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Abstract

Recovering missing modalities in multimodal learning
has recently been approached using diffusion models to
synthesize absent data conditioned on available modalities.
However, existing methods often suffer from modality gen-
eration bias: while certain modalities are generated with
high fidelity, others—such as video—remain challenging
due to intrinsic modality gaps, leading to imbalanced train-
ing. To address this issue, we propose MD2N (Multi-stage
Duplex Diffusion Network), a novel framework for unbiased
missing-modality recovery. MD2N introduces a modal-
ity transfer module within a duplex diffusion architecture,
enabling bidirectional generation between available and
missing modalities through three stages: (1) global struc-
ture generation, (2) modality transfer, and (3) local cross-
modal refinement. By training with duplex diffusion, both
available and missing modalities generate each other in an
intersecting manner, effectively achieving a balanced gener-
ation state. Extensive experiments demonstrate that MD2N
significantly outperforms existing state-of-the-art methods,
achieving up to 4% improvement over IMDer on the CMU-
MOSEI dataset. Project page: here.

1. Introduction
Multimodal learning leverages complementary information
from heterogeneous data sources such as audio, images, and
text [4, 7, 20, 56], achieving impressive success in mod-
eling complex real-world phenomena. Its effectiveness is
demonstrated across diverse applications, including visual
question answering (VQA) [25] and affective computing
[1], etc. Despite this progress, most existing multimodal
approaches assume the availability of all modalities during
both training and inference. This assumption rarely holds
in real-world deployments, where data completeness is of-
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Figure 1. We evaluate state-of-the-art recovery-based incomplete
multimodal learning models [3, 40, 50–52] on the MOSEI dataset
under severe missing-modality scenarios, where L, A, and V de-
note text, acoustic, and visual modalities. Results show that most
models perform unevenly across different missing-modality con-
ditions, especially struggling when video data is missing. In con-
trast, our model achieves more balanced and robust performance
across all missing scenarios.

ten compromised by practical issues such as sensor failures
[32] or communication bottlenecks [6]. The resulting par-
tial modality availability introduces a critical challenge: it
results in a mismatch between training and testing condi-
tions, fundamentally undermining the robustness and gen-
eralizability of multimodal learning systems.

Current missing modality learning approaches mainly
use deep generative frameworks, such as diffusion mod-
els [30], to reconstruct absent modalities conditioned on the
available ones. While these methods [26, 30] show promis-
ing reconstruction results, we observe a critical limitation:
modality generation bias [47, 57]. Specifically, there are
significant differences in the difficulty of generating dif-
ferent modalities. For example, text can often be synthe-
sized reliably from visual inputs (e.g., images or videos),
but generating high-quality images or videos from text re-
mains more challenging, often resulting in substantial qual-
ity degradation (see Fig. 1 for empirical results). This bias
leads to imbalanced training, where models perform well in
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some missing-modality scenarios but fail in others [14]. We
argue that this limitation arises from the assumption that all
modality generation tasks are of equal difficulty, ignoring
the inherent differences between modalities and their gen-
eration complexities.

To address the challenge of biased missing modality
recovery, we pose a question: Can the recovery process
be performed in an intersecting manner by integrating a
further modality transfer process from missing to avail-
able modalities? Motivated by this, we propose MD2N
(Multi-stage Duplex Diffusion Network), a novel frame-
work that decomposes recovery into three sequential stages:
(1) Global structure generation (0, t1]): The model first
reconstructs the coarse global structure of the target modal-
ity by leveraging cross-modal information, establishing a
stable foundation for subsequent generation. (2) Modal-
ity transfer (t1, t2]): We introduce an intersecting trans-
fer strategy that progressively integrates conditional infor-
mation, enabling mutual knowledge flow between available
and missing modalities, ensuring semantic alignment and
learning of modality-invariant representations that capture
shared characteristics across modalities. (3) Local cross-
modal refinement[t2, T ]: In this stage, the model enhances
local details to refine content quality, ensuring recovered
data is both realistic and structurally coherent.

Our framework employs duplex diffusion models, al-
lowing available and missing modalities to generate each
other’s data in an intersecting manner across all stages.
Specifically, we adopt score-based diffusion models [43]
as the generative backbone due to their ability to provide
direct and flexible control over the reverse diffusion pro-
cess, which is critical for accurately reconstructing complex
modality structures. To further enhance generation stability,
we introduce a time-step-based variance function that dy-
namically adjusts the noise variance at each diffusion step.
This design effectively mitigates deviations and fluctuations
caused by local perturbations, ensuring the generation pro-
cess remains stable and coherent throughout. As a result,
our method maintains global structural integrity while pro-
gressively enhancing fine-grained details, leading to high-
quality and semantically aligned modality recovery outputs.

In summary, we make the following contributions:
• We empirically identify the issue of modality generation

bias in recovery-based missing-modality models, which
hinders the effectiveness of missing-modality recovery.

