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Abstract

Visual Self-Supervised Learning (SSL) currently underper-

forms Contrastive Language-Image Pretraining (CLIP) in

multimodal settings such as Visual Question Answering

(VQA). This multimodal gap is often attributed to the se-

mantics introduced by language supervision, even though

visual SSL and CLIP models are often trained on different

data. In this work, we ask the question: “Do visual self-

supervised approaches lag behind CLIP due to the lack of

language supervision, or differences in the training data?”

We study this question by training both visual SSL and CLIP

models on the same MetaCLIP data, and leveraging VQA

as a diverse testbed for vision encoders. In this controlled

setup, visual SSL models scale better than CLIP models in

terms of data and model capacity, and visual SSL perfor-

mance does not saturate even after scaling up to 7B pa-

rameters. Consequently, we observe visual SSL methods

achieve CLIP-level performance on a wide range of VQA

and classic vision benchmarks. These findings demonstrate

that pure visual SSL can match language-supervised visual

pretraining at scale, opening new opportunities for vision-

centric representation learning. Code and models here.

1. Introduction
Visual representation learning has evolved along two dis-
tinct paths with different training approaches. Language-
supervised methods such as Contrastive Language-Image
Pretraining (CLIP) [75, 85, 108] use paired image-text
data to learn representations that are enriched with lin-
guistic semantics. Self-Supervised Learning (SSL) meth-
ods [14, 44, 55, 73, 109] learn from images alone.

Despite SSL models outperforming language-supervised
models on classic vision tasks such as classification and seg-
mentation [73], they are less commonly adopted in recent
multimodal large language models (MLLMs) [1, 2, 9, 56–
58, 91]. This difference in adoption is partially due to a
performance gap in visual question answering (see Fig. 1),
particularly for OCR & Chart interpretation tasks [78, 91].
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Figure 1. We compare the scaling behavior of visual SSL and
CLIP on 16 VQA tasks from the Cambrian-1 suite under different
data and model size regimes. Prior visual SSL methods achieved
strong performance on classic vision tasks, but have underper-
formed as encoders for multimodal instruction-tuned VQA tasks.
Our results show that with appropriate scaling of models and data,
visual SSL can match the performance of language-supervised
models across all evaluated domains—even OCR & Chart.

Beyond methodology differences, these approaches have
also been separated by data scale and distribution (Fig. 1).
CLIP models typically train on billion-scale image-text
pairs from the web [18, 77, 104], while SSL methods use
million-scale datasets such as ImageNet [24] or hundred-
million scale data with ImageNet-like distributions [73, 76].

In this work, we investigate a fundamental question: Is

language supervision necessary to pretrain visual repre-

sentations for multimodal modeling? Rather than seeking
to replace language-supervised approaches, we aim to un-
derstand the intrinsic capabilities and limitations of visual
self-supervision at scale for multimodal applications. To
conduct a fair comparison, we train SSL models on the
same billion-scale web data used for state-of-the-art CLIP
models—specifically the MetaCLIP dataset [104]. This ap-
proach controls for data distribution differences when com-
paring visual SSL and CLIP.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Visual SSL 2.0 changes. In this work, we adopt three improvements to the visual SSL pipeline: 1) Training on billion-scale web
data, curated through the MetaCLIP [104] pipeline, to move beyond “conventional” datasets; 2) Scaling model architecture from sub-billion
parameter models to models exceeding 1 billion parameters; and 3) Incorporating VQA as an evaluation protocol to comprehensively assess
visual features. These changes enable us to study visual SSL at a larger scale and observe previously unseen scaling trends.

For evaluation, we primarily use visual question answer-
ing (VQA) as a framework to evaluate SSL models across a
diverse set of capabilities at scale. VQA evaluation suites
span vision-centric, visual reasoning, and OCR & Chart
tasks, and have been shown to be a more diverse testbed
for assessing vision encoders [31, 91, 95, 96], reflecting the
broader perception challenges found in real-world distribu-
tions. We adopt the evaluation suite proposed in Cambrian-
1 [91], which evaluates performance across 16 tasks span-
ning 4 distinct categories of VQA: General, Knowledge,
OCR & Chart, and Vision-Centric.

