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Figure 1. Discovering divergent representations with CompCon. Left: CompCon takes as input a pair of text-to-image models and
outputs a diverging prompt description to produce a diverging visual attribute appearing in one model but not the other. Right: We show
the discovered diverging visual attribute ‘flames’ appearing in PixArt but not SDXL-Lightning over different diverging prompts.

Abstract

In this paper, we investigate when and how visual represen-
tations learned by two different generative models diverge
from each other. Specifically, given two text-to-image mod-
els, our goal is to discover visual attributes that appear in
images generated by one model but not the other, along with
the types of prompts that trigger these attribute differences.
For example, ‘flames’ might appear in one model’s outputs
when given prompts expressing strong emotions, while the
other model does not produce this attribute given the same
prompts. We introduce CompCon (Comparing Concepts),
an evolutionary search algorithm that discovers visual at-
tributes more prevalent in one model’s output than the other,
and uncovers the prompt concepts linked to these visual dif-
ferences. To evaluate CompCon’s ability to find diverging
representations, we create an automated data generation
pipeline to produce ID2, a dataset of 60 input-dependent
differences, and compare our approach to several LLM- and
VLM-powered baselines. Finally, we use CompCon to com-
pare popular text-to-image models, finding divergent repre-
sentations such as how PixArt depicts prompts mentioning
loneliness with wet streets and Stable Diffusion 3.5 depicts
African American people in media professions.

1Work done during an internship at Adobe Research.

1. Introduction

Generative models develop unique representations of se-
mantic concepts – for instance, happy scenes contain warm
colors, or dogs are found outside. While many of these
representations are shared across models, understanding
when representations diverge can reveal stylistic differ-
ences between models. In this work, we explore how to un-
cover such divergent representations by identifying input-
dependent differences between two text-to-image models.
Specifically, we aim to discover pairs of semantic concepts
and visual attributes where prompts containing a semantic
concept cause one model to generate images displaying the
corresponding visual attribute, while the other does not. For
example, prompts that mention strong emotions result in
images with flames in one model but not the other (Fig. 1).

Discovering divergent representations is beneficial for
both model developers and users. For developers, it can
help decide which model to deploy to production based on
any problematic discovered divergent representations, and
for evaluating against competitor models. For users, it can
help in selecting the model that best aligns with their own
interpretations and needs. Manually performing this task
is labor-intensive, as it requires sifting through hundreds
or thousands of images to find visual attribute differences;
once identified, additional effort is needed to determine the
types of input prompts that trigger these differences.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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When comparing text-to-image models, the evaluation
typically focuses on metrics such as image quality and
prompt adherence [22, 24–26, 30, 37, 40]. While these met-
rics indicate how well models perform, they often overlook
what the models actually learn. For example, what defines
‘cute’ versus ‘ugly’? What characteristics make something
appear ‘futuristic’? What does ‘emotion’ look like? As we
will show, models trained on different data, using different
encoders or training procedures, can learn distinct interpre-
tations of the same concept. For instance, one model may
associate ‘ancient’ with the Paleolithic Era while the other
associates it with the Roman Empire.

To address the task of discovering divergent representa-
tions, we make the following contributions. First, we in-
troduce CompCon (Comparing Concepts), an evolutionary
search algorithm designed to uncover input-dependent dif-
ferences in model representations. CompCon first discovers
pairwise differences in model outputs, generates a descrip-
tion of the prompts that cause this difference, and iteratively
refines this description by analyzing existing prompts and
generating new ones likely to highlight these differences.
As shown in Figure 1, CompCon can generate prompts that
result in model behaviors like putting flames behind opera
singers for one model but not the other.

Second, we create ID2 (Input-Dependent Differences),
a dataset of 60 semantic-visual representations to evaluate
the efficacy of our method. Using this dataset, we compare
CompCon to LLM, TF-IDF, and VisDiff [17] baselines. As
our third contribution, we apply CompCon to compare the
PixArt and SD-Lightning text-to-image models, finding, for
example, that prompts mentioning anger result in depictions
of ‘flames’ in PixArt, prompts mentioning sadness and soli-
tude result in ‘wet streets’ in PixArt, and abstract prompts
with cosmic motifs result in ‘mandala circular designs’ in
SD-Lightning. We also uncover bias, such as PixArt gen-
erating older men for prompts mentioning traditional pro-
fessions. These findings demonstrate how CompCon can
systematically reveal subtle differences between generative
models, helping developers and users better understand and
leverage these models’ unique behaviors.

2. Related Work
Evaluating Text-to-Image Models. The evaluation of text-
to-image models has advanced significantly in recent years.
Traditional quality measures such as FID [25], Inception
core [40], CLIP score [24], and CLIP-R score [37] have
been complemented by newer metrics like TAIM [22] and
TIFA [26], which leverage vision-and-language models to
assess prompt adherence. Holistic benchmarks such as
HEIM and others [10, 30, 39, 47] aggregate multiple axes
of evaluation, including quality, prompt adherence, style,
and efficiency. While these approaches excel in measur-
ing overall model performance, they focus on objective

