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Abstract

Vision-language models (VLMs) have shown promise in
test-time adaptation tasks due to their remarkable capa-
bilities in understanding and reasoning about visual con-
tent through natural language descriptions. However, train-
ing VLMs typically demands substantial computational re-
sources, and they often struggle to adapt efficiently to new
domains or tasks. Additionally, dynamically estimating the
test distribution from streaming data at test time remains
a significant challenge. In this work, we propose a novel
test-time retrieval-augmented adaptation (TT-RAA) method
that enables VLMs to maintain high performance across
diverse visual recognition tasks without the need for task-
specific training or large computational overhead. During
inference, TT-RAA employs a streaming mixture of Gaus-
sian database (SMGD) to continuously estimate test distri-
butions, requiring minimal storage. Then, TT-RAA retrieves
the most relevant information from the SMGD, enhancing
the original VLM outputs. A key limitation of CLIP-based
VLMs is their inter-modal vision-language optimization,
which does not optimize vision-space similarity, leading to
larger intra-modal variance. To address this, we propose a
multimodal retrieval augmentation module that transforms
the SMGD into a unified multimodal space, enabling re-
trieval that aligns both vision and language modalities.
Extensive experiments across both cross-domain and out-
of-distribution benchmarks comprising fourteen datasets
demonstrate TT-RAA’s superior performance compared to
state-of-the-art methods. Ablation studies and hyperparam-
eter analyses further validate the effectiveness of the pro-
posed modules. The source code of our work is available
at https://github.com/xinqi-fan/TT-RAA.

1. Introduction
Vision-language models (VLMs) have significantly ad-
vanced visual understanding by leveraging natural language
supervision with contrastive language-image pre-training
(CLIP) notably pioneering this field [34]. The zero-shot
capability enables this model to be deployed in various do-
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Figure 1. Illustration of our proposed test time retrieval augmented
adaptation (TT-RAA). Without TT-RAA, the CLIP prediction will
be the final prediction. With TT-RAA, the image feature will be
used to retrieve the most similar database centers which will be
used to improve the final prediction in a training-free manner.

mains. This foundational work has catalyzed a wave of ar-
chitectural innovations, including domain-specific variants
and architectural enhancements that build upon CLIP’s core
principles [52]. Some variants have focused on scaling up
capacities, learning from noisy text supervision, and fine-
grained alignment [16, 50]. However, these models consis-
tently encounter challenges when deployed in specialized
domains, where the distribution of images often differs sub-
stantially from their web-scale training data [11, 33]. This
challenge has become even more prominent with the re-
cent introduction of more sophisticated large VLMs such as
GPT-4V [31], LLaVA [25], and Llama 3.2 Vision [1]. While
these advanced models excel at integrating visual and tex-
tual data, the high computational cost of fine-tuning them
for domain-specific tasks poses a major challenge, espe-
cially in specialized visual domains that differ significantly
from general web images.

Test-time adaptation (TTA) has emerged as a promis-
ing solution that enables models to adapt to new do-
mains without accessing source domain training data [23].
Traditional TTA approaches include self-training-based
methods that leverage pseudo-labels [22, 41, 49], self-
supervised learning-based methods that incorporate aux-
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iliary tasks [42], batch normalization [28, 37], and en-
tropy minimization-based methods [30, 46]. For VLMs,
recent works have explored prompt-based adaptation meth-
ods [10, 38] to bridge the domain gap between web-scale
training data and specific downstream tasks. However, these
methods often incur substantial computational overhead,
highlighting the need for more efficient approaches [10, 17].
Advancements in training-free methods have explored the
use of cache mechanisms [17, 55] and distribution-based
methods [51, 58] to improve the efficiency. Despite these
advances, dynamically estimating the test distribution from
streaming data at test time remains a significant challenge,
due to the test sample arriving one at a time.