• We introduce a multi-stage diffusion process that decom-
poses the recovery task into three stages: global structure
generation, modality transfer, and local detail refinement.

• We design a duplex cross-diffusion framework that simul-
taneously handles the diffusion processes for both avail-
able and missing modalities, facilitating the learning of
modality-invariant knowledge.

• We conduct extensive experiments on several benchmark

datasets, demonstrating that our model outperforms exist-
ing methods, achieving up to a 4% improvement over the
SOTA models (e.g., IMDer) on the CMU-MOSEI dataset.

2. Related Works
Mulimodal Learning. Recent advancements in multi-
modal learning have led to significant breakthroughs across
cross-modal generation [19, 61, 62], contextual learning
[21, 45], and modality fusion [13, 15, 67]. For exam-
ple, Huang et al. [21] introduced Multimodal Task Vec-
tors (MTV), which compress multimodal exemplars into at-
tention heads, circumventing context length constraints and
enabling many-shot in-context learning. Zhou et al. [66]
proposed a causal inference framework that leverages coun-
terfactual reasoning and backdoor adjustment to mitigate
modality prior-induced hallucinations, thereby enhancing
the robustness of multimodal large language models. Yang
et al. [58] developed ContextDIFF, a conditional diffusion
model that propagates cross-modal context throughout the
diffusion process, significantly improving text-guided vi-
sual synthesis and editing tasks.

In the domain of multimodal sentiment analysis, sim-
ilar approaches have been widely adopted. For instance,
Zhu et al. [68] proposed a BERT and Faster R-CNN-based
framework that employs co-attention mechanisms and gat-
ing strategies to effectively integrate textual and visual fea-
tures, leading to improved sentiment classification accuracy.
Despite these recent innovations, the inherent challenge of
missing modalities remains a critical bottleneck in practical
multimodal applications, underscoring the need for further
research to address this limitation.
Incomplete Multimodal Learning. Early research on
missing modality recovery primarily focused on two ap-
proaches: removing incomplete samples [38] and recover-
ing missing data [23, 55]. For example, FitRec [38] utilizes
multimodal data during both training and prediction but
fails to handle incomplete samples, leading to data deple-
tion and model overfitting. Traditional imputation methods,
which typically generate the absent modalities [7, 34, 39],
encounter significant limitations when consecutive features
are missing. Recently, deep learning-based methods, such
as autoencoders [17, 18, 28, 37, 42] and Generative Ad-
versarial Networks (GANs) [7, 39], have been applied to
restore missing modalities in incomplete multimodal learn-
ing scenarios. However, these generative approaches often
introduce additional noise, particularly when the number of
modalities is large and sample completeness is low [11, 49].
More recently, diffusion models have been employed for
modality recovery [12, 16, 41, 52]. For instance, IMDER
[52] utilizes a diffusion model to restore missing modalities
from Gaussian noise. Nevertheless, these methods consis-
tently overlook a critical issue: modality generation bias,
which hinders the quality and reliability of recovered data.
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Diffusion Probabilistic Models. Diffusion models have
achieved remarkable progress across various domains, in-
cluding image restoration, 3D generation, and multimodal
learning. For image restoration, Chan et al. [8] introduced
the Dynamic Regulation Diffusion Anchoring mechanism
(DRDA) to mitigate artifacts and color biases in low-light
enhancement, while Li et al. [29] employed decoupled
probabilistic modeling with uncertainty-guided attention to
achieve high-quality reconstruction of complex textures. In
3D generation, Liu et al. [33] utilized 3D point cloud dif-
fusion for modernizing traditional cultural elements, and Jo
et al. [24] addressed semantic loss in text generation via
statistical manifold mapping. In multimodal learning, diffu-
sion models have been primarily applied to missing modal-
ity recovery. For example, Kebaili et al. [27] proposed an
adaptive multimodal missing data completion framework
that integrates an image-frequency fusion network (IFFN)
with diffusion models to significantly improve medical im-
age segmentation accuracy.

3. The Proposed Method
In this section, we detail our proposed method, covering the
diffusion model preliminaries (Sec. 3.1), overall framework
(Sec. 3.2), multimodal feature extractor (Sec. 3.3), duplex
multi-stage diffused network (Sec. 3.3), and multimodal fu-
sion (Sec. 3.4) for downstream tasks.