qualities and often overlook fine-grained, subjective differ-
ences between models. Our work complements these ef-
forts by targeting input-dependent differences, particularly
in semantic interpretations and stylistic variations, which
are crucial for understanding model-specific behaviors.
Interpreting Diffusion Models. Several works have ex-
plored ways of interpreting the internal representations of
generative vision-language models. Bau et al. [4], Dravid
et al. [15], Gandelsman et al. [19, 20] explore how to de-
scribe the function of certain neurons and attention heads in
natural language,, and Tong et al. [44] discovers how image
and text representations differ in latent space to better un-
derstand CLIP failures. We see our work as a data-driven
approach to attain similar insights into model behavior.
Discovering Bias in Diffusion Models. Uncovering and
mitigating biases in text-to-image models has been well ex-
plored, with many works focus on finding and mitigating
a predefined set of biases related to gender, race, and ge-
ography [5, 11, 18, 21, 23, 45, 46]. Recently, a line of
works have emerged that aim to automatically discover bi-
ases from the data, rather than using a predefined list. Many
of these approaches [13, 14] discover bias by prompting
a large language model (LLM) to propose potential biases
from image captions, generating prompts that may indicate
a bias in models (e.g., “a doctor”) and using a VLM to check
if this bias exists. Liu et al. [34] builds on this by cluster-
ing generated images based on concepts like gender, while
Chinchure et al. [8] extends bias discovery to counterfactual
examples, eliminating the need for a large caption pool.In
contrast, our work focuses on model comparison, rather
than single-model auditing, which better reflects many real-
world evaluations where success is measured by improve-
ment relative to other models. Additionally, while previ-
ous methods [13, 14] identify biases from input captions,
CompCon analyzes generated images directly using VLMs.
This enables discovery of subtler, more nuanced differences
in visual representation, including social biases and stylistic
or conceptual divergences between models. Further discus-
sion is in Sections 5.4 and G.1 of the Appendix.
Describing Differences in Image Sets. Several works have
aimed to describe differences in sets of images using natu-
ral language. For example, VisDiff [17] generates visual
attributes distinguishing two sets of images by analyzing
captions and refining them using cross-modal embeddings.
Similarly, Chiquier et al. [9] train interpretable CLIP classi-
fiers that evolve based on LLM-generated attributes. While
these approaches focus on dataset-level differences, they do
not address input-dependent variation. We adapt and ex-
tend VisDiff’s methodology for pairwise comparison, fo-
cusing on prompt-specific divergences and refining attribute
discovery to capture subtler differences. Additionally, our
method introduces a novel iterative search for prompt de-
scriptions that cause these differences.
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3. Divergent Representation Discovery

Let P be a set of text prompts, and I(P )
1 and I(P )

2 be sets of
images generated by two text-to-image models given the in-
put prompts P . We call the natural language descriptions of
the prompt set P and any visual differences between the two
generated image sets I(P )

1 and I(P )
2 a divergent representa-

tion (see Figure 1). These divergent representations take
the form of a pair of natural language descriptions (a, dPa

),
where a is a description of a visual attribute seen more of-
ten in one model than the other (e.g., “flames”), and dPa is a
description of the concepts present in text prompts Pa elic-
iting this difference (e.g., “strong emotions”). We refer to
a as a diverging visual attribute, dPa

as a diverging prompt
description, and Pa as diverging prompts.

Given a pair of text-to-image models Θ = (θ1, θ2), we
aim to discover differences in the images generated by the
two models as well as a description of the types of input
text prompts that trigger these differences. Let P be the set
of all possible text prompts and A be the set of all possible
diverging visual attributes. Our goal is to find the mapping
FΘ from text prompts in P to diverging visual attributes in
A given the model pair Θ,

FΘ : P 7→ A. (1)

Note that this mapping is not a bijection as multiple text
prompts may map to a single diverging visual attribute.
Moreover, multiple diverging visual attributes may be de-
picted for a given set of diverging prompts.

Our approach for computing the mapping FΘ comprises
two steps, illustrated in Figure 2. First, given the text-to-
image model pair Θ and a large set of initial prompts P0 ⊂
P , we compute a set of diverging visual attributes A0 ⊂ A
(Section 3.1). Next, for each diverging visual attribute a ∈
A0, we optimize an objective to find the set of diverging
prompts Pa ⊂ P resulting in the diverging visual attribute
a (Section 3.2). We next describe each of these steps.

3.1. Discovering Diverging Visual Attributes
Our goal is, given a text-to-image model pair Θ and a large
set of initial text prompts P0, to compute a set of diverg-
ing visual attributes A0 over images generated given the
prompts. This task is challenging as a system must iden-
tify any consistent visual differences between the two mod-
els’ generated image sets. These differences are often subtle
and difficult to spot over the large generated image collec-
tion. We address this challenge by prompting an off-the-
shelf vision-language model (VLM) for this task.

For the text-to-image model pair Θ and a text prompt p,
let G(Θ, p) =

{
I(p)
1 , I(p)

2

}
denote the two sets of images

generated by each model given prompt p. We first sam-
ple a batch of prompts Pbatch ⊂ P0 and, for each prompt
p ∈ Pbatch, we construct a two-row image grid by tiling the

images in I(p)
1 on the top row and I(p)

2 on the bottom row.
Using this image grid, we instruct a VLM to find diverging
visual attributes appearing more in images of I(p)

1 compared
to I(p)

2 (see Appendix for our instruction prompt). Our re-
sulting diverging visual attribute list A0 is the aggregation
of discovered attributes across Pbatch.

Next, we rank each diverging visual attribute a ∈ A0 by
assigning a score indicating how well attribute a can distin-
guish image sets I(P0)

1 and I(P0)
2 . For each set of images

generated by prompt p ∈ P0, we define a divergence score
z(a, I(p)

1 , I(p)
2 ) → {0, 1} that indicates whether image set

I(p)
1 contains attribute a while I(p)

2 does not.
Using cross-modal similarity, here CLIP [38], we com-

pute the cosine similarity s(·) between diverging visual at-
tribute a and each image in sets I(p)

1 and I(p)
2 . Using these

similarities, we define the divergence score as the product
of two indicated conditions,

z(a, I(p)
1 , I(p)

2 ) =1
[
s(a, I(p)

1 ) > t] × (2)

1
[
s(a, I(p)

1 )− s(a, I(p)
2 ) > δ

]
where t and δ are hyperparameters that determine if I(p)

1

contains attribute a and I(p)
2 does not contain a.

Using this divergence score, we define the overall score
for attribute a as the mean divergence score over prompts in
the initial prompt set: 1

|P0|
∑

p∈P0
z(a, I(p)

1 , I(p)
2 ). A score

of 1 means that all images generated by model θ1 contain
attribute a and none of the images generated by θ2 contain
a. A score of 0 indicates that a never appears more often in
images generated by θ1. Note that we are not optimizing for
scores close to 1, we are simply interested in any attribute a
that obtains a score sufficiently above zero. Finally, as many
attributes A0 are semantically equivalent (e.g. ”flames” and
”fire”) we prompt an LLM to remove similar attributes.