In this work, we introduce test-time retrieval-augmented
adaptation (TT-RAA), a novel training-free method that al-
lows VLMs to sustain strong performance across various vi-
sual recognition tasks without requiring task-specific train-
ing or high computational costs (Fig. 1). TT-RAA is a
training-free framework, which uses a streaming mixture of
Gaussian database (SMGD) to dynamically capture test dis-
tribution characteristics with minimal storage requirements
at inference time. TT-RAA retrieves relevant information
from the SMGD to enhance the performance of the original
VLM. Furthermore, an inherent limitation of CLIP-based
VLMs is their lack of optimization for intramodal similarity,
which does not optimize similarity in the vision space, re-
sulting in greater intramodal variance [24]. To mitigate this,
we introduce a multimodal retrieval augmentation (MRA)
module that projects the SMGD into a shared multimodal
embedding space, facilitating retrieval that harmonizes vi-
sion and language modalities. Extensive testing across ten
cross-domain datasets and four out-of-distribution datasets
confirms that TT-RAA delivers superior performance rel-
ative to state-of-the-art methods, with additional ablation
studies and hyperparameter analyses supporting the effec-
tiveness of the proposed modules. The key contributions of
this work include:
• We introduce test-time retrieval-augmented adaptation

(TT-RAA), an efficient, training-free framework that sig-
nificantly improves domain adaptability without addi-
tional fine-tuning.

• We propose streaming mixture of Gaussian database
(SMGD) for dynamic, efficient, and robust estimation of
test domain statistics during inference.

• We propose multimodal retrieval augmentation (MRA), a
novel mechanism addressing CLIP’s inherent intra-modal
similarity limitation, aligning both vision and language
modalities effectively.
The rest of this paper is organized as follows: Section 2

provides some related works, Section 3 describes the pro-
posed method. Experimental results and performance eval-
uation are presented in Section 4. Finally, Section 5 con-
cludes the article and outlines future research directions.

2. Related Work

2.1. Vision Language Model

The development of vision language models (VLMs) can be
traced back to earlier works that explored vision-language
pre-training for specific tasks, where VisualBERT [21]
and UNITER [5] pioneered joint representation learning
between visual and textual modalities for tasks like vi-
sual question answering. The field witnessed a paradigm
shift with CLIP [34], which demonstrated impressive zero-
shot capabilities by learning transferable visual represen-
tations through contrastive learning between images and
texts at web scale. ALIGN [16] further scaled up this ap-
proach with 1.8 billion noisy image-text pairs and intro-
duced noise-robust training strategies. FILIP [50] enhanced
CLIP by introducing fine-grained region-word alignment,
enabling more detailed vision-language correspondences.
FLAVA [39] introduced a single foundation model that can
tackle vision, language, and multimodal tasks. More re-
cently, the emergence of multimodal large language mod-
els has pushed the boundaries of vision-language under-
standing, where GPT-4V [31] extends GPT-4’s language
capabilities to handle visual inputs, LLaVA [25] achieves
strong visual conversation abilities by aligning vision en-
coders with language models through minimal task-specific
training, and Llama 3.2 [1] demonstrates remarkable vi-
sion and language capabilities with open models. Other
notable VLMs include VinVL [53], which enhanced visual
understanding by incorporating object detection and seg-
mentation, and VisualGPT [4], which demonstrated zero-
shot transfer to various vision-language tasks. These mod-
els have continued to push the boundaries of multimodal
representation learning, enabling a wide range of applica-
tions from intelligent assistants to creative tools. While
these newer models demonstrate impressive capabilities in
combining visual and textual understanding, they face simi-
lar domain adaptation challenges but at an even larger scale.
The computational demands for fine-tuning these models on
domain-specific tasks present a significant barrier, particu-
larly for specialized applications where the visual domain
differs markedly from general web imagery.

