the trajectories. Both components work together
during training to straighten the inference trajectories, thereby improving the model’s predictive accuracy.

training is P ~ O(e~¢"*™)), which is extremely rare in
high-dimensional space. More commonly, since the initial
states are independently sampled from a standard Gaussian
distribution, their statistical properties are very similar. In
the early stages of the interpolation trajectory, the interme-
diate states contain limited image information, causing the
differences between the intermediate states to remain small.
Since RF learns the mapping relationship between distribu-
tions, this high similarity in statistical properties may hinder
the model’s ability to distinguish between states, leading
to blurred predictions. Ideally, RF has a constant velocity
field, which means that the intermediate state X; moves in
a straight line from noise X to image X at uniform veloc-
ity vy, forming a straight inference trajectory.

Theorem 1. In (n x n)-dimensional space, for straight-
line interpolation trajectories X () = {Xt(') 1t e |0, 1]}

the probability of XV and X9 crossing at the point X, at
time step t is P ~ O(e=¢("™)) ¢ > (.

As shown in Theorem 2, the velocity difference
A(Vrer®,v,..;9)) between each X; is more significant
than their state difference A(X,, X,)), and this more
significant difference enables the model to better identify
the currently inferred trajectory, thus improving prediction
accuracy. Therefore, we introduce an HVT vps10ry as an
approximation of the constant velocity, which is fed into the
model at each time step, resulting in the Viscous Rectified
Flow (VRF):

dXt = ’U(Xta t7 Uhistm‘y)dta te [Atv 1}7 (4)

where At is the time interval between the current state and
the adjacent history state. During the inference process, the
HVT input to the model at the first time step is 0. In subse-
quent sampling iterations, each iteration inputs the velocity
predicted by the model at the previous time step into the

Algorithm 1 Training of VRFNO.

Input: image X, noise €, learning rate 7, time interval
At, hyperparameter «, encoder Ey, velocity field vg.
repeat

/’LaOQ = E¢(X1)
Xo=¢€¢-024+pu
Uref = X1 7X0

Sample t ~ U(At, 1)
X:=tX;+ (1 —-19)Xp
Xt—At == (t - At)Xl + (1 — + At)XO
Uhistory = Stopgrad(ve(Xi—a¢,t — At,0))
UVt = Vg (Xt; ta Uhistory)
1(0,6)
Eld(vyes,vi)] + & (02 + p? — 1 — log(c?))
0+ 0—nVoL(0,0)
66— V4L (6, 9)
until convergence

model as an HVT, providing the model with auxiliary in-
formation on the flow direction and enhancing the model’s
ability to make correct predictions.

Theorem 2. For each intermediate state X, along a PF
trajectory, the velocity difference between X, are greater
than their state difference:

A(Uref(i),vref(j)) > A(Xt(i),Xt(j)),

where A(-,-) = E[||- — ||§;] and B[] is the expectation.

3.2. Noise Optimization for Optimized Coupling

We propose using noise reparameterization technique to op-
timize the noise representation. Specifically, we design a
joint training framework for an encoder and a neural ve-
locity field (as shown in Fig.3), where the encoder opti-
mizes the noises to achieve optimized couplings and uses
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these optimized data pairs to train the neural velocity field.
The complete training process is shown in Algorithm 1. We
adopt the working mode of the encoder in the VAE archi-
tecture [8]: the encoder E takes the image X; as input
and outputs the corresponding mean matrix p and variance
matrix o2, then generates the optimized noise X by com-
bining p and o? with randomly matched noise ¢ using the
reparameterization technique:

Xo=¢€-0>+p. 5

Given the limited number of images in the dataset, to pre-
vent the model from developing a memory effect and ensure
diversity in generated images, we introduce random pertur-
bation 7 ~ N (0, I) at the intermediate layers of the encoder,
as shown in Fig.3. This ensures that the reparameterized
mean and variance matrices still exhibit differences even
when multiple Gaussian noises are matched to the same
image. Furthermore, after these Gaussian noises matched
the same image are reparameterized, they tend to concen-
trate in a smaller subspace. During training, each image
is matched with noise from its corresponding subspace and
participates in the training. This approach is similar to the
data reuse strategy in Reflow, and it avoids the issue of lim-
iting the model’s generalization ability due to the reuse of
limited data, thereby helping to improve the performance
of the model. After obtaining the optimized noise X, we
perform straight-line interpolation between it and the corre-
sponding image X to obtain X; and X;_a4:

X =tX;+ (1 —-1t)Xo
t e [At,1].