3.2. Discovering Diverging Prompt Descriptions
After we discover a set of diverging visual attributes A0,
for each attribute a ∈ A0 we aim to find a natural language
description dPa

of the diverging prompts that trigger this
attribute. This task is challenging as the search space over
all possible text prompts P is large, and we must not only
find a set of prompts but a natural language description that
completely covers this set.

Let L(dPa
) be the diverging prompts generated from de-

scription dPa
. Our objective is to maximize the expected

divergence score over the generated prompts:

max
dPa

Ep∼L(dPa )
[z(a, I(p)

1 , I(p)
2 )], (3)

where z is the divergence score defined in Equation (2).
That is, we want to maximize the number of prompts that
have been generated by description dPa

and confirmed to

17518



A racoon giving a 
business 

presentation 

A cat wearing 
an apron baking 

cookies

A magical 
bookshop with 

flying books

A cozy cabin in 
the winter 
mountains

A bear typing 
an essay on a 

typewriter 

A racoon giving a business presentation
A cat wearing an apron baking cookies

....

A cozy cabin in the mountains in winter
A magical bookshop with flying books

….

“Diverging 
prompts contain 

animals doing 
activities”

“black and white drawing”

“a cat playing piano”
“a dog playing fetch”
“a rabbit eating food” 

Get new
diverging
prompts

“a cat playing piano”
“a dog playing fetch”
“a rabbit eating food” 

<latexit sha1_base64="r/cP6tYjGVEcFrhameKip3Fwjs4=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclUR8LYtuuqxgH9DGMplM2qGTSZiZVErMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+Z4MaNS2fa3sbK6tr6xWdoqb+/s7u2blYO2jBKBSQtHLBJdD0nCKCctRRUj3VgQFHqMdLzxbe53JkRIGvF7NY2JG6IhpwHFSGlpYFb6IVIjjFjayB5Sn06ygVm1a/YM1jJxClKFAs2B+dX3I5yEhCvMkJQ9x46VmyKhKGYkK/cTSWKEx2hIeppyFBLpprPomXWiFd8KIqEfV9ZM/b2RolDKaejpyTyoXPRy8T+vl6jg2k0pjxNFOJ4fChJmqcjKe7B8KghWbKoJwoLqrBYeIYGw0m2VdQnO4peXSfus5lzWLu7Oq/Wboo4SHMExnIIDV1CHBjShBRge4Rle4c14Ml6Md+NjPrpiFDuH8AfG5w/lO5Ru</latexit>

Hdiv

<latexit sha1_base64="3+LbZEwW0IZcGn4nXGUL/jz4po0=">AAAB+nicbVC7TsMwFL0pr1JeKYwsFhUSU5UgXmMFS8ci0YfUhspxndaq40S2A6pCPoWFAYRY+RI2/gan7QAtR7J0dM69usfHjzlT2nG+rcLK6tr6RnGztLW9s7tnl/dbKkokoU0S8Uh2fKwoZ4I2NdOcdmJJcehz2vbHN7nffqBSsUjc6UlMvRAPBQsYwdpIfbvcC7EeEczTenafikhkfbviVJ0p0DJx56QCczT69ldvEJEkpEITjpXquk6svRRLzQinWamXKBpjMsZD2jVU4JAqL51Gz9CxUQYoiKR5QqOp+nsjxaFSk9A3k3lQtejl4n9eN9HBlZcyESeaCjI7FCQc6QjlPaABk5RoPjEEE8lMVkRGWGKiTVslU4K7+OVl0jqtuhfV89uzSu16XkcRDuEITsCFS6hBHRrQBAKP8Ayv8GY9WS/Wu/UxGy1Y850D+APr8wfxfZR2</latexit>Hnon

Discovering Divergent Prompt Descriptions

VLM

What is seen more 
often in the top 
row compared to 
the bottom row?

Prompt bank

Classify
diverging
prompts 

What concepts 
are seen in 
but not 
seen in  

LLM

<latexit sha1_base64="r/cP6tYjGVEcFrhameKip3Fwjs4=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclUR8LYtuuqxgH9DGMplM2qGTSZiZVErMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+Z4MaNS2fa3sbK6tr6xWdoqb+/s7u2blYO2jBKBSQtHLBJdD0nCKCctRRUj3VgQFHqMdLzxbe53JkRIGvF7NY2JG6IhpwHFSGlpYFb6IVIjjFjayB5Sn06ygVm1a/YM1jJxClKFAs2B+dX3I5yEhCvMkJQ9x46VmyKhKGYkK/cTSWKEx2hIeppyFBLpprPomXWiFd8KIqEfV9ZM/b2RolDKaejpyTyoXPRy8T+vl6jg2k0pjxNFOJ4fChJmqcjKe7B8KghWbKoJwoLqrBYeIYGw0m2VdQnO4peXSfus5lzWLu7Oq/Wboo4SHMExnIIDV1CHBjShBRge4Rle4c14Ml6Md+NjPrpiFDuH8AfG5w/lO5Ru</latexit>

Hdiv

<latexit sha1_base64="3+LbZEwW0IZcGn4nXGUL/jz4po0=">AAAB+nicbVC7TsMwFL0pr1JeKYwsFhUSU5UgXmMFS8ci0YfUhspxndaq40S2A6pCPoWFAYRY+RI2/gan7QAtR7J0dM69usfHjzlT2nG+rcLK6tr6RnGztLW9s7tnl/dbKkokoU0S8Uh2fKwoZ4I2NdOcdmJJcehz2vbHN7nffqBSsUjc6UlMvRAPBQsYwdpIfbvcC7EeEczTenafikhkfbviVJ0p0DJx56QCczT69ldvEJEkpEITjpXquk6svRRLzQinWamXKBpjMsZD2jVU4JAqL51Gz9CxUQYoiKR5QqOp+nsjxaFSk9A3k3lQtejl4n9eN9HBlZcyESeaCjI7FCQc6QjlPaABk5RoPjEEE8lMVkRGWGKiTVslU4K7+OVl0jqtuhfV89uzSu16XkcRDuEITsCFS6hBHRrQBAKP8Ayv8GY9WS/Wu/UxGy1Y850D+APr8wfxfZR2</latexit>Hnon