2.2. Test Time Adaptation

Normal domain adaptation techniques require access to
both source and target domain data, but test-time adap-
tation (TTA) adapts models to the target domain without
source data, making it particularly useful for scenarios with
privacy or legal restrictions [23]. To adapt a pre-trained
model to a target domain, methods like self-training refine
model predictions using pseudo-labels. Approaches such as
centroid-based [22], neighbor-based [49], and optimization-
based [41] strategies enhance the quality of these pseudo-
labels. Self-supervised methods introduce auxiliary tasks to
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align features, exemplified by test-time training (TTT) [42]
with a self-supervised rotation prediction task. Batch nor-
malization [28, 37] techniques and entropy minimization
strategies [30, 46] have also been adopted in TTA tasks.

Recent advancements focus on VLMs like CLIP, using
domain-specific prompts from test data. Test-time prompt
tuning (TPT) [38] fine-tunes a learnable prompt with each
testing sample, while DiffTPT [10] uses pre-trained diffu-
sion models to enhance test data diversity. Although these
methods are promising, they still require a large amount of
computational resources for their training-based adaptation,
making it hard to adapt large VLMs. To reduce costs, a
training-free dynamic adapter (TDA) [17] has been intro-
duced, using a lightweight dynamic key-value cache with-
out backpropagation. However, its cache only captures the
streaming test data with a limited cache capacity without
the ability to estimate the full spectrum of the test data.

2.3. Retrieval Augmented Generation
Retrieval-augmented generation (RAG) has emerged as
a promising solution to enhance large language models
(LLMs) by incorporating external knowledge during infer-
ence, effectively addressing challenges like hallucination
and outdated knowledge [20]. In its naive form, RAG fol-
lows a three-stage process: indexing, where documents are
chunked and encoded into vectors; retrieval, where rele-
vant documents are retrieved based on semantic similar-
ity with the input query; and generation, where retrieved
documents along with the query are fed to LLMs for re-
sponse generation [12]. Recent efforts have extended RAG
to VLMs, including methods such as I2I/T2I adaptors [27],
RA-TTA [19], and neural priming [45]. These methods
rely on additional databases constructed from large-scale
datasets like LAION-2B/5B, which often incur high com-
putational and storage costs during both construction and
inference. In contrast, our work focuses on constructing
a database dynamically from incoming test samples, with-
out relying on additional large-scale databases. In addition,
we employed a multimodal retrieval augmentation mod-
ule that transforms our database into a unified multimodal
space, enabling retrieval that aligns both vision and lan-
guage modalities.

3. Method
In this work, we introduce test-time retrieval-augmented
Adaptation (TT-RAA) to adapt vision-language models
(VLMs) to new domains (Fig. 2). TT-RAA leverages a
streaming mixture of Gaussian database (SMGD) to model
test data statistics in real time. As test data streams in,
we dynamically update the SMGD with Gaussian centers
representing the distribution of vision features. Each test
sample’s vision features query the SMGD to retrieve rel-
evant Gaussian centers, providing contextual information.

Since CLIP’s joint vision-text optimization does not ex-
plicitly optimize vision-space similarity, we transform the
Gaussian centers into a multimodal space using text em-
beddings. This allows retrieval in a space that is aligned
with both vision and language modalities. Final predictions
combine CLIP outputs with retrieval results from both vi-
sion and multimodal spaces, enhancing accuracy and ro-
bustness. TT-RAA thus provides a powerful framework for
adapting VLMs to new domains by leveraging both vision
and language information.