Xoni= (t— ADX1 4+ (1—t+ At X, L€ 1AL
(6)

We use the stopgrad operator to calculate the HVT
Uhistory = Stopgrad(ve(Xi—a¢,t — At,0)). The neural
velocity field vy takes the intermediate state X, time step ¢,
and HVT as inputs, and learns a constant velocity field by

fitting the reference velocity v,.. y:
VCL(Q, ¢) = EtEp(t) [d(vref7 Vo (Xt7 t, 'Uhistory))] , (D

where d(-, -) indicates distance metric. This process simul-
taneously optimizes the encoder I to ensure that the repa-
rameterized noises and the corresponding images satisfy the
property of optimized couplings. Meanwhile, to prevent the
encoder from overfitting during training, which could cause
the reparameterized noises to rely too heavily on image in-
formation from datasets and thus constrain the diversity of
generated images, we introduce KL divergence regulariza-
tion to constrain the mean and variance of the encoder’s out-
put near the standard Gaussian distribution:

KLL(¢) = %(02 + p? — 1 —log(c?)). (8)

Therefore, the total loss of our joint training framework is:

L(9,6) = VOL(6,8) + oaKLL(¢), ()

Algorithm 2 Sampling of VRFNO.
Input: image in dataset X, sampling steps N, encoder
Ey, velocity field vg.

Output: generated image X.
Sample € ~ N(0,I)

ILL,02 = E¢(X1)
Xo=¢€-02+p
At =1/N

Vhistory = 0
fori =0to N —1do
Upred = Vo (XiAt; ZAt7 Uhistory)
Vhistory = Upred
X(i+1)At = Xiat + At - Upred
end for
X1 =Xpnat

where « is a hyperparameter that controls the strength of
regularization. By using the optimized couplings optimized
through the encoder to train the neural velocity field, it
can gradually learn how to infer nearly straight trajectories,
thereby enabling few-step and single-step sampling. Fur-
thermore, our encoder-neural velocity field joint generation
framework still satisfies the marginal preserving property
(Theorem 3), with a detailed definition and proof provided
in the Appendix A.

Theorem 3. Assume X is rectifiable and Z is its viscous
rectified flow. The marginal law of Z; equals that of X; at
every time t, i.e., Law(Z;) = Law(X}), ¥Vt € [0, 1].

Noise optimization. In previous studies, noise optimization
typically treats noise as a learnable parameter and performs
small-scale iterative updates over multiple iterations using
gradient information provided by the model, until it con-
verges to an approximate optimal solution [6, 35]. While
it can generate high-quality images, its limitations are also
evident: it requires personalized optimization for each noise
and relies on pre-trained models. In contrast, our method
utilizes the reparameterization technique to optimize the
noise through linear transformations directly. This approach
allows for significant adjustments to the noise in a single op-
timization step, enabling rapid and efficient approximation
to the optimal solution, significantly reducing the number
of iterations and computational overhead, while also elimi-
nating the dependence on pre-trained models.

Two-stage training. In the training process, we adopt a
two-stage strategy based on empirical observations. In the
first stage, we set d(-, -) to the MSE loss, and once conver-
gence is achieved, we proceed to the second stage. In this
stage, we incorporate the LPIPS loss [32] for joint training
on top of the first-stage setup, continuing until convergence
is reached again. Notably, our method does not rely on dis-
tillation or adversarial training mechanisms.

15009



e % % e

VRFNO (N=1) VRFNO (N=2) VRENO ( N=5)
e =% =% %
1-RF (N=100) VRFNO ( N=10) VRENO ( N=50) VRENO ( N=100)

Figure 4. Visualization of inference trajectories on synthetic
data. The first column on the left shows the inference trajectories
of 1-RF with N steps, and the three columns on the right show the
inference trajectories of VRFENO with IV steps.