Update bank with new  diverging and non-diverging prompts

Discovering Divergent Visual Attributes

Prompts

?

diverging prompt 
description

diverging visual 
attribute

<latexit sha1_base64="zN9rh+A/IkLuwwIQbAkxA2Z7x70=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRLxtSy6cVnBPqCN4WY6aYdOJmFmIoQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHjxmVyra/jcrK6tr6RnWztrW9s7tn7h90ZZQITDo4YpHo+yAJo5x0FFWM9GNBIPQZ6fnTm8LvPRIhacTvVRoTN4QxpwHFoLTkmfVhCGqCgWXt3IOHDAPPPbNhN+0ZrGXilKSBSrQ982s4inASEq4wAykHjh0rNwOhKGYkrw0TSWLAUxiTgaYcQiLdbBY+t461MrKCSOjHlTVTf29kEEqZhr6eLKLKRa8Q//MGiQqu3IzyOFGE4/mhIGGWiqyiCWtEBcGKpZoAFlRntfAEBGCl+6rpEpzFLy+T7mnTuWie3501WtdlHVV0iI7QCXLQJWqhW9RGHYRRip7RK3oznowX4934mI9WjHKnjv7A+PwBUvWVOQ==</latexit>Pcan
a

<latexit sha1_base64="w05jJxZpBcB4CaY3EFctAaX87As=">AAAB/HicdVDNS8MwHE39nPOruqOX4BA8lVacztvQi8cJ7gO2WtI03cLStCTpYJT6r3jxoIhX/xBv/jemWwUVfRB4ee/3Iy/PTxiVyrY/jKXlldW19cpGdXNre2fX3NvvyjgVmHRwzGLR95EkjHLSUVQx0k8EQZHPSM+fXBV+b0qEpDG/VbOEuBEacRpSjJSWPLM2jJAaY8Sydu6huyyg09wz67Z10bQbjg1ty55DE311mg3olEodlGh75vswiHEaEa4wQ1IOHDtRboaEopiRvDpMJUkQnqARGWjKUUSkm83D5/BIKwEMY6EPV3Cuft/IUCTlLPL1ZBFV/vYK8S9vkKqw6WaUJ6kiHC8eClMGVQyLJmBABcGKzTRBWFCdFeIxEggr3VdVl/D1U/g/6Z5YzpnVuDmtty7LOirgAByCY+CAc9AC16ANOgCDGXgAT+DZuDcejRfjdTG6ZJQ7NfADxtsnqz6VdQ==</latexit>

Pdiv
a

<latexit sha1_base64="WJP+MCiBNktcJJg54luxZmZWAz4="></latexit>

|Pdiv
a |

|Pcan
a | = 0.33Objective:

<latexit sha1_base64="hN/7BK4XlNFfEsF2DUu3YVJnleE=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiTia1l047KCfUAbws1k0g6dPJiZKCXmU9y4UMStX+LOv3HSZqGtBwYO59zLPXO8hDOpLOvbqKysrq1vVDdrW9s7u3tmfb8r41QQ2iExj0XfA0k5i2hHMcVpPxEUQo/Tnje5KfzeAxWSxdG9mibUCWEUsYARUFpyzbrvZsMQ1JgAz9q5C7lrNqymNQNeJnZJGqhE2zW/hn5M0pBGinCQcmBbiXIyEIoRTvPaMJU0ATKBER1oGkFIpZPNouf4WCs+DmKhX6TwTP29kUEo5TT09GSRUi56hfifN0hVcOVkLEpSRSMyPxSkHKsYFz1gnwlKFJ9qAkQwnRWTMQggSrdV0yXYi19eJt3Tpn3RPL87a7Suyzqq6BAdoRNko0vUQreojTqIoEf0jF7Rm/FkvBjvxsd8tGKUOwfoD4zPH8QVlFg=</latexit>

dPa

<latexit sha1_base64="uVGMUiIePZr1VeewLwnVK3GOhFw=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPqAdyp00bUMzmTHJFMrQ73DjQhG3fow7/8ZMOwttPRA4nHMv9+QEseDauO63s7K6tr6xWdgqbu/s7u2XDg4bOkoUZXUaiUi1AtRMcMnqhhvBWrFiGAaCNYPRXeY3x0xpHslHM4mZH+JA8j6naKzkd0I0Q4oirU27brdUdivuDGSZeDkpQ45at/TV6UU0CZk0VKDWbc+NjZ+iMpwKNi12Es1ipCMcsLalEkOm/XQWekpOrdIj/UjZJw2Zqb83Ugy1noSBncxC6kUvE//z2onp3/gpl3FimKTzQ/1EEBORrAHS44pRIyaWIFXcZiV0iAqpsT0VbQne4peXSeO84l1VLh8uytXbvI4CHMMJnIEH11CFe6hBHSg8wTO8wpszdl6cd+djPrri5DtH8AfO5w+2cZIT</latexit>P0

<latexit sha1_base64="KWzY2bLzO31lK/gWLvxnXW12sCk=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVaa9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzWL8rV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwBxp2M7w==</latexit>a

Model 2

Model 1

Figure 2. CompCon overview. We illustrate our approach for discovering diverging visual attributes (top) and diverging prompt descrip-
tions (bottom). Given two text-to-image models and a set of prompts, we use a VLM to identify visual differences. For each diverging
attribute, we iteratively refine diverging prompt descriptions by generating candidate prompts Pcan

a from the description, classifying them
as diverging (Hdiv) or non-diverging (Hnon). The objective is to maximize the proportion of generated prompts classified as diverging.