We train Web-SSL, a family of visual SSL models rang-
ing from 1 to 7 billion parameters, using the above setting
for direct and controlled comparison to CLIP. As a result of
our empirical study, we contribute several insights:
• Visual SSL can match and even surpass language-

supervised methods for visual pretraining, on a wide
range of VQA tasks—even on language-related tasks
such as OCR & Chart understanding (Fig. 3).

• Visual SSL scales well with respect to model capacity
(Fig. 3) and data (Fig. 4), indicating that SSL has sig-
nificant untapped potential.

• Visual SSL can maintain competitive traditional vision
performance on classification and segmentation, even
while improving at VQA (Fig. 7).

• Training on a higher ratio of images containing text is
especially effective for improving OCR & Chart perfor-
mance (Question 4). Exploring data composition is a
promising direction.

This work serves as a proof of concept that offers a
compelling vision-centric alternative to the recent CLIP-
dominated trend, and opens new opportunities for future
research. Our Web-SSL vision models are open-sourced1,
and we hope to inspire the broader community to unlock the
full potential of visual SSL in the multimodal era.

1https://github.com/facebookresearch/webssl

2. From Visual SSL 1.0 to 2.0
Here, we describe our experimental setup, which extends
previous SSL works by (1) scaling data to billion-scale im-
ages (Sec. 2.1), (2) scaling model size beyond 1B parame-
ters (Sec. 2.2), and (3) evaluating vision models using di-
verse VQA tasks (Sec. 2.3), in addition to classic vision
benchmarks such as ImageNet-1k [24] and ADE20k [111].

2.1. Beyond ImageNet Pretraining
To study whether visual SSL can match the performance of
CLIP, we start by adopting the same data that drove CLIP’s
success. We thus leverage the MetaCLIP dataset [103, 104],
which has enabled the most successful open-source repro-
duction of CLIP to-date.2 We use 2 billion samples from
MetaCLIP, which we refer to as MC-2B. We train SSL
methods on only the images, and CLIP on the image-text
pairs. This controls for data distribution and size as con-
founding variables, and enables a fairer comparison of the
pretraining methods themselves.

2.2. Scaling Up Vision Models to Billion Scale
We can also increase model size. Inspired by advancements
in scaling language models [11, 52, 72], we train Vision
Transformers (ViTs) with 1B, 2B, 3B, 5B, and 7B parame-
ters, on only the images from MC-2B, to study the proper-
ties of larger-scale visual SSL models trained on web-scale
data. We adapt ViT-g from Oquab et al. [73] as ViT-1B,
and define new configurations for ViT-2B to 7B; see Ap-
pendix A for model details.

2.3. Multimodal LLMs as an Evaluation Protocol
In addition to conventional evaluation protocols, such as
ImageNet-1k linear probe, we also evaluate our vision en-
coders using VQA, a flexible and robust evaluation proto-

2The data used to train the original CLIP is closed-source.
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Figure 3. Scaling behavior of Web-DINO and CLIP ViTs trained on MC-2B. The x-axis shows model sizes from 1B to 7B parameters on
a log scale. We observe novel “scaling behavior” with Web-DINO models across all categories, with particularly pronounced improvements
in the OCR & Chart and Vision-Centric domains as model size increases. In contrast, CLIP models demonstrate limited scaling benefits,
with performance saturating at moderate model sizes. The two model families exhibit complementary strengths: CLIP models excel at
OCR & Chart VQA, and Web-DINO models are superior at Vision-Centric VQA, while remaining competitive in all other categories.

col that reflects the diversity of real-world perceptual chal-
lenges [91, 95], as shown in Fig. 2.