Sampling. After training the encoder and the neural veloc-
ity field, we can generate images using VRF ODE intro-
duced in Eq.(4), the discrete sampling process is shown in
Algorithm 2. For single-step generation, the HVT is set to O
during sampling, while in few-step generation, the HVT is
updated at each step. Additionally, we integrate the dataset
into the sampler, meaning that the sampled noise is also
reparameterized during the generation process. Since we in-
troduced perturbations in the encoder, this will not affect the
diversity of the generated images but can further enhance
the quality of the generated images.

4. Experiment

We evaluate the performance of VRFNO in various sce-
narios, including synthetic data and real data. In Section
4.1, we compare the performance of RF and VRFNO by
studying the inference trajectories between two 2D Gaus-
sian distributions, which clearly demonstrates the effective-
ness of our method. In Section 4.2, we extend the exper-
iments to real image datasets, CIFAR-10 [12] and AFHQ
[3], at different resolutions to validate the performance of
VREFNO in one-step and few-step generation. Additionally,
we conducted further analysis on VRFNO, including abla-
tion studies, as well as quantitative evaluations of its trajec-
tory straightness and inference efficiency.

Baselines and evaluation. We evaluated VRFNO and com-
pared it with state-of-the-art diffusion models [10, 18, 24,
27, 28] and rectified flow models (RF [14], Constant Ac-
celeration Flow (CAF) [21], TraFlow [29], Shortcut Model
(SM) [7]) in single-step and few-step generation. Among
them, RF serves as the baseline for our method, while CAF
is the most similar approach to ours. Therefore, these two
methods are the primary focus of our comparison. We use
Fréchet Inception Distance (FID) and Kernel Inception Dis-
tance (KID) to assess the quality of generated images, and
use Inception Score (IS) to measure diversity. Lower FID
and KID indicate higher generation quality, while a higher
IS suggests greater diversity in the generated images.

Table 1. Quantitative results on CIFAR-10.

IS FID KID(x107%)
Methods NFE RS W) W)
Diffusion/Consistency Models
VP ODE | 1.20 451
(+distill) (8.73) 16.23)
sub-VP ODE | 1.21 451 i
(+distill) (8.80) (14.32)
DDIM distillation 1 8.36 9.36 -
Progressive 1 - 9.12 -
CT 1 8.49 8.71 -
EDM 5 - 37.75 -
Rectified Flow Models
1-RF 1 1.13 379 428
2-RF 1 8.15 11.97 8.66
CAF 1 8.32 4.81 -
TraFlow 1 - 4.50 -
SM 1 - 4.93 -
VRENO (Ours) 1 9.59 4.50 2.73
1-RF 5 7.12 34.81 32.26
2-RF 5 9.01 4.36 2.25
CAF 5 8.67 4.03 -
VRENO (Ours) 5 9.42 4.03 2.13
1-RF 10 8.44 12.70 11.50
2-RF 10 9.13 3.83 1.63
CAF 10 9.12 3.77 -
VRENO (Ours) 10 9.51 3.36 1.31

4.1. Synthetic Experiments

We demonstrate the trajectory straightening effect of
VRENO through 2D synthetic data experiments. For the
neural velocity field, we use a simple multi-layer perceptron
(MLP) architecture with three hidden layers, each contain-
ing 64 units. For the encoder, we adopt the encoder archi-
tecture from the VAE framework, consisting of two hidden
layers, each with 16 units. Additionally, a fully connected
layer is used to produce the mean and variance separately.
The visualization results are shown in Fig.4, where we
compared VRFNO with the 1st generation RF (1-RF). Ad-
ditionally, in Appendix B, we provide the inference trajecto-
ries of 1-RF and the 2nd generation RF (2-RF) for different
numbers of steps. In the multi-step generation, the inference
trajectory of VRFNO is closer to a straight line compared to
1-RF, which provides a guarantee for accurate single-step
and few-step generation. The single-step and few-step in-
ference trajectories of VRFNO are visually straight, indi-
cating that the neural velocity field of VRFNO better con-
verges to a constant velocity field, making its predictions of
the trajectory direction more stable. In addition, the error
between the endpoints of the single-step and the few-step
inference trajectories and the endpoints of the multi-step in-
ference trajectories is small, indicating that VRFNO is able
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Figure 5. Qualitative results on CIFAR 10. Vlsuahzauon of one-
step generation of VRFNO

