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Figure 1. 3D Counting (3DC). From multiple views of objects to be counted and their container, we estimate both the total volume they

occupy and the fraction of this volume taken up by the objects. Combining these estimates yields the total number of objects.

Abstract

Visual object counting is a fundamental computer vision
task underpinning numerous real-world applications, from
cell counting in biomedicine to traffic and wildlife moni-
toring. However, existing methods struggle to handle the
challenge of stacked 3D objects in which most objects are
hidden by those above them. To address this important yet
underexplored problem, we propose a novel 3D counting
approach that decomposes the task into two complemen-
tary subproblems - estimating the 3D geometry of the ob-
ject stack and the occupancy ratio from multi-view images.
By combining geometric reconstruction and deep learning-
based depth analysis, our method can accurately count
identical objects within containers, even when they are ir-
regularly stacked. We validate our 3D Counting pipeline on
large-scale synthetic and diverse real-world datasets with
manually verified total counts. Our datasets and code and
can be found at https://corentindumery.github.
io/projects/stacks.html

1. Introduction
Visual object counting—the task of quantifying the num-

ber of instances in a scene—serves as a fundamental build-

ing block for numerous real-world applications and au-

tonomous decision-making systems. This ranges from cell

counting in biomedical imaging [27] to traffic [12] and

wildlife [1] monitoring. However, these methods [10, 11,

18, 21, 29] can only count visible objects such as apples

spread across a table or people in a crowd. The problem

becomes significantly harder when objects are stacked on

top of each other, as in Fig. 1: Only a subset of them is

visible, making counting much more difficult. In fact, our

experiments show that this task is truly challenging even for

humans. Nevertheless, solving it would have significant ap-

plications in industrial and agricultural settings, where pre-

cise quantification of items—such as products on a pallet or

fruits in crates—not only prevents stock and quality errors

but also enhances operational efficiency and logistics.

Overcoming the above-mentioned challenges requires

inferring the presence and quantity of hidden instances from

limited visual cues. This means not only detecting vis-

ible object features but also reasoning about hidden ones

through contextual understanding. The challenge is further

amplified by variations in stacking patterns, object orienta-

tions, and irregular arrangements, making traditional count-

ing approaches inadequate.

At the heart of our proposed solution is a key insight: the

fraction of space occupied by objects, which we will refer

to as the occupancy ratio, can be accurately inferred from a

depth map computed by a monocular depth estimator from

a view in which enough objects of interest are clearly visi-
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Figure 2. 3DC pipeline. We decompose the counting task into estimating the volume of the objects to be counted and then estimating the

occupancy ratio within that volume. The first is done on the basis of geometry reconstructed from segmentations in multiple images.The

second uses as input a depth-map computed by a monocular depth estimator and regresses an occupancy ratio from it.

ble. In most cases, such a view is one where the container

is seen roughly from above, without having to be strictly

vertical. To exploit it, we break down the problem into two

complementary tasks: estimating the 3D geometry of the

object stack and estimating the occupancy ratio within this

volume, as depicted by Fig. 2. This decomposition enables

us to solve the 3D counting problem through a combina-

tion of geometric reconstruction for volume estimation and

deep learning-based depth analysis for occupancy predic-

tion, both of which can be solved efficiently.

We validate 3DC through extensive experiments on real-

world and synthetic datasets. Our real-world evaluation

leverages a diverse collection of scenes depicting objects

stacked in containers or still in their packaging, as shown in

Fig. 1. To further assess the reliability of 3DC, we also con-

structed a large-scale synthetic dataset with precisely an-

notated ground-truth counts. This dataset, along with our

code, will be made available upon publication.

Thus, our contributions are:

• A complete pipeline for 3D counting of overlapping,

stacked objects, a novel and challenging computer vision

task not previously addressed in the literature.

• A network designed to infer the occupancy ratio, which

embodies a novel idea and forms a key component of the

architecture.

• An extensive new 3D Counting Dataset comprising

400,000 images from 14000 physically simulated and

rendered scenes with precise ground-truth object counts

and volume occupancy computed programmatically.