Here, we study all vision encoders using the same con-
trolled setting to ensure fair comparison. Specifically, we
use the same two-stage visual instruction tuning procedure
and data as Cambrian-1 [91]. First, a lightweight MLP
adapter is added to project the vision encoder features into
the same dimensionality as the LLM, and only this MLP
adapter is trained. In the second stage, both the MLP
adapter and LLM are finetuned. To enable controlled com-
parison, the vision encoder remains frozen in both stages,
and all experiments use the same training recipe as well as
Llama-3 8B Instruct [94] backbone. We provide detailed
training datasets and hyperparameters in Appendix A.

We then report results on the Cambrian-1 [91] evaluation
suite, which is comprised of 16 VQA benchmarks spanning
four established domains: General, Knowledge, OCR &
Chart, and Vision-Centric. The average VQA performance
is the average of the four subcategories. Each subcategory
has 4 benchmarks and is equally weighted.

3. Scaling Visual SSL

In this section, we explore the scaling behavior of visual
SSL models with respect to both model and data size, as a
result of training on only images from MC-2B. We focus on
DINOv2 [73] as the visual SSL method in this section, and
discuss MAE [44] in Sec. 4.

In Sec. 3.1, we increase model size from 1B to 7B while
keeping the training data fixed at 2 billion MC-2B images—
unless otherwise denoted. We use the off-shelf training code
and recipe for each method. In Sec. 3.2, we shift our focus
to scaling total data seen for a fixed model size, and analyze
how performance evolves as the number of images seen dur-
ing training increases from 1 billion to 8 billion.

3.1. Scaling Model
The intention of scaling model size is both to find the ceiling
of visual SSL under this new data regime, and to identify
any unique behavior that emerges in larger models.

We thus pretrain DINOv2 ViT models, ranging from
1B to 7B parameters, using 2 billion unlabeled images at
224→224 resolution from MC-2B—without high-resolution
adaptation [73]—to ensure fair comparison with CLIP. We
refer to these models as Web-DINO throughout the paper.
For a controlled comparison, we also train CLIP models of
the same sizes on the same data.

We evaluate each model with VQA and present the re-
sults in Fig. 3. We will first discuss the overall performance
trend and then turn to specific category performance. To the
best of our knowledge, this is the first instance of a vision
encoder trained purely with visual self-supervision achiev-
ing performance parity with language-supervised encoders
on VQA—even in the OCR & Chart category, which is tra-
ditionally considered to be highly text-dependent.

Performance trend. We compare the performance trend as
model capacity increases in Fig. 3. Web-DINO’s Average,
OCR & Chart, and Vision-Centric VQA performance im-
proves nearly log-linearly with increasing model size, while
General and Knowledge improve to a smaller degree. In
contrast, CLIP’s performance in all VQA categories largely
saturates after 3B parameters. This suggests that while
smaller CLIP models may be more data-efficient, this ad-
vantage largely dissipates for larger CLIP models. The con-
tinual improvement from increasing Web-DINO model ca-
pacity also suggests that visual SSL benefits from larger
model capacity, and that scaling visual SSL past 7B param-
eters is a promising direction.

Category-specific performance. In terms of category-
specific performance, DINO also increasingly outperforms
CLIP on Vision-Centric VQA and largely closes the gap
with CLIP on OCR & Chart and Average VQA (Fig. 3), as
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Figure 4. Scaling up examples seen when training Web-DINO-7B. Performance across different VQA categories as training data
increases from 1B to 8B images. While General and Vision-Centric tasks show diminishing returns after 2B images, OCR & Chart tasks
demonstrate continued improvement, contributing to steady gains in average performance. Further, Web-DINO consistently outperforms
same-size (ViT-7B) CLIP models with different training samples seen. The x-axis plots training data size on a log-scale.

model size increases. At 5B parameters and above, DINO
can exceed the Average VQA performance of CLIP. These
results suggest that vision-only models, when trained on
CLIP-distribution images, can develop strong visual fea-
tures comparable to those of language-supervised models.

3.2. Scaling Examples Seen

Previously, we focused on single-epoch training, where
each of the 2B unique images in MC-2B is seen only once.
Here, we investigate the impact of increasing the number
of examples seen by training Web-DINO ViT-7B on data
ranging from 1 billion to 8 billion images from MC-2B.