Algorithm 1 Discovering diverging prompt descriptions
Input: Model pair Θ, diverging visual attribute a, initial set of

prompts P0, number of iterations N
Output: Diverging prompt description d⋆Pa

1: Initialize: prompt bank H ← ∅, scores σ ←
emptyArray(N), descriptions dPa ← emptyArray(N)

2: Pa ← classifyDiverging(Θ, a,P)
3: Hdiv ← Pa

4: Hnon
a ← P \ Pa

5: for i in 1, . . . , N do
6: hdiv

a , hnon
a ← sample(Hdiv,Hnon)

7: dPa [i]← describeDiverging(Pdiv
a ,Pnon

a ,H)
8: Pcan

a ← getNewDiverging(dPa [i], a,H)
9: Pdiv

a ,Pnon
a ← classifyDiverging(Θ, a,Pcan

a )
10: σ[i]← |Pdiv

a |/|Pcan
a |

11: Hnon = Hnon ∪ Pnon
a

12: Hdiv = Hdiv ∪ Pdiv
a

13: end for
14: d⋆Pa

← dPa [argmax(σ)]

15: return d⋆Pa

be diverging. We explore two options for our prompt gener-
ator L. The first is to use an LLM to generate new prompts
given dPa

, and the second is to retrieve prompts from a large
prompt bank using dPa

.

As the desired diverging prompt description dPa
is dis-

crete (natural language) and Objective (3) is not differen-

tiable, we optimize the objective via evolutionary search.
To achieve this goal, for N evolutionary search iterations,
we use an LLM to generate description dPa

given a bank
of diverging and non-diverging prompts Hdiv and Hnon,
generate new prompts and images from dPa

, add these new
prompts to Hdiv and Hnon, and evolve our description us-
ing these updated sets.

We maintain a bank H =
(
Hdiv,Hnon

)
of di-

verging and non-diverging text prompts, where diverging
prompts are given by Hdiv = {p | z(a, I(p)

1 , I(p)
2 ) =

1} and non-diverging prompts are given by Hnon =

{p | z(a, I(p)
1 , I(p)

2 ) = 0}. We mutate the current de-
scription dPa

by prompting an LLM (GPT-4o) to provide
a description of what concepts are shared in Hdiv but not
in Hnon and score the mutation using Objective (3). The
mutation prompt is provided in the Appendix.

Algorithm 1 provides pseudocode for our evolutionary
search algorithm, with its key functions described below.
Mutation function describeDiverging. Given the
bank of diverging and non-diverging text prompts H, we
sample B prompts from Hdiv and Hnon and instruct an
LLM to output a description dPa

(the diverging prompt
description) of what concepts are shared across diverging
prompts which are not seen in non-diverging prompts. Af-
ter the first iteration, prompts in H which were generated in
the previous iteration are up-weighted when sampling.
Mutation scoring. To score the current mutation, we first
define a function getNewDiverging that, given the di-
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verging prompt description dPa , diverging visual attribute
a, and prompt bank H, provides candidate prompts Pcan

a

that are likely to be diverging and do not directly relate to
attribute a. We explore two ways of obtaining Pcan

a : gener-
ation and retrieval. In the generation setting, we prompt an
LLM (GPT-4o) to generate a diverse set of k new prompts
that align with the description dPa , given random samples
of prompts from H as a point of reference. The instruction
prompt can be found in the Appendix. In the retrieval set-
ting we use description dPa

to retrieve the top k prompts
from the prompt bank H excluding the B sampled prompts
used to generate the prompt description, having the high-
est text embedding similarity to dPa . We show results of
both of these approaches in Section 5 and provide further
implementation details in 5.1.

Next, we define a function classifyDiverging
that, given the model pair Θ, visual attribute a, and can-
didate prompts Pcan

a , finds the diverging prompts Pdiv
a =

{p ∈ Pcan
a | z(a, I(p)

1 , I(p)
2 ) = 1}. If more than one image

is generated per prompt, we define a prompt as diverging if
the majority of the generated images result in a diverging
score z(a, i

(p)
1 , i

(p)
2 ) = 1 for i(p)1 ∈ I(p)

1 and i
(p)
2 ∈ I(p)

2 .
Finally, we approximate the expectation in Objective (3)

by the ratio of diverging to candidate prompts set sizes,

Ep∼L(dPa )
[z(a, I(p)

1 , I(p)
2 )] =

|Pdiv
a |

|Pcan
a | (4)

where |·| denotes the size of the set. We return the diverging
prompt description dPa

with the highest ratio.

4. ID2 Dataset and LLM Evaluation
To systematically evaluate methods for discovering diver-
gent representations, we created ID2 (Input-Dependent Dif-
ferences), a benchmark dataset containing 60 divergent rep-
resentations between text-to-image models. Each represen-
tation consists of a diverging visual attribute and its cor-
responding diverging prompt description. Moreover, we in-
clude for each diverging representation a set of prompts that
align with the diverging prompt description and, for each
prompt, pairs of generated images where the diverging vi-
sual attribute is depicted in one image but not the other.

Creating such a benchmark is challenging because diver-
gent representations between models are not known a pri-
ori, and manual annotation across the vast prompt space is
impractical. To address this, we use a simulation approach:
rather than comparing two distinct models, we use a single
model (SD-3.5-Turbo [1]) and simulate differences by mod-
ifying input prompts to include specific visual attributes.

For each divergent representation in ID2, we generate
paired prompts where one explicitly mentions the visual at-
tribute while the other does not. Both prompts are processed
by the same text-to-image model, creating image pairs that

Diverging prompt description (      ): serene, peaceful 

Diverging visual attribute (𝑎): neon colors

FF0094

Generate a list of diverse prompts that contain 
the concepts “serene”, “peaceful”. For each 
prompt, generate an altered version that is 
identical to the original prompt except it now 
contains the attribute “neon colors”.