3.1. Preliminaries
Variance-preserving Diffusion Models (VPDM). In this
work, we adopt the variance-preserving diffusion model
[48] as the generator because it was demonstrated that the
noise at each step is controlled to ensure stable and effec-
tive missing-modality data recovery. Specifically, VPDM
is discretized the variance-preserving stochastic differential
equation (VP-SDE) [44] with the Euler-Maruyama tech-
nique [35] and incorporates a time-step variance function
β(t) for dynamic noise adjustment as:

xt =
√

1− βtxt−1 +
√
βtϵt−1, t = 1, 2, · · · , T, (1)

where ϵt−1 represents independent Gaussian noise.
Forward Processing. Following the standard Stochastic
Differential Equation (SDE) [2, 43], the VP-SDE uses a
variance-preserving mechanism to perturb the data x:

dx = −1

2
β(t)x dt+

√
β(t) dw, t ∈ [0, T ], (2)

where β(t) is a time-dependent variance function control-
ling noise intensity and w denotes a Wiener process [64].
Reverse Processing. As [5, 36, 48], the reverse-time VP-
SDE for sample generation during the recovery process is:

dx = −1

2
β(t)(x dt−∇x log pt(x) dt) +

√
β(t) dw̄ (3)

For discrete time steps t ∈ 1, 2, · · · , T , the reverse pro-
cess can be represented as an iterative update as:

xt−1 =
1√

1− βt
(xt + βtsθ(xt, t)) +

√
βtϵt (4)

where sθ(xt, t) serves as an approximation of ∇x log pt(x)
using the score network sθ [36, 44, 54].
Score-matching Loss Function. To optimize the score-
matching loss and the score network sθ, we leverage the
transition kernel p0t(x(t)|x(0)) in the VP-SDE. This kernel
approximates the conditional distribution of the state x(t) at
any time t, given the initial state x(0). Specifically, the tran-
sition kernel follows a Gaussian distribution, with both its
mean and covariance determined by the initial state and the
cumulative noise function over time. The equation is as:

p0t(x(t)|x(0)) = N (x(t);x(0)φ(t), I(1− φ(t)), (5)

where φ(t) = e−
1
2

∫ t
0
β(s) ds is a decay factor that controls

the diffusion process up to time t. The term x(0)φ(t) repre-
sents the gradual decay of the signal over time, and the co-
variance I− Iφ(t) reflects the cumulative noise introduced
during the diffusion process.

Using this, the optimization of the score-matching loss
is formulated as follows:

L = Ex,ϵ∼N (0,I),t∼U(0,T )

∥∥∥∥∥ ϵ√
λ(t)

+ sθ(x(t), t)

∥∥∥∥∥
2

2

, (6)

where U(0, T ) is a uniform distribution over the time in-
terval [0, T ], and λ(t) = I − Ie−

1
2

∫ t
0
β(s) ds is a weighting

function to balance the loss at different time steps.

3.2. Overall Framework
The overall framework, illustrated in Fig. 2(a), consists
of three core components: Multimodal Feature Extractor,
Multi-stage Duplex Diffusion Network, and Multimodal
Fusion module. In the feature extractor, three indepen-
dent encoders, EK for K ∈ {L, V,A}, are utilized to ex-
tract features from the text (L), vision (V ), and acous-
tic (A) modalities, respectively. The Multi-stage Duplex
Diffusion Network adopts a cross-diffusion architecture to
generate both available and missing modality data through
three sequential stages: (1) Global Structure Generation,
where cross-modal information is integrated to establish a
coherent global structural framework; (2) Modality Trans-
fer, which is progressively introduced to prevent premature
modality dominance and ensure semantic alignment across
modalities; and (3) Local Detail Refinement, which en-
hances fine-grained features to improve the quality and au-
thenticity of the generated samples. Finally, the Multimodal
Fusion module consolidates the recovered and available
modality representations and utilizes a multimodal Trans-
former for downstream prediction tasks.
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Figure 2. Overview of the proposed framework, which comprises three key components: multimodal feature extraction, a multi-stage
duplex diffusion network, and multimodal fusion. Independent encoders first extract features from text (L), vision (V), and acoustic
(A) modalities. The diffusion network then recovers missing modalities through three stages—global structure generation establishes a
consistent cross-modal foundation, modality transferring achieves semantic alignment, and local detail refinement enhances fine-grained
features. Finally, a multimodal Transformer fuses the refined representations for downstream prediction.

3.3. MD2N: Multi-stage Duplex Diffusion Network

Motivation. Existing recovery-based missing modality
learning models [51, 52] predominantly utilize conditional
generative networks to directly reconstruct missing modal-
ity data. However, these approaches often fail to account
for the inherent complexities and disparities among modal-
ities, leading to substantial generation biases. We hypothe-
size that such biases arise from the modality gap, which re-
flects differences in data characteristics and structural rep-
resentations across modalities. To address this limitation,
we introduce a cross-modality transfer step within the gen-
eration process, specifically during the time interval t ∈
(t1, t2] of the overall diffusion process (0, T ]. This step
is designed to preserve modality-invariant knowledge while
effectively transferring modality-variant information. To
achieve this, we propose Multi-stage Duplex Diffusion Net-
works (MD2N), where two diffusion models collaborate by
reconstructing each other’s data through a cross-modality
generation module. This collaborative mechanism enables
each modality to contribute its unique information, result-
ing in more accurate, semantically aligned, and unbiased
reconstruction of missing modalities.