As shown in Fig. 4, General and Knowledge VQA
performance improves incrementally with more examples
seen, saturating at 4B and 2B examples respectively.
Vision-Centric VQA performance improves sharply from
1B to 2B examples, and saturates beyond 2B examples. In
contrast, OCR & Chart is the only category that shows con-
sistent improvement with more examples seen. This sug-
gests that as the model sees more data, it learns a represen-
tation that is increasingly well-suited for text-related tasks,
yet without marked degradation on other capabilities.

Furthermore, when compared to a CLIP model of the
same size (ViT-7B), Web-DINO consistently outperforms
CLIP on average VQA performance given the same num-
ber of samples seen (Fig. 4). Notably, after seeing 8B sam-
ples, Web-DINO closes the performance gap with the CLIP
model on OCR & Chart VQA tasks. This provides further
evidence suggesting that visual SSL models have the poten-
tial to scale better than language-supervised models.

Collectively, the results in Fig. 3 and 4 indicate that as
model size and examples seen increase, visual SSL learns
features that are increasingly effective for VQA in general,
but especially on OCR & Chart. Our results suggest that
CLIP-based models do not hold an absolute advantage com-
pared to visual SSL. In Sec. 4, we delve deeper into the un-
derlying mechanisms driving this trend.

4. Scaling Analysis and Findings

In Sec. 3, we demonstrated that visual SSL models scale
well with model size and training set size. These observa-
tions raise further questions about the generality and impli-
cations of these phenomena. To deepen our understanding,
we investigate five key aspects, including whether scaling
behavior extends to other vision-only models (Question 1),
if SSL models also exhibit scaling behavior on smaller
and more conventional data (Question 2), and whether SSL
can retain competitive performance on classic vision tasks
(Question 3). Additionally, we explore why scaling partic-
ularly enhances OCR & Chart performance (Question 4),
and highlight emergent properties that arise via scaling vi-
sual SSL (Question 5). Next, we provide detailed analysis.

Question 1
Does the observed scaling behavior generalize to other
visual SSL methods?

In previous sections, we derived our findings from DI-
NOv2, a joint embedding visual SSL method. Here, we
extend our analysis to a masked modeling based visual
SSL method—Masked Autoencoder (MAE) [44]. We train
MAE on MC-2B (denoted as Web-MAE) using ViT models
ranging from 1B to 5B parameters and compare the results
with Web-DINO models in Fig. 5.

Web-MAE models exhibit similar scaling behavior to
Web-DINO models, with average VQA performance im-
proving consistently as model size increases. Compared to
joint embedding methods, Web-MAE models learn features
that are particularly well-suited for OCR & Chart tasks but
underperform in other domains. These results suggest that
the “scaling behavior” observed in VQA tasks generalizes
across different visual SSL methods. We also note that dif-
ferent visual SSL approaches learn distinct representations
even when trained under the same conditions, as demon-
strated by Web-MAE’s OCR performance.
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Figure 5. Web-MAE trained on MC-2B. Web-MAE also exhibits consistent scaling behavior as model size increases. Notably, Web-
MAE demonstrates better performance in OCR & Chart tasks, achieving higher accuracy than Web-DINO across all model sizes.

Figure 6. Comparison of ImageNet-1k and MC-2B Pretraining. Increasing the diversity and scale of pretraining data improves model
performance on VQA accuracy and ImageNet linear probing. Unlike MC-2B pretraining, ImageNet pretraining exhibits no clear trend.

Question 2
Does visual SSL exhibit similar scaling behavior on
smaller scale conventional data, such as ImageNet?

We pretrain Web-DINO 1B, 2B, and 3B models for
300 epochs on ImageNet-1k, a conventional SSL pretrain-
ing dataset, following the recipe from [73]. We compare
these variants to those trained on MC-2B. We evaluate
their downstream VQA performance and ImageNet-1k lin-
ear probing results. As shown in Fig. 6, models pretrained
on ImageNet-1k exhibit consistently inferior performance
across all metrics. Moreover, unlike models trained on MC-
2B, those trained on ImageNet-1k do not improve with in-
creasing model sizes. This highlights the importance of
training visual SSL on more diverse and larger datasets.
This echoes recent findings that increasing data size and di-
versity drives LLM scaling [22, 48, 52], and that pretraining
data distribution is critical to downstream performance [62].