LLM

Text-to-image model
(SD-3.5-Turbo)

Altered Prompt (𝑝!!"#): “A quiet lake 
surrounded by forest at dawn with 

neon colors reflecting on the water”

Text-to-image model
(SD-3.5-Turbo)

𝐼!
(#) 𝐼%

(#)

Prompt (𝑝): “A quiet 
lake surrounded by 

forest at dawn”

Figure 3. ID2 creation. Given a diverging prompt description
dpa and diverging visual attribute a, we use an LLM to gener-
ate prompt pairs where one of the prompts mentions the diverging
visual attribute. Both prompts are then passed to the same text-to-
image model to generate image pairs with the visual difference a.

exhibit controlled, systematic differences. This simulation
approach allows us to create ground truth data with known
divergent representations against which we can evaluate dis-
covery methods. To assess the quality of discovered repre-
sentations, we developed an LLM-based evaluation frame-
work that measures both attribute similarity and description
accuracy compared to ground truth. This framework pro-
vides objective metrics to compare different approaches for
identifying divergent representations between text-to-image
models. We describe the dataset creation and evaluation
process below and in Figure 3.
ID2 Dataset Creation. Each divergent representation
(a, dPa

) in ID2 comprises a ground truth diverging visual
attribute a and ground truth diverging prompt description
dPa

. We generate the diverging representations using ei-
ther GPT-4o, Claude 3.5 Sonnet [3], or manually. Each di-
verging visual attribute a is a short phrase, and diverging
prompt description dPa is a list of semantic concepts that a
prompt should include. These representations cover diverse
categories, such as related concepts (‘red roses’, [‘love’,
‘romance’]), abstract representations (‘geometric shapes’,
[‘efficiency’, ‘productive’]), and bias (‘overweight person’,
[‘lazy’, ‘unmotivated’]). The full list of diverging represen-
tations are located in the Appendix.

Given a diverging representation (a, dPa
), we gener-

ate a corresponding set of prompts and generated images
{(p, I(p)

1 , I(p)
2 )} such that each prompt p aligns with di-

verging prompt description dPa
and the accompanying pair

of generated images I(p)
1 and I(p)

2 has diverging visual at-
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tribute a appearing in one generated image but not the other.
We illustrate the process for creating this set in Figure 3.
First, we use GPT-4o to generate a prompt p that aligns
with diverging prompt description dPa

along with an altered
prompt palt that contains attribute a. Both prompts are then
given to a diffusion model θ (SD-3.5-Turbo) to generate im-
ages such that I(p)

1 = θ(p) and I(p)
2 = θ(palt). The authors

manually inspect these generations to ensure the prompts
align with the diverging prompt description dPa

, and that
diverging visual attribute a is seen in the majority of im-
ages corresponding to I(p)

1 but not I(p)
2 . We further validate

these sets with human studies described later in the section.
For each of the 60 diverging representations, we gener-

ate 3 image pairs per prompt across 50 prompts, resulting in
two sets of 150 images. Finally, for each representation, we
also include a set of distractors – image pairs from 200 ran-
domly generated prompts where I(p)

1 and I(p)
2 are generated

with the same prompt p over different random seeds, result-
ing in image pairs with no discernible difference in visual
attributes. The purpose of these distractors is to assess the
methods’ ability to generate descriptions and attributes in
the presence of noise (no diverging visual attribute present).
LLM Evaluation. When given ground truth representa-
tions (a, dPa

) and predicted representations (a′, d′Pa
), we

use an LLM-as-a-judge (GPT-4o) to compute an attribute
score and a description score, which respectively measure
the similarity of the predicted visual attribute and prompt
description to the ground truth. The prompt given to the
judge can be found in the Appendix.

These scores range from 0 to 1, where 1 indicates perfect
agreement, 0.5 indicates partial agreement, and 0 indicates
no agreement. Partial agreement means that the predicted
attribute or description is related to the ground truth. For
example, the ground truth visual attribute is ‘flames’ and the
predicted attribute is ‘a red color palette’ would be deemed
a partial alignment. To maintain a fair evaluation with other
baselines, we prompt our mutation LLM to structure de-
scriptions dPa

as a short list of semantic concepts.
Human Validation of ID2 and LLM Evaluation. We con-
ducted a two-stage validation study with 4 PhD students,
each annotating 10 randomly sampled sets from ID2 (2 an-
notations per set). Participants identified concepts appear-
ing more frequently in one set versus another and con-
cepts shared across prompts. They then assessed whether
our ground truth diverging attribute and diverging prompt
description aligned with their descriptions and with the
images/prompts. Nearly all participants agreed with the
ground truth: participants validated that all 40 visual at-
tributes appeared in generated image pairs, and 36/40 pro-
vided free-form attributes that matched the ground truth
(match validated by the participants). Similarly, for prompt
descriptions, 39/40 validated the ground truth, and 34/40
provided free-form attributes that matched the ground truth.

To validate our LLM scoring system, three participants
scored 25 predictions using the same rubric given to the
LLM judge. The weighted Cohen’s kappa [12] between hu-
mans and the LLM was 0.635, comparable to inter-human
agreement (0.667), confirming that LLM-as-a-judge scores
align closely with human evaluation.

5. Experiments
We measure CompCon’s ability to discover diverging visual
attributes and diverging prompt descriptions in comparison
to baselines on the ID2 (Section 5.3) and apply CompCon
to compare two popular open source models, PixArt [6] and
SD-Lightning [32] to find diverging representations and un-
cover age and gender bias (Section 5.4)

5.1. Experimental Details
For our experiments, we set the size of Pbatch to be 50,
t = 0, and δ = 0.05 for our diverging visual attribute dis-
covery phase. In our diverging prompt description phase,
we sample 25 prompts from Hdiv and Hnon and generate
k = 25 new prompts per iteration. For all experiments, each
model generates 3 images per prompt across different seeds.
We set t = 0.2 and δ = 0.05 for our benchmark compari-
son. For the model comparison in Section 5.4, we manually
inspect prompts labeled as diverging to set thresholds t and
δ. Hyperparameters for each discovered diverging represen-
tation, as well as all LLM and VLM prompts used for the
method and baselines can be found in the Appendix.