• A complementary real-world validation dataset consisting

of 2381 images from 45 scenes captured with accurate

camera poses and manually verified total counts.

• A human baseline derived from 1485 annotations on real

images, representing estimates from 33 participants.

In particular, the latter shows that this task is truly hard and

that humans perform poorly. This indicates that training

a network to predict stacked counts from images in a sin-

gle step may not be feasible and that our decomposing the

problem into simpler subproblems is critical to success, as

demonstrated in Sec. 4.

2. Related work
Counting aims to estimate the number of instances of a spe-

cific object category in a scene. Most methods focus on

counting visible objects from a single image. A few meth-

ods leverage multiple images to enhance counting accuracy.

Our method extends this to the more challenging scenario

where many of the objects to be counted are hidden. We

summarize those related work below.

Single-View Counting. Most recent counting methods

focus on single-view scenarios where they train a network

specialized in counting a single object-category such as for

crowd-counting [3, 9, 22, 24, 26, 28, 35, 36], counting

cars [12], or penguins [1]. These methods are widely ap-

plicable [2], such as when counting cells or other anatom-

ical structures in medical imaging [4] or counting trees or

building in satellite images [33]. The proposed algorithms

address challenges such as scale variation, perspective dis-

tortions, and occlusions. Common approaches are to learn

robust feature representations [39], to perform density map

estimation [23], or to leverage multi-scale features [17].

Apart from the traditional setting in which objects of a sin-

gle category are counted, class-agnostic counting [11, 14]

enables counting an arbitrary category at test time, given

a few image samples of the class [31], a few bounding

boxes [18], or just the class name [29]. Like class-agnostic

counting methods, our approach is not restricted to specific

categories but can generalize to any object type at test time.

For the most part, counting methods only deal with visible

objects. The only related attempt to ours is the approach

of [5] that infers counts of occluded objects by using Li-

DAR data. However, their algorithm only handles a specific

setup of counting different beverages on shelves for a spe-

cific set of categories with known volumes, such as “Coca-
Cola 20oz bottle” or “milk carton”, while our method does
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not require LiDAR and generalizes to diverse scenes, object

types, and geometries.

Multi-View Counting. Multi-view counting approaches

improve accuracy by combining information across mul-

tiple camera views, often projecting feature maps onto a

common ground plane to generate precise density maps

for crowd counting [37, 38] or segmentation maps of

fruits [13]. However, these methods also assume that all

objects are visible from at least one view and are restricted

to a specific class of objects, making them inadequate in

many practical scenarios. In contrast, our method targets

the largely unexplored area of counting occluded objects,

without any restriction on the nature and shapes of these

objects.

3. Method
3DC aims to estimate the total number N of objects in a

container solely from a set of 2D images, which is a chal-

lenge even for humans and has not been attempted before as

far as we know. Our approach is predicated on the idea that,

even though we cannot faithfully recover the exact arrange-

ment of all invisible objects at the bottom of the container,

the occupancy ratio can be estimated from a single image,

provided that enough objects are visible in it.

To localize the objects in cluttered scenes that may con-

tain several stacks, we rely on a segmentation of the objects

So and their container Sc in the first frame. We then use

SAM2 [19] to propagate this segmentation as So,f and Sc,f

to all subsequent frame f , so that the frame in which the

most objects are visible can be automatically identified.

In the remainder of this section, we first formalize our

approach. We then introduce our occupancy ratio estimator,

followed by our approach to estimating volumes.

3.1. Problem Statement
Assuming the average volume occupied by a single object

is v, and the total volume of the container is V , it would

be tempting to compute the number of objects as N = V
v .

However, this fails to account for gaps between objects. If

we consider that the objects are stacked in such a way that

only a fraction γ of the volume V is actually taken up by the

objects themselves and that the rest is empty space, then the

previous estimate becomes

N =
γV
v

(1)

Our key insight is that this volume usage rate γ over the

whole container can be estimated with high accuracy from

the visible elements only. In practice, the density within

the container may not be strictly uniform. However, if the

container is large enough, the variations tend to compen-

sate each other over the whole volume and using an average

value is warranted.