Question 3
How do scaled models perform on classic vision tasks?

We evaluate Web-DINO models, ranging from 1B to 7B
parameters, on classic vision benchmarks including linear
probing on ImageNet-1k [24], semantic segmentation on
ADE20K [111], and depth estimation on NYUv2 [79]. Fol-
lowing the evaluation protocol of DINOv2 [73], we freeze
the vision encoder; see Appendix A for details. As shown in
Fig. 7, Web-DINO’s performance improves modestly with
increasing model size. Web-DINO achieves strong perfor-
mance across all benchmarks, outperforming MetaCLIP by

a significant margin and remaining competitive with off-
shelf DINOv2, even outperforming it on ADE20K +ms.
Note that the comparison with off-shelf DINOv2 is not
exactly apples-to-apples, as we do not use high-resolution
adaptation [73], in order to maintain the same input resolu-
tion as CLIP. Additionally, the DINOv2 training data has a
higher correlation with these classic vision benchmarks, de-
tailed further in Appendix F. These differences suggest that
there remains considerable room for further improvement
in our model’s classic vision performance.

However, we observe that the scaling behavior in clas-
sic vision tasks is less pronounced compared to VQA. This
finding, along with insights from previous work [31, 70,
91], reinforces the value of VQA as a comprehensive vision
model evaluation framework. While classic benchmarks re-
main important, VQA provides a complementary view into
model performance via offering a diverse set of tasks that
are grounded in real-world perceptual challenges.

Question 4
Why does web-scale data improve OCR & Chart per-
formance?

In Sec. 3, we observed that increasing model size and ex-
amples seen leads to unprecedented improvements in OCR
& Chart performance for visual SSL models. This is sur-
prising since current off-the-shelf visual SSL methods are
notably poor at OCR & Chart understanding compared to
language-supervised models [78, 91].

One possible explanation is that web-scale image
datasets already contain a degree of textual information.
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Figure 7. Performance of Web-DINO models on classic vision tasks. All models achieve strong performance across ImageNet-1k
classification, ADE20K segmentation, and NYU Depth estimation. Web-DINO outperforms MetaCLIP (HF) and is competitive with
DINOv2 (HF). (HF) denotes the largest official Hugging Face released version. → means lower is better; by default higher is better.

VQA Evaluator Breakdown of OCR & Chart Tasks

Method
% of

MC-2B AVG General Knowledge
Vision
Centric

OCR
Chart ChartQA OCRBench TextVQA DocVQA

CLIP 2B 100% 53.0 72.2 48.8 55.0 36.1 32.8 32.9 52.6 26.0
Web-DINO 2B 100% 50.8 72.8 47.1 56.4 26.8 23.3 15.6 49.2 19.0
Web-DINO 2B 50.3% 53.4 (+2.6) 73.0 (+0.2) 51.7 (+4.6) 55.6 (-0.8) 33.2 (+6.4) 31.4 (+8.1) 27.3 (+11.7) 51.3 (+2.1) 23.0 (+4.0)
Web-DINO 2B 1.3% 53.7 (+2.9) 70.7 (-2.1) 47.3 (+0.2) 56.2 (-0.2) 40.4 (+13.6) 47.5 (+24.2) 29.4 (+13.8) 52.8 (+3.6) 32.0 (+13.0)

Table 1. Impact of data filtering on SSL model performance. We compare Web-DINO ViT-2B models trained on MC-2B with different
levels of text filtering (full, 50.3%, and 1.3%) against CLIP ViT-2B trained on full MC-2B. OCR & Chart performance improves with
progressively aggressive filtering. Despite receiving zero language supervision, SSL models can surpass CLIP in text-centric tasks.

“Does this image contain 
any readable text?”

Light Filter (50.3%)

“Does this image contain 
charts, tables, or documents 

with readable text?