Multimodal Feature Extractor. As illustrated in Fig. 2(a),
the multimodal feature extractors process data from text (L),

vision (V), and acoustic (A) modalities. The extraction net-
work, denoted as Ek for k ∈ {L, V,A}, leverages modality-
specific pre-trained encoders: BERT [10] for textual data,
Facet [22] for visual inputs, and COVAREP [9] for audio.
These encoders transform the raw modality data into a la-
tent space. For each input x, the encoders yield represen-
tations X = {xk}, where xk ∈ RL×D (with L denoting
the sequence length and D the latent dimensionality). Fol-
lowing [51, 52], each sample is assumed to have at least
one available modality feature. Notably, during training, all
modalities are complete; missing modality data occur only
during the inference [40, 52, 53, 65].
Forward Process. As illustrated in Fig. 2, the duplex dif-
fusion networks dilute both the available data xa and the
missing modality data xm into Gaussian noise. Importantly,
these two diffusion processes are intersectantly connected
via the modality transferring process. We denote the output
at each time step as x̃t, highlighted in deep blue in Fig. 2.
The entire forward process is divided into three time stages:

(1) Stage 1: Global Structure Generation (t ∈ (0, t1]).
In this stage, noise is injected into the features xm(t) and
xa(t). For example, the forward process for xm(t), based
on Eq. (1), is formulated as:

x̃m
t =

√
1− βtx

m
t−1 +

√
βtϵt−1. (7)

24510



Similarly, x̃a
t can be obtained through the same process.

(2) Stage 2: Modality Transfer (t ∈ (t1, t2]). In this
stage, the latent features xm

t and xa
t undergo cross-time-

step transferring until t2. Taking the transfer from xa →
xm as an example, the forward process for x̃m

t is written as:

x̃m
t =

√
1− βtx̃

m
t−1 +

√
βtϵt−1 − Φ(xm

0 − xa
0), (8)

where Φ is a coefficient derived by aligning the model with
Eq. (1), with its detailed derivation provided in the supple-
mentary materials. The reverse transfer from xm → xa

follows an analogous formulation.
(3) Stage 3: Local Cross-Modal Refinement (t ∈

(t2, T ]). In the final stage, the injected noise disrupts the
latent features xa

t and xm
t into Gaussian noise. For sim-

plicity, we use ∗ to denote either superscript a or m. The
forward process in this stage is expressed as:

x̃∗
t =

√
1− βtx

∗
t−1 +

√
βtϵt−1. (9)

Reverse Process. Based on the time-dependent score
model sθ, we construct the corresponding reverse-time SDE
and numerically simulate it to generate samples from p0.
Starting from samples x(T ) ∼ pT , the process is reversed
to obtain x(0) ∼ p0.

As shown in Eq. (7) and Eq. (9), for the time stages
(0, t1] and (t2, T ], the forward latent x̃∗

t aligns with the dis-
cretized VP-SDE formulation. Therefore, both stages share
the same parameterized reverse iteration, formulated as:

x̃∗
t−1 =

1√
1− βt

(
x∗
t + βts

(∗)
θ (x̃∗

t , y, t)
)
+
√

βtϵt, (10)

where s(∗)θ (x̃∗
t , y, t) is the prediction network estimating x∗

0

from the noisy latent feature x̃∗
t , and y denotes the generated

other modalities. Similarly, for the stage t ∈ (t2, T ], the
reverse process is written as:

x̃∗
t−1 =

1√
1− βt

(
x∗
t + βts

(∗)
θ (x̃∗

t , y, t)
)
+
√

βtϵt. (11)

Following Eq. (3), the modality transferring process
from xa to xm in t ∈ (t1, t2] is expressed as:

x̃a
t−1=

1√
1−βt

(x̃a
t−Φ(xm

0−xa
0)+βts

(m)
θ (x̃m

t , y, t))+
√
βtϵt.

(12)
where Φ denotes the transfer coefficient derived in the sup-
plementary materials. Conversely, the process from xm to
xa in t ∈ (t1, t2] is formulated as:

x̃m
t−1=

1√
1−βt

(x̃m
t −Φ(xa

0−xm
0 )+βts

(a)
θ (x̃a

t , y, t))+
√
βtϵt.

(13)

Diffusion Optimization Objective. As shown in
Fig. 2(a), the optimization objectives for s(a)θ (x̃a

t , y, t) and
s
(m)
θ (x̃m

t , y, t) follow the formulation in Eq. (6), and are de-
noted as La and Lm, respectively. The overall optimization
objective Lscore is defined as:

Lscore = La + Lm, (14)

where each L∗ is computed as:

L∗ = Ex∗,ϵ∼N (0,I),t∼U(t1,T )

∥∥∥∥∥s(∗)θ (x̃∗
t , y, t) +

ϵ√
λ(t)

∥∥∥∥∥
2

2

,

(15)
and ∗ denotes either m or a. Here, λ(t) is the noise scaling
factor defined in Eq. (6), and U(t1, T ) denotes the uniform
distribution over the diffusion time interval.