Assumptions. In this work we assume that the objects

are stacked uniformly in bulk and approximately identical.

Some objects are expected to be partially visible, so that the

occupancy ratio γ can be estimated.

Applicability. The above assumptions hold in the real-

world scenes of Fig. 1. Furthermore, they are weak enough

to also hold in many realistic scenarios across various indus-

tries. In warehousing and retail, our proposed setup can be

used to automate the inventory process by accurately count-

ing stacked items, reducing the need for manual labor and

easing restocking. In manufacturing, our method can en-

hance quality control by ensuring that shipped containers

include a sufficient number of items. It can also provide

3D scene understanding to autonomous systems for robotic

tasks like pick-and-place and sorting.

3.2. Occupancy Ratio Estimation
The most critical step in our approach is estimating the oc-

cupancy volume ratio γ of Eq. 1 from a single image in

which enough target objects can be seen, typically one taken

from above even though this is not a strict requirement.

Formally, we seek to learn a function Φ : D → γ ∈ [0, 1]
that takes as input a depth map and predicts an occupancy

ratio γ. Φ learns the relationship between depth maps and

occupancy ratio, capturing a key fact: if objects deeper in

the stack remain visible, then the gaps between objects are

large and the percentage of the volume occupied by them is

low. This does not depend on the exact shape of the objects

being observed, and should, in theory, apply even to new

inputs with shapes not seen during training. In the results

section, we will confirm this to be true in practice.

Network Architecture. To implement Φ, we use an

encoder-decoder architecture that first computes rich image

features and then decodes them into our target γ. For the en-

coder, we use DinoV2 [15], a foundation model trained on

many real-world images to help with generalizability while

increasing convergence speed.

The decoder has to aggregate feature values into a sin-

gle scalar representing the volume usage, predicted for the

whole image. To this end, we use consecutive convolutional

layers to gradually decrease the resolution of the features,

along with ReLU activations, reducing the encoded feature

image to a single pixel with 64 channels, and a final linear

layer to predict a single scalar from the output of the last

convolutional layer. We refer the reader to our supplemen-

tary material for additional details.

Training Data. To train Φ, the simplest is to minimize

the squared error between the estimated occupancy ratio

and ground-truth one over an annotated dataset. Unfortu-

nately, no such dataset exists and we therefore synthesized

our own. It comprises 400,000 images spanning 14,000
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Figure 3. Dataset samples. We visualize generated scenes in ascending order of occupancy ratio, with ground-truth depth maps.

scenes containing various objects in different containers.

Fig. 3 depicts some of them.

To create it, we used the ABC dataset [8] that features

a wide variety of computer-assisted design (CAD) models.

We retained only watertight objects with a single connected

component and rescaled them to fit in a cube of side 0.05.

We then generated a virtual 3D scene with a container, and

used a physics-based simulator to drop an initial batch of

100 identical objects in that box. We repeated this step a

random number of times or until the box was full, that is to

say, the union of objects reached the space above the box

after the physical simulation has converged. In each scene,

the container is given a random shape and scale. We also

include some scenes without any container where objects

are directly stacked on the floor, and some scenes where

boxes are partially full, as is often the case inreal-life.

Once the physical simulation was complete, we com-

puted analytically the occupancy ratio as well as the total

number of objects in the container. To each object and con-

tainer, we randomly assigned a realistic material that could

be metallic, wood, or plastic. In some scenes, we selected

a different material for each individual object. Finally, we

used a ray-tracing engine to render multiple realistic images

of the container and objects seen from several different an-

gles to allow 3D reconstruction, as shown in Fig. 5. Cru-

cially, realistic rendering causes objects at the bottom of the

boxes to appear darker due ambient occlusion.