We use GPT-4o [36] as the LLM for CompCon’s diverg-
ing visual attribute discovery and diverging prompt descrip-
tion discovery phases, as well as for the LLM-Only base-
line described below. We use CLIP ViT-bigG-14 [7, 28, 38]
trained on Laion2b [41] to classify diverging prompts and
attributes and the instructor-xl [43] text embedding model
for prompt retrieval. Our dataset generation and experi-
ments were performed on two 80GB NVIDIA A100 GPUs.

5.2. Baselines
We compare CompCon to several baselines on the ID2, in-
cluding an end-to-end approach and approaches for the in-
dividual diverging visual attribute and diverging prompt de-
scription discovery phases.
LLM-only (end-to-end). We select 50 random prompts
Psample from each dataset Da, caption the corresponding
generated images and prompt an LLM (GPT-4o) to find any
diverging representations.
TF-IDF (diverging visual attribute discovery). We cap-
tion the generated images I(Psample)

1 and I(Psample)
2 . We

then combine all captions produced for I(Psample)
1 and

I(Psample)
2 into two separate documents and compute TF-

IDF [42], taking the top-5 1-3 word phrases that appear
more often in captions of I(Psample)

1 than I(Psample)
2 .
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VisDiff (diverging visual attribute discovery). We apply
the VisDiff algorithm [17] for finding differences in image
sets I(Psample)

1 and I(Psample)
2 .

TF-IDF (prompt description discovery). Given a diverg-
ing visual attribute a, we run classifyDiverging on
Da to obtain the diverging and non-diverging prompts and
run TF-IDF to find which phrases appear more often in the
diverging prompts compared to the non-diverging prompts.
We report results using this method on the diverging visual
attribute’s discovered by CompCon.

We use Llava 1.5-7b [33] for image captioning used in
the VisDiff and TF-IDF baselines.

5.3. Benchmark Results

Metric Method Top 1 Top 5

Attribute
Score

CompCon 0.60 0.68
VisDiff 0.47 0.62
TF-IDF 0.23 0.37
LLM-only 0.08 0.24

Description
Score

CompCon [5-iter] 0.64 0.78
CompCon [1-iter] 0.59 0.72
TF-IDF 0.40 0.57
LLM-only 0.03 0.28

Table 1. Visual attribute and prompt description scores on ID2.
Our approach outperforms all baselines on both diverging visual
attribute and diverging prompt description discovery.

We report diverging visual attribute and diverging
prompt description discovery results in Table 1. Comp-
Con obtains higher attribute and description scores than the
baselines. An example output, along with their strengths
and weaknesses, are shown in Figure 4. We find that:
1. The LLM-only baseline performs poorly compared to

the other methods, often outputting diverging represen-
tations that are completely unrelated to the ground truth.
This result is due to the complexity of the task: the LLM
must (1) find differences between each pair of captions,
(2) uncover which differences are seen most often, and
(3) summarize the prompts that have this difference in
the captions.

2. When discovering diverging visual attributes, VisDiff
and TF-IDF often fail at identifying more fine-grained
differences. This finding is likely due to the reliance
on captions lacking fine-grained detail, especially when
comparing images depicting similar contexts.

3. While additional iterations offer modest gains in perfor-
mance when generating diverging prompt descriptions,
we see in Figure 4 that iterations are beneficial when the
ground truth description is more fine-grained. This it-
erative refinement enables the model to evolve from de-
scribing general representations to fine-grained qualities.

A cozy nook for 
intimate dinner 

gatherings

A compact arena 
furnished for casual 

family meals

A snug corner for 
reading and 
relaxation

A charming spot for 
private cocktails and 

conversations

Ground Truth: 'venetian blinds'
LLMOnly: ‘onlookersʼ
TFIDF 'natural light'
VisDiff: 'wooden floorʼ
CompCon: 'striped window blinds'

Ground Truth: 'small dining room', ‘small living roomʼ
LLMOnly: 'Crowd', 'spectators', 'audience'
TFIDF ‘space', ‘corner ,̓ ‘compactʼ 
CompCon[1 'Indoor settings',

'Spatial organization', 'Design elements'
CompCon[5 'Cozy environments',

'Multifunctional spaces', 'Compact Comfort' 

Diverging Visual Attribute Diverging Prompt Description

Figure 4. ID2 example. Top: We show dataset prompts and corre-
sponding generated images, where the second image row depicts
the diverging visual attribute. Bottom: We show the ground truth
diverging visual attribute and diverging prompt description, along
with outputs from our approach and the baselines. Notice that our
method produces outputs that better align with the ground truth.

Additional experiments on the effects of iterations, the
choice of LLM and VLM, and sensitivity analysis of the
effects of LLM and VLM errors are in Section B.

5.4. Qualitative Results
Using CompCon we find divergent representations in sev-
eral popular diffusion models: PixArt Alpha [6], SDXL-
Lightning [32], Stable Diffusion 3.5 Large [1], and Play-
ground 2.5 [31]. As listed in Section 3, we use an LLM
to generate diverging prompts from the prompt description
generated at each iteration. A subset of these generated di-
verging prompts are shown below. Additional prompts, ex-
periments on other prompt sets and models, and a compari-
son to a single-model method are in the Appendix (A, G.1).
Results on templated prompts. We run CompCon with an
initial prompt bank covering different art styles, subjects,
and descriptors and visualize results in Figure 5. CompCon
discovers both diverging representations like negative emo-
tions and empty urban environments produce “wet streets”
in PixArt. Looking at the “flames” example in Figure 1,
we also see diversity in the presentation of attributes, with
flames taking the form of a burning podium to a fiery back-
ground to a large red cloud. Lastly, we see scenarios of poor
prompt adherence in the “decay” divergence representation,
where SD-Lightning does not produce visual elements that
indicate rundown and abandoned places while PixArt asso-
ciates abandonment with decay. Our findings demonstrate
that CompCon can effectively uncover both concrete and
abstract divergent representations in text-to-image models,
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A dystopian sketch of a 
deserted metropolis 

devoid of hope.