Besides, we deploy a decoder to reconstruct the gener-
ated data. Thus, we leverage reconstruction loss to optimize
the generated data by:

Ldec = ∥x̂m − xm∥22 + ∥x̂a − xa∥22. (16)

By combining Lscore and Ldec, the objective of our multi-
modal recovery diffused network is Lrec = Lscore + Ldec.
Discussion. Building upon the duplex diffusion networks,
we divide the inference recovery process into three distinct
stages: global structure generation, modality transfer, and
detail refinement. At inference (see Fig. 2(b)), since only
the available modality xa is observed, we utilise the gen-
eration direction from xa to the missing modality xm. (1)
Global structure generation stage (t ∈ [T, t2)): As illus-
trated in Fig. 2(c), this stage begins by sampling Gaussian
noise z̃T and generating the coarse structural representation
of the missing modality xm by predicting its latent feature
x̃a
t . (2) Modality transfer stage (t ∈ [t2, t1)): Here, modal-

ity transformation is performed by gradually converting
the noised latent feature x̃t2 into x̃t1 of the target missing
modality via the conditional score function s

(m)
θ (x̃m

t , y, t).
This process integrates cross-modal knowledge, enabling
effective semantic transfer between modalities. (3) Detail
refinement stage (t ∈ [t1, 0)): Finally, fine-grained details
of the generated missing modality are refined by predicting
xm
0 from the noisy latent feature x̃m

t1 , enhancing the quality
and realism of the reconstructed data.

3.4. Multimodal Fusion and Prediction
For any missing pattern, the set of recovered data is denoted
as X̂miss, while the available data is represented as X ava.
These are combined to form the complete multimodal input
for downstream fusion and prediction tasks.

We employ multimodal Transformers [46] to fuse the
features from X̂miss ∪ X ava. The resulting fused representa-
tion is subsequently passed through multi-layer perceptrons
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Model {L} {A} {V} {L,A} {L,V} {A,V}
C

M
U

-M
O

SI

DCCA [3] 73.6 / 73.8 / 30.2 50.5 / 46.1 / 16.3 47.7 / 41.5 / 16.6 74.7 / 74.8 / 29.7 74.9 / 75.0 / 30.3 50.8 / 46.4 / 16.6
DCCAE [50] 76.4 / 76.5 / 28.3 48.8 / 42.1 / 16.9 52.6 / 51.1 / 17.1 77.0 / 77.0 / 30.2 76.7 / 76.8 / 30.0 54.0 / 52.5 / 17.4

MCTN [40] 79.1 / 79.2 / 41.0 56.1 / 54.5 / 16.5 55.0 / 54.4 / 16.3 81.0 / 81.0 / 43.2 81.1 / 81.2 / 42.1 57.5 / 57.4 / 16.8
TransM [53] 80.1 / 80.0 / 41.2 55.2 / 55.0 / 15.2 55.8 / 55.8 / 16.2 82.2 / 82.3 / 43.9 82.1 / 82.1 / 42.0 58.1 / 58.0 / 17.2
ICDN [63] 83.1 / 83.2 / 42.0 55.5 / 55.4 / 15.0 56.7 / 56.7 / 16.1 83.1 / 83.1 / 43.3 82.9 / 83.0 / 42.1 59.3 / 59.3 / 17.2
MMIN [65] 83.8 / 83.8 / 41.6 55.3 / 51.5 / 15.5 57.0 / 54.0 / 15.5 84.0 / 84.0 / 42.3 83.8 / 83.9 / 42.0 60.4 / 58.5 / 19.5
GCNet [31] 83.7 / 83.6 / 42.3 56.1 / 54.5 / 16.6 56.1 / 55.7 / 16.9 84.5 / 84.4 / 43.4 84.3 / 84.2 / 43.4 62.0 / 61.9 / 17.2
DiCMoR [51] 84.5 / 84.4 / 44.3 60.5 / 60.8 / 20.9 62.2 / 60.2 / 20.9 85.5 / 85.5 / 44.6 85.5 / 85.4 / 45.2 64.0 / 63.5 / 21.9
IMDer [52] 84.8 / 84.7 / 44.8 62.0 / 62.2 / 22.0 61.3 / 60.8 / 22.2 85.4 / 85.3 / 45.0 85.5 / 85.4 / 45.3 63.6 / 63.4 / 23.8