We repeated this for over 14,000 scenes and set aside a

subset of 100 to use as a test set of shapes unseen during

training. For each one of the 4800 shapes used, we generate

a scene with a unit-cube container to reliably measure the

ground truth γ as well as two additional scenes with random

containers. This dataset allows us not only to train Φ on

the top view, but also to run our complete pipeline on the

multi-view images in order to measure the accuracy of our

count estimate Nest, as performed in Sec. 4. We train our

model on depth maps produced by the depth estimator, but

our dataset also includes ground-truth depth maps, which

we employ in an ablation study in our experiments to assess

the requirement of accurate depth maps of our method. We

report additional statistics that highlight the diversity of the

proposed dataset in Fig. 12 of our supplementary.

Inference. On real-world data, it remains to determine

which image to use as input to the γ-network. We will refer

to this image as the key view. To produce the best results,

this view should be as close as possible to the depth maps

seen during training, as illustraed in Fig. 4. We automat-

ically select the view that has the largest object segmenta-

tion, ensuring the objects are clearly visible, and crop the

image to include only the masked content. We then employ

Depth Anything V2 [30] to compute a depth map. Note that

we also train Φ on depth maps predicted by that model in-

stead of the ground-truth depth maps, which further reduces

the domain gap as demonstrated in our experiments.

3.3. Volume Estimation
Given an estimate of the occupancy ratio γ obtained as dis-

cussed above, we still need to compute the total volume of

the stack V to derive the total number of objects from Eq. 1,

and the unit volume v if it is not known. When the cameras

are uncalibrated, we use COLMAP [20] to compute their

poses and adjust their scale using a real-world reference

measurement. In industrial scenarios with fixed camera

setups known a priori, simpler methods could be be used.

Inferring the volume Vest of the stacked objects from

multiple images is a well-understood problem. In our spe-

cific implementation, we start from the segmented images

and extract the container and objects by adding the mask as

alpha channel. We then optimize 3D Gaussian Splats [6]

from these images, ensuring our reconstruction covers the
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Figure 4. Reducing the domain gap. Instead of estimating the

occupancy ratio γ from synthetic (top) and real images (bottom)

(a), we identify a key view (b) and train a network to predict γ
from their depth maps (c), which are indistinguishable. Top row:

synthetic, γgt = 62.4%. Bottom row: chocolates, γest = 53.5%,

Nest = 119, Ngt = 131.

container and objects only. To compute the volume the

splats enclose, we adapt the voxel carving algorithm. We

initialize a voxel grid from the bounding box of the gaus-

sians. Then, given the masks generated previously and

depth maps rendered from 3DGS, a voxel is carved out if

its projection on any given view falls outside of the mask

or if its projected depth is less than the reconstructed depth

map. This procedure successfully reconstructs objects and

their containers, including partially filled boxes.

To remove the container from the reconstruction, we es-

timate its thickness t and erode the voxels on all sides ex-

cept the top by t, thereby refining the estimated volume to

represent only the contents. The value of t is predicted by

an additional decoder Ψ that takes the same encoded im-

age features as our previous network Φ in Sec. 3.2. To this

end, we use dilated convolutional layers [34], increasing

the network’s receptive field with no additional parameters.

To make this prediction scale independent and easily pre-

dictable from 2D images alone, we predict thickness as a

ratio of the container’s size. We supervise Ψ with ground-

truth thickness from our dataset and at inference we average

the estimation of Ψ over all images. Taken together, these

algorithms yield a good estimate of the volume V spanned

by the stacked objects.

Unit volume v. In most applications, the unit volume v of

Eq. 1 is known exactly because the object has been manu-

factured to a precise specification, v can be computed from

the simple geometry of the objects, or v can be obtained

from existing reference data, particularly for food items.

When the unit volume of an object v is not readily available,

we estimate its value using the method described above and

Figure 5. Multi-view images. We generate 30 views from ar-

bitrary angles for each of the scenes in our large-scale synthetic

dataset.

from a set of images of a template object. This task is made

easier by the absence of a container, and this is shape but

not scene specific. For a new shape, one exemplar is se-

lected in a single frame and we can then use SAM2 [19] to

generate a segmentation on all frames at once. The unit vol-

ume v computed this way can then be used across all scenes

containing this object.