3.1. Contrastive Language-Image Pretraining
Contrastive language-image pre-training (CLIP) [34] is a
vision-language model that has two separate encoders for
processing images and text, respectively. These encoders
are trained to project their respective inputs into a shared
embedding space where related images and texts are posi-
tioned close to each other. Consider aK-class classification
problem where the CLIP’s objective in the zero-shot setting
is to match images with their most relevant textual descrip-
tions using an image encoder EI and a text encoder ET . To
obtain the textual descriptions T , K-class names are con-
catenated with hand-crafted prompts and then mapped into
the D-dimensional text embeddings Z using the text en-
coder ET as

Z = ET (T ) ∈ RD×K . (1)

Given the t-th test samples xt, CLIP vision encoder pro-
duces image features

f t = EI(x
t) ∈ RD. (2)

CLIP was trained using contrastive loss to minimize the dis-
tance between corresponding text and image embeddings.
When making predictions, the CLIP output can be obtained
as

P t
CLIP = ZT f t ∈ RK . (3)

Then, we can obtain the final prediction for test sample xt

as ŷt = argmax
k

P t
CLIP(k), where k ∈ {1, 2, ...,K}.

3.2. Streaming Mixture of Gaussian Database
Our work addresses a challenging training-free test-time
adaptation problem where models must adapt to streaming
test data under two constraints: (1) Both input and output
distributions of the source and target domains may be sub-
ject to distribution shifts. (2) Test samples arrive sequen-
tially, one at a time, rather than in batches, reflecting real-
world deployment. This setting is demanding because it
requires training-free, zero-shot adaptation without access
to batch statistics. Therefore, it is important to estimate the
statistics of the new domain by capturing its full spectrum,
and based on this we can retrieve the most relevant informa-
tion to enhance the final prediction. In this work, we pro-
pose a Streaming Mixture of Gaussian Database (SMGD)
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Figure 2. Overview of the proposed test-time retrieval-augmented adaptation (TT-RAA) method. TT-RAA leverages a streaming mixture
of gaussian database (SMGD) to dynamically model the distribution of streaming test data in vision space V . The multimodal retrieval
augmentation (MRA) module projects these Gaussian centers into a unified multimodal space M, enabling effective retrieval aligned across
both vision and language modalities. Combining retrieval results from vision and multimodal spaces with CLIP’s original predictions, TT-
RAA significantly enhances VLM performance without additional training.

module by using a Gaussian mixture model to estimate the
dynamic statistics from the test time streaming data.

We assume that feature embedding f t of the t-th sample
xt is drawn from a mixture of Gaussian distributions

f t ∼
∑
k

wkN (µk,Σk), ∀k = 1, 2, ...,K, (4)

where µk ∈ RD and Σk ∈ RD×D are the mean and covari-
ance of the k-th Gaussian component N repectively. The
mixture weights wk ≥ 0,

∑
k wk = 1, and K is the num-

ber of classes. For simplicity, we assume the weights wk =
p(y = k) = 1/K. Here, SMGD is a key-value database,
where the keys are Gaussian mean vectors {µk}Kk=1 and the
values are the corresponding pseudo labels of these Gaus-
sian mean vectors. The covariance matrices {Σk}Kk=1 are
also recorded which will involve in the retrieval during test
time adaptation. Given the test time setting, all samples
come in a stream. Our goal is to estimate the optimal mean
µk and covariance Σk for the class k.

To estimate the optimal value of the mean µk and covari-
ance Σk, we draw inspiration from streaming data statis-
tics estimation [35]. Given a test sample xt at time t, its
pseudo label l̂t is determined by its CLIP prediction as
l̂t = argmax

k
P t
CLIP(k). Initially, we set the mean vector

µk to the first test sample with its pseudo label as k from the
streaming test data. We set the initial covariance Σk = σ2I
with σ = 0.1. We also record the corresponding entropy hk
as the entropy of the first test sample’s CLIP logit. Once the
mean vector µk and covariance matrix Σk are initialized,
we progressively update them using selected test samples
with high-quality pseudo labels, as measured by entropy. If
the test sample xt at time t has a pseudo label l̂t = k and an

entropy smaller than ht−1
k , the mean µt

k and the covariance
Σt

k at time t are updated as

µt
k = (1− η)µt−1

k + ηf t, (5)

Σt
k = (1− η)Σt−1

k + η(f t − µt
k)(f

t − µt
k)