MD2N 87.4 / 87.3 / 45.9 68.8 / 68.8 / 27.5 67.1 / 67.0 / 27.2 87.4 / 87.4 / 45.6 87.5 / 87.4 / 46.0 70.4 / 70.4 / 28.3

C
M

U
-M

O
SE

I

DCCA [3] 78.5 / 78.7 / 46.7 62.0 / 50.2 / 41.1 61.9 / 55.7 / 41.3 79.5 / 79.2 / 46.7 80.3 / 79.7 / 46.6 63.4 / 56.9 / 41.5
DCCAE [50] 79.7 / 79.5 / 47.0 61.4 / 53.8 / 40.9 61.1 / 57.2 / 40.1 80.0 / 80.0 / 47.4 80.4 / 80.4 / 47.1 62.7 / 59.2 / 41.6

MCTN [40] 82.6 / 82.8 / 50.2 62.7 / 54.5 / 41.5 62.6 / 57.1 / 41.6 83.5 / 83.3 / 50.7 83.2 / 83.2 / 50.4 63.7 / 62.7 / 42.1
TransM [53] 82.3 / 82.3 / 49.6 60.2 / 57.1 / 40.0 60.8 / 59.6 / 41.2 83.6 / 83.3 / 51.1 83.4 / 83.3 / 50.0 64.0 / 63.3 / 41.9
ICDN [63] 82.7 / 83.2 / 50.0 58.5 / 58.4 / 40.1 61.7 / 61.2 / 40.9 84.0 / 83.9 / 51.4 83.7 / 83.7 / 50.9 63.3 / 60.7 / 40.6
MMIN [65] 82.3 / 82.4 / 51.4 58.9 / 59.5 / 40.4 59.3 / 60.0 / 40.7 83.7 / 83.7 / 52.0 83.8 / 83.4 / 51.2 63.5 / 61.9 / 41.8
GCNet [31] 83.0 / 83.2 / 51.2 60.2 / 60.3 / 41.1 61.9 / 61.6 / 41.7 84.3 / 84.4 / 51.3 84.3 / 84.4 / 51.1 64.1 / 57.2 / 42.0
DiCMoR [51] 84.2 / 84.3 / 52.4 62.9 / 60.4 / 41.4 63.6 / 63.6 / 42.0 85.0 / 84.9 / 52.7 84.9 / 84.9 / 53.0 65.2 / 64.4 / 42.4
IMDer [52] 84.5 / 84.5 / 52.5 63.8 / 60.6 / 41.7 63.9 / 63.6 / 42.6 85.1 / 85.1 / 53.1 85.0 / 85.0 / 53.1 64.9 / 63.5 / 42.8

MD2N 88.4 / 88.3 / 55.2 69.7 / 69.7 / 43.5 70.1 / 70.0 / 44.7 88.5 / 88.4 / 56.5 88.3 / 88.4 / 56.1 71.2 / 70.6 / 44.6

Table 1. Comparison with the state-of-the-arts on CMU-MOSI [59] and CMU-MOSEI [60] under fixed missing scenario. {K} means
modality {∗} is available (∗ ∈ {L,A,V}). The values in each cell denote ACC2/F1/ACC7. Bold is the best.

(MLPs) to produce the final predictions. The overall opti-
mization objective is defined as:

Ltotal = Ltask + γLrec, (17)

where Ltask denotes the task-specific loss, implemented as
cross-entropy loss in our experiments, and γ is a balancing
coefficient that controls the relative importance of the re-
construction loss Lrec. The entire optimization is conducted
in an end-to-end manner. Detailed training configurations,
including modality missing rate settings, are provided in the
experimental section.

4. Experiments
In this section, we conduct extensive experiments on the
missing modality multimodal learning and a suite of abla-
tion studies.

4.1. Datasets and Implementation Details
Datasets. To verify the effectiveness of MD2M, we conduct
experiments on two multimodal sentiment analysis datasets:
CMU-MOSI [59] and CMU-MOSEI [60]. Each sample is
labeled with a sentiment score ranging from -3 (strongly
negative) to +3 (strongly positive). We evaluate the per-
formance using the following metrics: 7-class accuracy
(ACC7), binary accuracy (ACC2), and F1 score.
Baseline. We compare MD2M with several state-of-
the-art incomplete multimodal learning methods, including

recovery-based methods (MCTN [40],TransM [53], ICDN
[63],MMIN [65], GCNet [31], DiCMoR [51], IMDer [52])
and non-recovery methods (DCCA [3], DCCAE [50]).