4. Experiments
We evaluate our method in two ways: measuring the accu-

racy of 3D counting as a whole and of the occupancy ratio

estimation, in Sec. 4.2 and Sec. 4.3, respectively. These

evaluations are performed over two datasets. The first com-

prises 100 scenes representing physically simulated shapes

from the ABC dataset [8]. These scenes were isolated after

their generation and were not seen during the training of our

occupancy ratio network. The second is made of 2381 real

images spanning 45 real scenes that were captured with a

regular smartphone’s RGB camera, and no additional sen-

sor. These captures offer multiple views around stacks of

objects in a container, lying flat on a table or still enclosed

in their packaging. We count the ground-truth number of

units manually for all scenes below 500, or infer it from the
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NAE ↓ SRE ↓ MAE ↓ sMAPE ↓

BMNet+ [21] 0.91 0.87 320.50 158.87

SAM+CLIP [7, 16] 0.73 0.61 259.22 102.77

CNN 0.66 0.48 235.74 98.44

ViT+H 0.42 0.24 149.90 47.36

Ours 0.22 0.09 79.48 27.65

Table 1. Counting evaluation on 100 synthetic scenes.

NAE ↓ SRE ↓ MAE ↓ sMAPE ↓

BMNet+ [21] 0.93 0.98 966.76 131.44

SAM+CLIP [7, 16] 0.94 0.99 980.33 124.31

CNN 0.95 0.93 992.06 97.09

ViT+H 0.94 0.93 979.29 91.45

Human 0.79 0.84 823.23 76.85

Human-Vote 0.60 0.30 621.46 57.91

LlamaV 3.2 1.00 1.00 1037.5 190.48

Ours (Color) 0.57 0.27 607.98 74.33

Ours 0.36 0.06 382.59 53.31

Table 2. Counting evaluation on real-world scenes.

MAE ↓ RMSE ↓ sMAPE ↓ R2 ↑

DepthExtrapolated 0.36 0.38 77.43 -6.04

DepthCorrected 0.10 0.12 34.80 0.28

Mean Estimator 0.12 0.14 41.25 0.00

Ours 0.06 0.07 29.18 0.79

Table 3. Occupancy ratio estimation. We evaluate our method

against three additional baselines that are tasked with prediction

the occupancy ratio γ from a depth map.

weight for even larger counts. In Fig. 7, we provide inter-

mediate results to help our readers form a better intuition

about our method’s behavior, and additional qualitative re-

sults in Fig. 6 and Fig. 1.

4.1. Metrics

We use several metrics to assess the accuracy of ob-

ject counting and occupancy ratio estimation. The object

counts vary significantly across scenes, ranging from 19 to

20063. Thus, the Mean Absolute Error (MAE)—defined

as MAE = 1
n

Pn
i=1 |yi − ŷi|, where yi is the ground truth

count and ŷi is the predicted count for each scene—tends

to amplify the importance of scenes with a high counts. To

mitigate this, we also report normalized metrics. We use the

Normalized Absolute Error (NAE), Squared Relative Er-

ror (SRE), and Symmetric Mean Absolute Percentage Error

(sMAPE), which scale errors relative to the ground truth.

The NAE provides a measure of the absolute error normal-

ized by the total ground truth count across scenes, SRE em-

phasizes larger errors and penalizes significant deviations

in high-count scenes, and , sMAPE offers a normalized per-

centage error. The exact formulas for all metrics can be

(a) Nest = 38, Ngt = 36 (b) Nest = 2133, Ngt = 1830

(c) Nest = 338, Ngt = 397 (d) Nest = 261, Ngt = 300

Figure 6. Additional qualitative results.

found in our supplementary.

4.2. Counting Evaluation
As far as we know, there is no previous work on count-

ing from multiple images which does not either implicitly

assume all objects to be visible or require additional sen-

sors such as LiDARs. Thus, we compare 3DC against BM-

Net+ [21]. It predicts a density map over all pixels of an

image, and the estimated count is then inferred by summing

over all pixels. Additionally, we compare against a com-

bination of SAM [7] and CLIP [16], where SAM is used

to generate a large number of masks from an input image

and CLIP uses a set of negative and positive text prompts

to identify masks that represent an object of interest. The

final count is then taken to be the number of these masks.