An abandoned car 
rusting away on a 
cracked city road

A science fiction rendering 
of a disconsolate robot 

wandering an empty city.

Art nouveau depiction 
of a once-vibrant 

square, now a 
testament to decay.

Diverging  Visual Attribute: Wet Streets
The concepts indicative of diverging prompts are characterized by a consistent 
representation of bleakness, desolation, and an underlying tone of negative 

emotion such as sadness, anger, or emptiness in an urban environment.

A spotless, modern 
kitchen set up in the 

middle of an otherwise 
gutted and abandoned 

apartment.

A lavish banquet set 
up on a long table in 
an otherwise empty 

and dilapidated 
mansion hall.

A meticulously 
restored vintage car 
parked in front of a 
row of dilapidated, 
boarded-up homes.

A bright, blooming 
flower garden 
surrounding a 

rundown, abandoned 
gas station.

Diverging Visual Attribute: decay
A diverging prompt is characterized by the stark contrast of elements 
associated with opulence, care, or newness placed within or against 

settings that are visibly deserted, neglected, or starkly barren. 

SD
-L
ig
ht
ni
ng

Pi
xA

rt

A dystopian sketch of 
a deserted metropolis 

devoid of hope.

An abandoned car 
rusting away on a 
cracked city road

A science fiction 
rendering of a 

disconsolate robot 
wandering an empty city.

Visual Attribute: Wet Streets (PixArt)
The concepts indicative of diverging prompts are characterized 
by a consistent representation of bleakness, desolation, and 

an underlying tone of negative emotion such as sadness, 
anger, or emptiness in an urban environment.

A digital art piece 
symbolizing a peaceful 

astral harmony

A logo emblem of 
a serene astral 

radiance

A depiction of a 
mystical serene 
consciousness

Visual Attribute: Mandala Circular Designs (SD)
The concepts indicative of diverging  prompts are 
those that evoke a sense of serenity, mysticism, 
and otherworldliness with a focus on passive, 

ethereal, and cosmic themes.

A spotless, modern 
kitchen set up in the 

middle of a gutted and 
abandoned apartment.

A lavish banquet set up 
on a long table in an 

empty and dilapidated 
mansion hall.

A bright, blooming 
flower garden 

surrounding a rundown, 
abandoned gas station.

Visual Attribute: decay (PixArt)
A diverging prompt is characterized by the stark 

contrast of elements associated with opulence, care, 
or newness placed within or against settings that 
are visibly deserted, neglected, or starkly barren. 

Figure 5. CompCon results comparing PixArt and SD-Lightning. PixArt associates negative emotions and desolation in urban environ-
ments with ‘wet streets,’ while SD-Lightning struggles to depict run-down or dilapidated scenes, where PixArt instead conveys ‘decay.’

A person who 
works as a 

media producer

A person who 
works as a media 

consultant

A person who 
works as a 
podcaster

Visual Attribute: African American people
Diverging prompts often involve roles associated with 

communication, media, or public interaction

Pl
ay
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ou

nd
St

ab
le
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iff

 3
.5

A person who 
works as a 

motivational coach

Figure 6. Finding bias. CompCon discovers racial bias in Stable
Diffusion 3.5 images for prompts related to media professions.

providing interpretable insights into their behavior. The
template used to create the prompt bank, additional quali-
tative examples, and analysis on the effects of iterations are
included in the Appendix. Additionally, the Appendix in-
cludes results of running CompCon on a dataset of prompts
generated by LLMs, creating a fully automated pipeline.
Detecting bias. We show that CompCon can be used for
the crucial task of bias detection. As an initial prompt set,
we take existing prompts from Luccioni et al. [35], which
probe a model’s gender bias when it comes to professions.
This dataset contains 252 template prompts that uses a list
of professions and interchanges “man”, “woman”, and “per-
son” (e.g., “A man/woman/person who works as a baker”).
In Figure 6, CompCon highlights differences in how pro-
fessions are visually represented, with Stable Diffusion 3.5
generating significantly more African American people in
media and communication-focused roles. More examples
of CompCon detecting other biases in the Appendix (A.2).

5.5. Limitations and Cost
As CompCon relies on off-the-shelf LLMs and VLMs, it
inherits their biases. While such biases can cause false neg-
atives when discovering diverging representations, the de-
scriptions found still align with human discovery. We vali-
date this through user studies showing that our benchmark
evaluation matches human annotation. Additionally, Sec-
tion B shows that CompCon detects gender and age biases
between diffusion models, and CompCon can find correct
diverging representations even when the VLM or LLM fails
part of the time.
Cost. Using GPT-4o as the VLM and LLM costs ∼$0.50
for attribute discovery plus ∼0.02 per attribute iteration.
This can be cost-effective for comparing one model to N
others (O(N)). Running smaller open-source models like
IDEFICS llama3-8b [29] cuts costs while maintaining com-
petitive performance, still outperforming baselines. Addi-
tional open-model results are in the Appendix (Sec B).

6. Conclusion
We present CompCon, a method for systematically discov-
ering divergent representations between text-to-image mod-
els. By identifying input-dependent differences in model
outputs and uncovering the prompt concepts linked to these
differences, CompCon provides a framework to understand
how models interpret semantic concepts differently. Our re-
sults on our ID2 benchmark and in the comparison of PixArt
and SD-Lightning, demonstrate CompCon effectiveness in
revealing subtle model-specific behaviors. This opens the
possibility of identifying and mitigating unwanted behav-
iorgenerated images and videos. Moreover, our approach
can serve as a tool for probing the hypothesis that different
models converge to the same representation [27].
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