Implementation Details. On the two datasets, we extract
the text features via pre-trained BERT model text[10] and
obtain a 768-dimensional hidden state as the word fea-
tures. For visual modality, each video frame was encoded
via Facet [22] to represent the presence of the total 35 fa-
cial action units [9]. The acoustic modality was processed
by COVAREP [9] to obtain the 74-dimensional features.
Each experiment was run five times, and the average re-
sults on the test set are reported, using PyTorch on an
NVIDIA A800 GPU. We explore the effectiveness of var-
ious methods in two distinct scenarios: one where a spe-
cific modality is consistently missing, and another where
the missing modality is randomly selected. For the fixed
missing modality scenario, we systematically discard either
one modality (i.e. {L,A}, {L, V }, {A, V }) or two modal-
ities (i.e. {L}, {A}, {A}) throughout the evaluation. For
the random missing senario, we define the missing rate
rmiss = (1 −

∑N
i=1 mi

N×M ) × 100% to quantify the overall
extent of missing modalities across the samples, where N
denotes the total number of modalities,mi represents the
number of available modalities for ith sample and M cor-
responds to the total number of modalities. In the case of
three modalities, we select eight values of rmiss from the
range [0%, 10%, 20%, . . . , 70%], where 70% represents the
max approximate missing rate while ensuring that at least

24512



Figure 3. Comparison results on CMU-MOSI [59] and CMU-MOSEI [60] under randomly missing scenario.

one modality is available at any given time.

4.2. Comparison with the state-of-the-arts
Table 1 and Fig. 3 present the quantitative results of our
model across both datasets. From the results, we could
make the following key observations:

(1) Effectiveness of recovery-based models: Recovery-
based methods, such as our MD2N model, consistently out-
perform non-recovery approaches [3, 50]. This improve-
ment is possibly attributed to their ability to utilize missing
modality data more effectively.

(2) State-of-the-art performance: Among all recovery-
based methods [31, 40, 53, 63, 65], our model achieves
the best overall performance. We attribute this to its dual
cross-diffusion structure, which dynamically controls noise
and integrates cross-modal semantic information, preserv-
ing global consistency while enhancing local detail fidelity.

(3) Robustness to missing patterns and rates: As
shown in Tab. 1 and Fig. 3, our model exhibits smaller per-
formance degradation under increasing missing rates com-
pared to other recovery methods, indicating its strong ro-
bustness across different missing patterns and levels of
modality incompleteness.

4.3. Ablation Study
Impact of Different Configurations. To validate the effec-
tiveness of different configurations, we ablate our MD2N
into three variants: (i) Base-model: Direct recovery from
the available modality to the missing modality, similar to
IMDer [52]. (ii) Adding VP-SDE Model: Using the VP-
SDE technique for a score model, optimising time-step
noise control to predict the missing modality xm

0 . (iii)
Adding with Multi-stage Model: Incorporating VP-SDE
within a score model s(m)

θ and adopts a multi-stage diffu-
sion process without duplex modeling.

As shown in Tab. 2, we make the following observations:
(i) vs. (ii): Optimising time-step noise control in the VP-
SDE model significantly improves the accuracy of missing
modality predictions compared to the base model. (ii) vs.
(iii): Adding a multi-stage model outperforms the one only
using the VP-SDE model, indicating that the multi-stage
diffusion process better captures cross-modal interactions.

Dataset Method Type Results

CMU-MOSI

(i) Base-model 76.5 / 73.4 / 35.2
(ii) + VP-SDE 76.7 / 76.6 / 35.3
(iii) + Multi-stage 77.1 / 77.1 / 36.0
(iv) Ours 80.0 / 80.0 / 40.2

CMU-MOSEI

(i) Base-model 79.0 / 77.3 / 49.3
(ii) + VP-SDE 79.4 / 78.0 / 49.5
(iii) + Multi-stage 79.9 / 78.4 / 49.8
(iv) Ours 82.6 / 82.6 / 50.3

Table 2. Ablation study on various configurations. The average
results for missing rates ranging from 30% to 70% are shown in
the cells, representing ACC2/F1/ACC7. Bold indicates the best
performance.

Methods CMU-MOSI CMU-MOSEI

MCTN 71.3 / 71.2 / 35.5 76.9 / 76.2 / 47.4
MCTN w/s(m,i)

θi
75.7 / 75.6 / 38.4 79.0 / 79.1 / 48.5

Table 3. Ablation study of multi-stage duplex diffusion network
s
(m,i)
θi

on MCTN[40] under 30% missing rate. The value in each
cell denotes ACC2/F1/ACC7. Bold is best.

(iii) vs. (iv): Our full model achieves the best performance
across all metrics on both datasets, benefiting from the addi-
tional guidance of the duplex diffusion structure. This result
demonstrates the effectiveness of our duplex training strat-
egy in enhancing multimodal recovery and learning robust
modality-invariant representations.
Effects of Multi-stage Duplex Diffused Network. To fur-
ther evaluate the generalizability and effectiveness of our
proposed multi-stage duplex diffusion network (MD2N),
we integrate it into the MCTN [40]. As shown in Tab. 3,
incorporating MD2N into MCTN (denoted as MCTN
w/s(m,i)

θi
) consistently outperforms the original MCTN [40]

on both datasets, achieving approximately a 2-point perfor-
mance improvement. These results demonstrate that our
proposed module can be seamlessly integrated into exist-
ing models, providing consistent gains and highlighting its
broad applicability and effectiveness.
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Figure 4. Ablation study on the effect of varying t1 and t2 under
30% missing rate on MOSEI. (a) shows the impact of changing
t1 with t2 = 800, and (b) shows the effect of changing t2 with
t1 = 200. Metrics: ACC2, F1, ACC7.