to accurately map samples from the initial distribution to the
target distribution in both single-step and few-step genera-
tion. In contrast, when 1-RF is generated in a single step,
the endpoint of the trajectory is usually concentrated at the
mean point of the target distribution, while the samples near
this point are usually meaningless in practical applications,
as shown in Fig.II (a) in Appendix B.

4.2. Real-data Experiments

To further validate the effectiveness of our method, we eval-
uate VRENO on real image datasets, namely CIFAR-10
with a resolution of 32 x 32 and AFHQ with different reso-
lutions (including 64 x 64, 128 x 128, 256 x 256). For the
neural velocity field, we adopt the UNet architecture from
DDPM-++ [27] to train on CIFAR-10 and the NCSNv2 [26]
to train on AFHQ); for the encoder, we refer to the encoder
architecture from [8], and its details can be found in Ap-
pendix E. Specifically, the encoder requires very few pa-
rameters, taking the train of CIFAR-10 as an example, the
number of parameters in the encoder is less than 1/20 of
those in the neural velocity field.

Tab.1 presents the quantitative evaluation of VRFNO on
CIFAR-10. Compared to other diffusion models, our ap-
proach achieves superior performance in single-step gen-
eration, with FID = 4.53, KID = 2.73, and IS = 10.59.
Compared to previous rectified flow models, VRFNO at-
tains state-of-the-art performance in both single-step and
few-step generation (our training does not involve distilla-
tion). Fig.5 illustrates the qualitative evaluation of VRFNO
in single-step generation on CIFAR-10. Further compara-

Figure 6. Qualltatlve results on AFHQ. Visualization of one-step
generation of VRFNO at different resolutions

Table 2. Quantitative results on AFHQ with different resolutions.

Methods Datasets NFE Resolution FID()
64x 64 181.93(31.57)
A1 128x128 172.66029.81)
2-RF 256 x 256 171.84(29.33)
(+distill) 6161 200.77(33.64)
AUS 1 128128 19230(32.70)
256 x 256 189.82(30.27)
61 % 64 28.69
AR 1 1mxas 2756
VRFNO 256 x 256 27.04
(Ours) 61 x 61 4464
Nog 1 amsxis 2720
256 x 256 27.37

tive qualitative evaluations between VRFNO and RF in N-
step generation can be found in Appendix B. Tab.2 provides
the quantitative evaluation of VRFNQO’s generated images
on the AFHQ cat and dog datasets, focusing on the im-
age quality of single-step generation at different resolutions.
Our method is designed as a better alternative to Reflow, so
the comparison primarily highlights the performance differ-
ence with 2-RF. From the tab.2, it is evident that VRFNO
outperforms 2-RF in image generation quality across differ-
ent resolutions.The qualitative evaluation of AFHQ at dif-
ferent resolutions can be found in Fig.6.

4.3. Further Analysis

Ablation Study. We conduct an ablation study to evalu-
ate the effectiveness of each component in our framework
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Table 3. Ablation study of HVT and noise optimization.

Noise

Config NFE HVT o ID({)
optimization

A 1 X X 379
B 1 v X 332
C 1 X v 4.72
D 1 v v 4.53
E 5 X X 34.81
F 5 v X 32.50
G 5 X v 4.28
H 5 4 v 4.03
I 10 X X 12.70
J 10 4 X 9.34
K 10 X v 4.75
L 10 v v 3.40

Table 4. Comparison of flow straightness.

Dataset 2-RF  3-RF CAF VRFNO(Ours)
2D 0.067 0.053 0.058 0.054
CIFAR-10 0.058 0.056 0.035 0.026

Table 5. Comparison of the inference time (sec) in N-step.