T , (6)

where η is the update coefficient. Otherwise, µt
k = µt−1

k

and Σt
k = Σt−1

k for k ∈ {1, 2, . . . ,K}, meaning the mean
vectors and the covariance matrices remain unchanged if
there is no test sample with pseudo label k or if the test
sample does not have a high-quality pseudo label. A high-
quality pseudo label is identified when its entropy is lower
than that of the Gaussian mean vector. Once the mean and
covariance are updated according to Eqs. (5) and (6), the
corresponding entropy is updated accordingly as

htk = (1− η)ht−1
k + ηH(P t

CLIP), (7)

where H(P t
CLIP) = −

∑K
k=1 P

t
CLIP(k) log(P

t
CLIP(k)) is

the entropy of the CLIP logits P t
CLIP.

In this way, we keep updating a high-quality database
with high confidence as measured by the entropy of test-
time streaming data’s pseudo labels. The SMGD SG is
composed of the following:

SG = {G,L}, (8)

G = [µt
0, µ

t
1, . . . , µ

t
K ], (9)

where G ∈ RD×K represents the Gaussian centers of
the SMGD, and each column of L ∈ RK×K denotes a
K-dimensional one-hot pseudo-label vector. Along with
SMGD, we have the covariances {Σt

0,Σ
t
1, . . . ,Σ

t
K}.
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Figure 3. Motivation of multimodal retrieval augmentation. Co-
sine similarity distributions of matched and unmatched image-text
pairs (inter-modal) exhibit less overlap than those of matched and
unmatched image-image pairs (intra-modal). This suggests that
samples are more easily distinguishable in the multimodal space
than in the vision space.

3.3. Multimodal Retrieval Augmentation
We can directly retrieve the most similar data center from
the SMGD to improve the final prediction. However,
the CLIP model was optimized to reduce the inter-modal
(vision-text) similarities rather than the intra-modal (vision-
vision or text-text) similarities [24]. This optimization pro-
cess leaves a disadvantage that similar images in the vision
(image) feature space are not well clustered [43]. As shown
in Fig. 3, the cosine similarity distributions of matched
and unmatched image-text pairs (inter-modal) exhibit less
overlap than those of matched and unmatched image-image
pairs (intra-modal). This indicates that matched and un-
matched pairs are more easily distinguishable in the mul-
timodal space than in the vision-only space, a distinction
shaped by CLIP’s image-text contrastive learning. There-
fore, in addition to the vision space retrieval augmentation,
we also added a multimodal space retrieval augmentation,
which compares the similarities of the samples in the CLIP
text-image space rather than the vision space.
Vision Space Retrieval Augmentation. To fully leverage
the available information from the vision space, we include
two terms: similarity retrieval and discriminant analysis.
Similarity Retrieval. This term treats the test sample as a
query and retrieves the most similar class center from the
SMGD based on their similarities within the vision space.
Given the SMGD SG = {G,L} and test image features f t

generated from the CLIP’s image encoder, the prediction
can be calculated as follows

Psim(f t) = LA(GT f t) ∈ RK , (10)

where A(z) = exp(−β(1 − z)) is an adaptation function
with a sharpness ratio β [54].
Discriminant Analysis. This term leverages probabilistic
information derived from the Gaussian means and covari-
ances of the SMGD by using a closed-form expression from
Gaussian discriminant analysis [2]. Under the assumption
that all Gaussian components share an identical covariance
Σt, the discriminant score can be computed as

Ωdisc(f
t) = GTΣt−1

f t − 1

2
diag(GTΣt−1

G) (11)

+ log
1

K
1K ∈ RK ,

where Σt is the mean of K covariances {Σt
k}Kk=1.