Effects of the Multi-Stage Process Configuration. We in-
vestigate the impact of varying t1 and t2 on model perfor-
mance. When discretizing the time into 1000 steps, the con-
figuration t1 = 200 and t2 = 800 achieves the best overall
results across all evaluation metrics, as illustrated in Fig. 4.
Specifically, in experiments where t2 is fixed at 800 and t1
is varied (Fig. 4(a)), we observe that as t1 decreases from
200 to 20, performance slightly declines. This degradation
is attributed to the detailed refinement stage becoming too
brief to sufficiently modify modality details. Conversely,
when t1 increases beyond an optimal point, the conditional
fusion stage shortens, which also leads to a drop in perfor-
mance. Furthermore, as shown in Fig. 4(b), when t1 is fixed
at 200 and t2 is varied, a longer conditional fusion stage
consistently yields better results. These findings highlight
the importance of balancing the durations of both stages to
maximize overall model effectiveness.
Effects of the Multimodal Feature Extractor and De-
coder. To evaluate the contributions of the multimodal fea-
ture extractor EK and the decoder DK , we conduct compar-
ative experiments using four model variants. All configura-
tions employ the full multi-stage duplex diffusion network,
differing only in whether they include EK and DK . The
results in Tab. 4 lead to the following observations.

Using both the feature extractor and decoder consistently
yields the strongest performance on both CMU-MOSI and
CMU-MOSEI, providing an improvement of approximately
2–5 points across all evaluation metrics compared to config-
urations lacking either component. This demonstrates that
EK effectively extracts modality-specific information from
text, image, and audio inputs, while DK enables accurate
reconstruction of the original data.

Excluding the feature extractor leads to a moderate per-
formance drop of about 2 points, indicating its crucial role
in mapping multimodal signals into a unified latent space
and supporting robust cross-modal representation learning.
Without EK , the model struggles to capture complementary
cues across modalities. Similarly, removing the decoder
results in a comparable performance decrease of around 3
points, highlighting its importance for reconstructing the

Datasets EK DK Results

CMU-MOSI

✓ ✓ 83.4 / 83.4 / 42.9
✗ ✓ 81.2 / 81.2 / 41.0
✓ ✗ 80.4 / 80.2 / 40.4
✗ ✗ 78.5 / 78.5 / 37.3

CMU-MOSEI

✓ ✓ 84.3 / 84.4 / 52.6
✗ ✓ 82.4 / 82.2 / 50.2
✓ ✗ 81.3 / 81.1 / 49.4
✗ ✗ 79.4 / 79.6 / 47.3

Table 4. Ablation study on the effects of the multimodal feature
extractor and decoder under 30% missing rate on MOSI ans MO-
SEI. The value in each cell denotes ACC2/F1/ACC7. Bold is best.

original data from intermediate representations. The de-
coder ensures reliable recovery by optimizing the recon-
struction that combines scoring and decoding losses.

Finally, removing both modules causes the most substan-
tial performance degradation, with a drop of roughly 5–7
points across datasets. This confirms that both components
are critical for robust multimodal representation learning
and for recovering missing modalities, especially under in-
complete input conditions.

5. Conclusion

In this paper, we tackled the challenge of modality gener-
ation bias in multimodal learning for missing modality re-
covery. Existing diffusion-based approaches often struggle
to balance generation quality across modalities due to in-
herent modality gaps. To address this issue, we proposed
the Multi-Stage Duplex Diffusion Network (MD2N), which
introduces a modality transfer module to enable smooth
and unbiased cross-modal generation. By leveraging a du-
plex diffusion framework consisting of three progressive
stages—global structure generation, modality transfer, and
local cross-modal refinement—our method facilitates mu-
tual influence between available and missing modalities,
resulting in a more balanced and effective recovery pro-
cess. Extensive experiments demonstrate that MD2N sub-
stantially outperforms state-of-the-art methods, confirming
its effectiveness in reducing modality generation bias and
enhancing multimodal learning under missing modalities.

In future work, we plan to extend our framework to han-
dle scenarios involving more than three modalities simulta-
neously and explore adaptive stage configurations to auto-
matically adjust the diffusion process based on input modal-
ity availability. Additionally, we aim to evaluate MD2N in
real-world downstream tasks such as multimodal sentiment
analysis under partial observation and cross-modal retrieval
with missing modality conditions to further validate its gen-
eralizability and practical impact.
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