Heavy Filter (1.3%)Raw Data

Figure 8. Examples of filtered MC-2B images. The Light filter
(Middle) identifies images containing text, retaining 50.3% of the
images. The Heavy filter (Right) identifies images explicitly con-
taining charts and documents, retaining only 1.3% of MC-2B.

Unlike object-centric datasets such as ImageNet, images
from the web often contain text (e.g. labels, signs, dia-
grams, etc.). Larger capacity and more data might aid visual
SSL models to extract and leverage this textual information.

To test this hypothesis, we apply an off-the-shelf
MLLM—SmolVLM2 [3]—to identify images containing
text. See Fig. 8 for qualitative examples and Appendix A
for details. This results in two curated datasets: (i) Light fil-
ter: retains 50.3% of Web-DINO and contains images with
any textual content. (ii) Heavy filter: retains 1.3% of MC-
2B and contains images with charts, tables, or documents.

We train Web-DINO ViT-2B models on these filtered
datasets, with each experiment using 2 billion seen exam-
ples (meaning filtered datasets undergo multiple epochs).
As shown in Tab. 1, the model trained on lightly filtered
data outperforms the full data variant by +6.4% on OCR &
Chart, while maintaining strong performance in other cate-

gories. The model trained on heavily filtered data performs
better and outperforms even the language-supervised CLIP
ViT-2B trained on full data by +4.3% on OCR & Chart.
Likewise, heavy filtering also improves Average VQA per-
formance, outperforming the full data Web-DINO ViT-2B
by +2.6% and even the full data CLIP ViT-2B by +0.7%.
This means that is it possible for visual SSL models to out-
perform CLIP models of the same size, with only a fraction
of the total data (in this case 1.3% of MC-2B).

The improvement in OCR & Chart from training on
heavily filtered data is particularly pronounced for ChartQA
(+24.2%), OCRBench (+13.8%), and DocVQA (+13.0%),
while performance remains competitive in all other cate-
gories. These results demonstrate that self-supervised vi-
sual models, when trained on images containing more text
in them, can develop high-quality text understanding ca-
pabilities. It suggests that data composition—rather than
purely scale or language supervision—is crucial for devel-
oping strong OCR & Chart understanding abilities.

Although it is not surprising that skewing the data in fa-
vor of OCR & Chart would improve OCR & Chart capabili-
ties, it is surprising that simple data filtering can outperform
language supervision on the full data. This simple proof
of concept suggests that similar techniques may be used to
help visual SSL bridge future gaps in other capabilities.

Question 5
Why can SSL learn strong visual representations for
multimodal modeling, without language supervision?
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Figure 9. Alignment score between Web-DINO and LLMs.
Moving from DINOv2 to Web-DINO improves the alignment be-
tween the image and the corresponding text representations ob-
tained by LLMs. Increasing model size from 1B to 7B parameters
shows gradual improvement, while training on larger data quanti-
ties (4B/8B samples) yields the most significant alignment gains.

Thus far, we have seen that visual SSL models can not
only become competitive with CLIP models, but also that
they can excel at tasks previously thought to require lan-
guage. This raises an important question: why do vision-
only models learn features that work well for multimodal
models, even in the absence of language supervision?

We hypothesize that SSL models learn features increas-
ingly aligned with language as model size and examples
seen increases. Following Huh et al. [50], we evaluate in-
trinsic representational alignment by computing a matching
metric between the vision encoder and language model, us-
ing image-text pairs from the Wikipedia Captions dataset
[84]. We use off-the-shelf DINOv2 [73] and Web-DINO
as vision encoders, and off-the-shelf Llama-3.1 8B and
70B [94] as the language models, without any visual in-
struction tuning nor alignment procedure.

As shown in Fig. 9, we observe three key trends: (1)
training on more diverse data (MC-2B) improves alignment
with LLMs (DINOv2 ViT-1B → Web-DINO ViT-1B); (2)
increasing the vision model size leads to slightly higher
alignment (Web-DINO ViT-1B → ViT-7B); and (3) seeing
more training samples further enhances alignment (Web-
DINO ViT-7B trained on 2B samples → 8B samples).