NFE RF CAF  VRFNO(Ours)
1 0.172  0.181 0.305
10 1.404 1415 1.646

for single-step and few-step generation. Specifically, we in-
vestigate the improvements brought to RF by (1) the intro-
duction of the HVT and (2) the noise optimization oper-
ation. The configurations and results are shown in Tab.3.
The two components have both contributed to the improve-
ment of model performance. Regarding the introduction of
the HVT, even with one-step sampling, the model perfor-
mance improved, indicating that it facilitates trajectory rec-
tification during the training process. As for the noise op-
timization operation, it results in a significant performance
boost, demonstrating the effectiveness of training the neural
velocity field with our defined optimized coupling.

Flow Straightness. To evaluate the straightness of the
inference trajectories, we introduce the Normalized Flow
Straightness Score (NFSS) [14, 15]. A smaller NFSS in-
dicates that the inference trajectory is closer to a straight
line. We compare VRFNO with RF and CAF on syn-
thetic datasets and CIFAR-10, with the experimental results
shown in Tab.4. Our method generates inference trajecto-
ries that are straighter compared to the other methods.
Time Efficiency. We also compare the inference time of
our method with RF and CAF. Tab.5 presents the time re-
quired to generate 512 images in both one-step and ten-step
settings. Our method incurs a slightly higher time cost than
RF due to the additional encoder. In contrast, CAF consists
of two neural velocity fields, it necessitates an additional

computation (its total NFE equals [N + 1), resulting in sig-
nificantly higher time consumption.

5. Related Work

The inference process of DMs can be viewed as an itera-
tive solution of ODE [25] or stochastic differential equa-
tions [2, 9], and ODE-based methods [5, 31] are more ef-
fective in few-step sampling due to their determinism. A
widely used first-order ODE solver is the Euler solver, but
its large local truncation error necessitates more iteration
steps for high-quality image generation. To reduce itera-
tion steps, higher order ODE solvers such as DEIS [31] and
DPM solvers [16] exploit the semilinear structure of diffu-
sion ODEs, deriving exact solutions for high-quality image
generation with fewer steps. DPM-solver++ [17] enhances
DPM-solver by improving stability in higher-order solvers.
UniPC [33] builds a unified predictor-corrector framework
for DPM solver, enhancing the quality of sampling in a few
steps. DC-solver [34] uses dynamic compensation to cor-
rect misalignment in UniPC, thus improving image quality.

Another mainstream method for accelerated sampling is
distillation. Progressive distillation [24] iteratively halves
the steps of a DDIM until it enables image generation in
just 4 steps. Diff-Instruct [20] accelerates sampling by
minimizing Integra Kullback-Leibler divergence to merge
knowledge from multiple time steps of a pre-trained model.
Consistency Model (CM) [28] enables direct mapping from
noise to data by minimizing the differences between the
final states when adjacent ODE trajectory points are used
as inputs. Latent CM [19] treats the guided reverse diffu-
sion process as solving an augmented PF ODE, directly pre-
dicting the ODE solution in the latent space, enabling fast
and high-fidelity sampling. Consistency Trajectory Model
[11] further optimizes CM by allowing the model to learn
mappings between arbitrary initial and final times along the
ODE trajectory during the diffusion process.

6. Conclusion

This paper proposes a novel method VRFNO, which is a
joint training framework combining an encoder (for noise
optimization) and a neural velocity field (for velocity pre-
diction). VRFNO utilizes the encoder to optimize noises
to transform randomly matched noises and images into op-
timized couplings, which are then used to train the neu-
ral velocity field for precise prediction of straight inference
trajectories. To further straighten the inference trajectories
during training, we introduce the HVT into the neural veloc-
ity field to enhance its prediction accuracy. Extensive exper-
iments conducted on both synthetic and real world datasets
demonstrate the effectiveness and scalability of VRFNO,
and the results show that it achieves state-of-the-art perfor-
mance across multiple datasets and varying resolutions.
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