Ωdisc(f
t) contains scores that reflect how well f t matches

different classes, considering both the distance from the
class mean and the spread of the class distribution. There-
fore, the discriminant analysis-based term can be given as

Pdisc(f
t) = LΩdisc(f

t) ∈ RK . (12)

After that, the prediction from the vision space V retrieval
augmentation can then be calculated as

PV
R (f t) = Psim(f t) + Pdisc(f

t) ∈ RK , (13)

Multimodal Space Retrieval Augmentation. During test-
time adaptation, multimodal space retrieval augmentation
treats the test sample as a query and retrieves the most sim-
ilar Gaussian center from the SMGD by evaluating their
distances within CLIP’s multimodal space. This process
involves measuring the Kullback–Leibler (KL) divergence
between the image features of the test sample or Gaussian
centers and the textual features of the categories in CLIP’s
embedding space.

Given the SMGD SG = {G,L} and the text embed-
dings Z ∈ RD×K generated from CLIP’s text encoder, we
transform Gaussian centersG of the SMGD from the vision
space V to the multimodal space M as Ψ:

Ψ = σ(ZTG) ∈ RK×K , (14)

where σ(·) is a sigmoid function. We also project the test
sample f t to the multimodal space M as

ψ = σ(ZT f t) ∈ RK . (15)

We use Kullback–Leibler (KL) divergence to compare the
similarities of the two distributions in the multimodal space
as

Φk = KL(ψ||Ψk), (16)

where Ψk is the k-th column vector of Ψ, and
KL(P |Q) =

∑
x∈X P (x) log

(
P (x)
Q(x)

)
. Therefore, Φ =

[Φ1,Φ2, . . . ,ΦK ] ∈ RK consists of KL-divergence values.
Since the most similar samples have low KL-divergence
values (close to 0), they receive small weights. To address
this, we negate the values in Φ. The prediction of the mul-
timodal space M retrieval augmentation will be given as

PM
R = −LΦ ∈ RK . (17)

Then, we can obtain the output of the multimodal retrieval
augmentation (MRA) module PR as a combination of the
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Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average

CLIP-ViT-B/16 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59

CoOp 18.47 93.70 64.51 41.92 46.39 68.71 85.30 89.14 64.15 66.55 63.88
CoCoOp 22.29 93.79 64.90 45.45 39.23 70.85 83.97 90.46 66.89 68.44 64.63
TPT 24.78 94.16 66.87 47.75 42.44 68.98 84.67 87.79 65.50 68.04 65.10
DiffTPT 25.60 92.49 67.01 47.00 43.13 70.10 87.23 88.22 65.74 62.67 65.47

MTA 25.32 94.13 68.05 45.59 38.71 68.26 84.95 88.22 64.98 68.11 64.63
DN 24.30 93.60 64.00 45.70 53.30 68.00 86.00 87.70 66.50 68.40 65.75
ZERO 25.21 93.66 68.04 46.12 34.33 67.68 86.53 87.75 65.03 67.77 67.72
DMN 24.84 94.12 65.64 44.39 47.77 71.38 84.48 89.07 66.28 66.75 65.47
TDA 23.91 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 67.53
TT-RAA (ours) 25.38 94.08 66.42 47.99 66.12 72.68 86.09 89.83 67.69 71.29 68.76

Table 1. Results on the cross-domain benchmark. Our TT-RAA is compared with several state-of-the-art methods designed for vision-
language models: the baseline method CLIP, four training-based adaptation methods (CoOp, CoCoOp, TPT, and DiffTPT), and five
training-free adaptation methods (MTA, DN, DMN, ZERO, and TDA).

vision space retrieval argumentation result PV
R and multi-

modal space augmentation result PM
R as

PR = PV
R + PM

R . (18)

After that, we compute our final TT-RAA logits by combin-
ing the original CLIP logits PCLIP with the MRA prediction
PR using a weighting factor α as

PTT−RAA = PCLIP + αPR. (19)

In the end, we can obtain the final prediction of TT-RAA as

ŷ = argmax
k

PTT−RAA(k), (20)

where k ∈ {1, 2, ...,K}.