In Tables 1 and 2, we compare the performance of these two

baselines against that of our method. We outperform them

in both cases.

In early experiments, we attempted to directly predict

object count from images. To this end, we trained differ-

ent networks, coined ViT+H and CNN. We also report the

results in Tables 1 and 2. They perform poorly, especially

on the real-world dataset, which is what prompted us to look

into decomposing the problem into occupancy and volume

estimation.

We also sought to estimate how good humans are at this

counting task. To this end, we organized a contest and en-

couraged participants to make accurate guesses on the 45

real scenes. The contest registered 1485 guesses from 33

participants. We define the Human baseline as the average

of error metrics of participants, and Human-Vote as the er-

ror of the average guess across all participants. This second

baseline should be stronger as the errors of participants tend
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Figure 7. Intermediate results. From images (a), we find the key viewpoint and compute its depth (b) to estimate the occupancy ratio γ.

Using the unit shape previously reconstructed from images of a template (c), and the overall reconstruction (d), we deduce the final count.

(Pasta: γest = 30.5%, Nest = 509, Ngt = 588 . Bricks: γest = 31.8%, Nest = 73, Ngt = 100 . Crosses: γest = 29.6%, Nest = 88,

Ngt = 116 )

to cancel-out and that is what we observe in Tab. 2. How-

ever, the results are still much worse than what our approach

delivers. Interestingly, participants who spent a longer time

did not perform better than their peers, highlighting the dif-

ficulty of this task. When asked about the method they

used, a majority of participants reported counting the num-

ber of objects on each axis, and multiplying these values

together. This proved to be ineffective, however.

Finally, we tested LlamaVision 3.2 11B, a Large Lan-

guage and Vision Model, on our counting task. While it

was very good at describing the physical appearance of the

objects in the real scenes and the composition of the scene,

its count estimates were completely off as shown in Tab. 2.

Our approach beats all the aforementioned baselines,

providing the first method to estimate stack counts with

reasonable accuracy. However, we also note that our per-

fomance remains better on the synthetic data than on our

benchmark of real scenes. This can be attributed to the ad-

ditional complexity of these real scenes, which often con-

tain thousands of objects and can be more challenging for

volume estimation.

4.3. Occupancy Ratio Evaluation

We now focus on the occupancy ratio network alone. There

is little work on occupancy ratio estimation, we thus imple-

mented additional baselines to gain insights about the inner

working of our approach.

Since we assume that the depth map contains enough in-

formation to predict the occupancy ratio, we define a first

baseline that we will refer to as DepthExtrapolated. Given

the top view of the container, we compute the maximal

depth using a monocular depth estimator and use it to nor-

malize the depth map. Then, we average the resulting values

of the K pixels, yielding the volume fraction estimate

γnorm
est =

1

K

X di
dmax

.

This first baseline tends to predict values lower than ex-

pected. Thus, we defined a second one we dubbed Depth-
Corrected. It uses linear regression to correct γnorm

est into a

new estimate γcorrected
est . This yields a method able to model

the observation that depth maps with high variance tend to

correspond to low occupancy ratios. Finally, we also com-

pare with the mean estimator, that predicts the mean per-

centage of 32.3% occupancy ratio for all inputs.

As can be seen in Tab. 3, our method outperforms these

three baselines by a significant margin. DepthCorrected is

better than the other two baselines, which shows that depth

information is indeed useful for this task. However, it does

not fully predict the occupancy ratio. We interpret this as a

strong clue that the ratio di

dmax
alone is not enough to predict

γ, and our proposed network successfully learns to extract

meaningful information from the depth maps. We hypothe-

size that our volume network captures additional geometric

information such as the influence of concavities in the final

occupation of volume.

4.4. Ablation Study
We ran additional experiments to evaluate the sensitivity of

our approach to the depth maps produced by the monocular

depth estimator.