These findings suggest that as model size and, in par-
ticular, training samples scale, vision models naturally de-
velop text-sensitive features and achieve strong alignment
with LLMs, without explicit language supervision.

5. The Web-SSL Model Family
Next, we analyze the overall best performing vision en-
coders using both VQA and classic vision benchmarks. In
Table 2, we show the best results of our vision encoders
against recent off-the-shelf vision encoders, in terms of
VQA and classic vision tasks.

For VQA, all vision encoders—including off-the-shelf
models—are evaluated using the same visual instruction
tuning setup detailed in Sec. 2.3, and mainly 224→224 input
resolution for the purpose of fair comparison. Because the
goal is not to produce a state-of-the-art MLLM, we did not
employ techniques such as unfreezing the vision encoder,
resolution tiling [59], and spatial visual aggregator [91].

For classic vision, we follow the evaluation procedure
from Oquab et al. [73] and evaluate linear probe perfor-
mance on ImageNet-1k [24], ADE20K [111], and NYU
Depth v2 [79]. The input resolution differs between clas-
sic vision tasks, but each model tested uses the same exact
settings from Oquab et al. [73]. We emphasize that the pri-
mary motivation is still to provide controlled insights, even
though other off-shelf models are trained on different data.
Performance at 224px. Web-DINO can outperform off-
the-shelf MetaCLIP in both VQA and classic vision tasks.
Web-DINO is even able to match the performance of SigLIP
and SigLIP2 on VQA despite seeing 5→ less data and re-
ceiving no language supervision. In general, Web-DINO
outperforms all off-shelf language-supervised CLIP models
at traditional vision benchmarks. Although our best Web-
DINO model is 7B parameters, the results from Sec. 3.1 and
Sec. 3.2 suggest that CLIP models saturate beyond moder-
ate model and data sizes, while visual SSL improves pro-
gressively with increasing model and data size. Web-DINO
also outperforms off-the-shelf visual SSL methods, includ-
ing DINOv2 [73], in all VQA categories. Web-DINO is also
competitive in traditional vision benchmarks.
Performance beyond 224px. Next, we discuss the per-
formance of higher resolution models. Following Oquab
et al. [73], we additionally fine-tune Web-DINO for 20k
steps. We do this for resolutions of 378 and 518, to compare
against the higher-resolution off-shelf versions of SigLIP as
well as DINOv2. See Appendix D for training details. From
224 to 378 to 518 resolution, Web-DINO improves steadily
at average VQA, with notable gains in OCR & Chart perfor-
mance. Classic vision performance improves modestly with
higher resolution. At 384 resolution, Web-DINO trails be-
hind SigLIP. At 518 resolution, Web-DINO is largely able
to bridge the gap. The results suggest that Web-DINO may
benefit from further increasing high-resolution adaptation.

6. Related Work
Visual self-supervised learning methods. Early visual
SSL methods explored various pretext tasks for pretrain-
ing [6, 25, 37, 71, 74, 97, 109]. More recently, research
has converged on two primary approaches: joint embed-
ding methods and masked image modeling. Joint embed-
ding methods learn invariant features by aligning represen-
tations of different augmented views [12, 14–17, 19, 34, 40,
43, 55, 69], while masked modeling [4, 5, 7, 13, 28, 44, 99,
100, 112] learns by predicting masked visual inputs. Our
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224 55.4 74.4 48.7 39.5 58.9 86.5 36.5 38.0 0.607 0.525

384 60.0 76.3 50.4 53.5 59.7 87.3 39.5 47.2 0.582 0.438

SigLIP2 ViT-SO400M WebLI 45.0B
224 56.3 74.4 50.7 42.1 58.1 87.5 41.1 44.2 0.562 0.539

384 62.0 76.6 51.9 58.4 61.0 88.1 43.5 50.2 0.524 0.469

MetaCLIP ViT-G MetaCLIP 12.8B 224 54.8 75.5 48.2 37.3 58.4 86.4 38.0 46.7 0.524 0.415