Since our synthetic dataset has ground-truth depth maps

both for the training images and the validation images, we

use them as follows. Recall from Sec. 3.2 that, at train-

ing time, we use Depth Anything V2 [30] depth maps, a

setting we refer to as T − for training without ground-truth.
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NAE ↓ SRE ↓ MAE ↓ sMAPE ↓
(T −, D−) 0.22 0.09 79.48 27.65
(T +, D−) 0.28 0.11 100.12 30.93

(T +, D+) 0.31 0.12 111.04 35.92

Table 4. Ablation study on 3D counting. If ground-truth depth

maps are used during training, it is indicated as T +, and T − oth-

erwise. Similarly, for evaluation purposes if ground-truth depth-

maps are used during validation, we indicate it as D+.

MAE ↓ RMSE ↓ sMAPE ↓ R2 ↑
(T −, D−) 0.06 0.07 29.18 0.79
(T +, D−) 0.08 0.11 32.01 0.52

(T +, D+) 0.10 0.13 37.35 0.32

Table 5. Ablation study on occupancy ratio estimation.

Figure 8. Complexity Analysis. Each point represents the γ oc-

cupancy ratio error for a shape in the validation set.

Instead, we could use ground-truth depth maps during train-

ing, a setting we will refer to as T +. Similarly, at inference

time, we can use the estimated depth map. which is what

we normally do, or the ground-truth one. We refer these as

D− and D+, respectively. Thus, the standard configuration

of our method is T −,D−. The others are only used for

ablation purposes.

We report the results in Tab. 4 and occupancy ratio esti-

mation in Tab. 5. Entirely dropping the ground-truth depth

maps and relying only on estimated ones, which is our stan-

dard operating procedure, is best. We hypothesize that this

is due to the slight smoothing in the produced depth maps,

which may prevent the model from overfitting to specific

shape features in perfect depth maps.

Even though the network is trained on synthetic data, this

observation further confirms the generalizability of 3DC to

real data, since in a practical scenario such as the real data

of Tab. 2, ground-truth depth maps are not available.

Finally, we also report in Tab. 2 an ablated method Ours
(Color) where the γ-network takes an RGB image as input

instead of a depth map. While this method still outperforms

humans, it suffers from a significant performance drop and

justifies the use of depth maps in our final approach.

4.5. Limitations and Future Work
To evaluate the robustness of our method to complex

shapes, we visualize in Fig. 8 the error in occupancy ra-

tio estimation as a function of shape complexity. The latter

is measured by summing a curvature complexity term with

the ratio of the shape’s volume by the volume of its convex

hull:

C =
κ

‖xmax − xmin‖2κ0
+

Vhull − V

Vhull

where κ is the integrated mean curvature of the shape,

‖xmax − xmin‖2 is a scaling factor and κ0 is the maximum

scaled κ observed in the dataset. We only observe a slight

error increase as the shapes become more complex,

Unlike ours, many earlier methods attempt to localize the

objects being counted, increasing the interpretability and

usability of the results. However, these localizations are

often erroneous when objects are stacked together, as illus-

trated in Fig. 9, greatly limiting their applicability. Thus

another possible direction for further enhancements lies in

integrating a robust localization of visible instances, and an

estimation of a possible configuration of invisible instances.

(a) Input image (b) BMNet+ [21] (c) SAM[7]+CLIP[16]

Figure 9. Instance localization. Previous methods also produce

interpretable results, representing a promising direction for future

work.

5. Conclusion
In this paper, we introduced a novel method to count sets

of stacked nearly-identical objects. In this scenario, oc-

clusions and irregular arrangements make accurate count-

ing difficult. By decomposing the counting task into com-

plementary subproblems—estimating independently the 3D

volume of the stacks and the proportion of this volume actu-

ally occupied by objects—we were able to propose an effec-

tive solution that is easy to implement and far outperforms

humans at this highly non-trivial task.

Our experiments show that the performance of our ap-

proach can degrade with increased geometric complexity

or visually complex scenes. In future work, we will there-

fore look into training the volume occupancy estimator to

overcome these challenges. More generally, we believe our

method and proposed datasets will open new applications

and encourage future works centered on stacks of 3D ob-

jects, including 3D reconstruction, counting, or 3D scene

understanding.
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