Visual Self-Supervised Models
MAE ViT-H ImageNet-1k 2.0B 224 45.2 64.6 43.9 20.6 51.7 76.6 33.3 30.7 0.517 0.483

I-JEPA ViT-H ImageNet-22k 0.9B 224 44.7 65.4 43.9 21.2 48.4 68.8 31.6 34.6 0.548 0.520

DINOv2 ViT-g LVD-142M 1.9B 518 47.9 70.2 45.0 21.2 55.3 86.0 49.0 53.0 0.344 0.298

224 55.2 74.5 48.0 39.4 59.1 86.5 42.1 52.6 0.491 0.376

378 57.4 73.9 47.7 50.4 57.7 86.3 42.3 53.1 0.498 0.366Web-DINO ViT-7B MC-2B 8.0B

518 59.9 75.5 48.2 55.1 60.8 86.4 42.6 52.8 0.490 0.362

Table 2. Comparison with other vision models. Web-DINO ViT-7B achieves competitive performance with CLIP models on VQA
without language supervision and surpasses them on traditional vision tasks. Compared to other self-supervised models like DINOv2,
Web-DINO significantly narrows the performance gap with CLIP on VQA tasks, particularly excelling in OCR & Chart understanding.
These results demonstrate that SSL can effectively produce strong visual representations for both multimodal and classic vision tasks.

work complements SSL research focused on pretraining al-
gorithms, by taking off-the-shelf training code and training
visual SSL at scale with a controlled experimental setup.

Data used to train vision models. Both supervised [26,
41, 63, 102] and SSL vision models have traditionally re-
lied on standard datasets such as MNIST [54], CIFAR-10
[53], and ImageNet [24, 76]. More recently, self-supervised
methods have scaled to larger unlabeled datasets, such as
YFCC [90], LVD-142M [73], and IG-3B [81]; however,
these methods still exhibit a significant performance gap
compared to language-supervised models on VQA.

In contrast, language-supervised models [20, 31, 75, 85,
86, 88, 104, 108] leverage significantly larger image-text
datasets, from WIT-400M [75] to billion-scale web data [30,
33, 77, 104], with some using up to 100B image-text pairs
[98], and even synthetic captions [66]. Studies suggest that
pretraining data distribution is more critical for downstream
performance than specific training methodologies [29, 62].

Our work bridges these paradigms by pretraining SSL
models on web-scale data. Through controlled experiments
(Sec. 3 and 4), we show that (1) visual SSL models are sen-
sitive to the training distribution, and (2) increasing data di-
versity and quantity significantly improves performance on
a diverse range of VQA tasks.

Evaluating vision models. Classic works have primar-
ily used image classification [10, 24, 45, 46, 53, 54] to
evaluate learned representations. More recent SSL re-

search has expanded evaluation to include image segmen-
tation [23, 27, 42, 111], depth estimation [36, 79, 82], and
video classification [8, 38, 83]. Language-supervised mod-
els [75, 108], due to their two-tower encoder structure, com-
monly use zero-shot image classification to assess the qual-
ity of learned image and text features.

Our work follows recent proposals [31, 70, 91] to eval-
uate vision encoders on a broader range of VQA tasks [32,
39, 61, 89, 101, 105, 106] using MLLMs. These VQA tasks
complement traditional vision benchmarks by assessing vi-
sual features on a more diverse range of real-world percep-
tual challenges. As shown in Sec. 3 and Sec. 4, we find that
visual SSL trained on web-scale data learns representations
that continue to improve on VQA benchmarks, and—to a
lesser degree—also on traditional vision benchmarks.

7. Discussion

We show that large-scale visual encoders that are trained
with self-supervised language-free objectives can produce
high quality visual features for multimodal models. Our re-
sults echo the “bitter lesson” [87] and suggest that imposing
less supervision—including language—remains a promis-
ing direction for advancing the field of computer vision.
We hope our work will inspire further exploration of vision-
only approaches, which will enable the construction of next
generation vision models that excel at both traditional vi-
sion and modern multimodal capabilities.
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