4. Experiments
4.1. Dataset
To validate the method’s test time adaptation capability
across different domains and variations within a familiar
domain, we conducted experiments on two benchmarks:
a cross-domain (CD) benchmark comprising 10 datasets
and an out-of-distribution (OOD) benchmark comprising
4 datasets. The CD benchmark primarily assesses trans-
ferability by testing on domains that diverge significantly
from the original training distribution. Specifically, it in-
cludes Aircraft [26], Caltech101 [9], Cars [18], DTD [6],
EuroSAT [13], Flower102 [29], Food101 [3], Pets [32],
SUN397 [48], and UCF101 [40]. In contrast, the OOD
benchmark focuses on robustness to distribution shifts
within the same general domain. Specifically, it includes
ImageNet-A [15], ImageNet-V2 [36], ImageNet-R [14],
and ImageNet-S [47].

4.2. Implementation Details
We implement our method based on the pre-trained CLIP
architecture [34], which comprises a vision transformer

(ViT) based image encoder [7] and a transformer-based text
encoder [44]. Our experimental setup follows the challeng-
ing single-image test-time adaptation scenario, processing
samples sequentially with a batch size of 1. To maintain
computational efficiency and eliminate the need for back-
propagation during inference, we utilize the hand-crafted
prompts as proposed in [34] rather than learnable prompts.
The experiments are conducted using the PyTorch frame-
work, with evaluations performed on a single NVIDIA RTX
A5000 GPU. Following standard practice in similar tasks,
we employ top-1 accuracy as our evaluation metric.

4.3. Comparisons with State-of-the-art Methods
We conduct extensive experiments to evaluate TT-RAA
against state-of-the-art approaches on the CD benchmark
in Table 1 and OOD benchmark in Table 2. The compet-
ing methods include the CLIP baseline [34], training-based
adaptation methods, and training-free adaptation methods.
Discussions on Competing Methods. In the field of effi-
cient domain adaptation, several methods require training,
either in the training stage or at the test time, to align the
model more closely with the target distribution. Context
optimization (CoOp) [57], conditional context optimiza-
tion (CoCoOp) [56] both involve learning prompts during
a training phase. CoOp focuses on optimizing prompt to-
kens that are fixed for each domain, while CoCoOp extends
this to generate a conditional prompt token for each image.
Test-time prompt tuning (TPT) [38] and diffusion model for
TPT (DiffTPT) [10], on the other hand, adapt the model
at test time by tuning prompt embeddings. TPT performs
direct gradient-based prompt tuning using test data, while
DiffTPT uses new data generated by diffusion models.

In addition to training-based methods, we also compare
with several training-free adaptation methods, including
two distribution-based methods, one entropy-based method,
and two cache-based methods. Distribution-based meth-
ods evaluated are MeanShift for Test-time Augmentation
(MTA) [51] and Distribution Normalization (DN) [58].
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Method ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Average

CLIP-ViT-B/16 49.89 61.88 77.65 48.24 59.42

CoOp 49.71 64.20 75.21 47.99 59.28
CoCoOp 50.63 64.07 76.18 48.75 59.91
TPT 54.77 63.45 77.06 47.94 60.81
DiffTPT 55.68 65.10 75.00 46.80 60.52

MTA 57.41 63.61 76.92 48.58 61.63
DN 58.71 62.89 80.20 48.94 62.69
ZERO 59.61 64.16 77.22 48.40 62.35
DMN 58.28 65.17 78.55 53.20 63.80
TDA 60.11 64.67 80.24 50.54 63.89
TT-RAA (Ours) 60.59 64.69 80.58 49.98 63.96

Table 2. Results on the out-of-distribution benchmark. Our TT-RAA is compared with several state-of-the-art methods designed for
vision-language models: the baseline method CLIP, four training-based adaptation methods (CoOp, CoCoOp, TPT, and DiffTPT), and five
training-free adaptation methods (MTA, ZERO, DN, DMN, and TDA).

They improve the test data distribution estimation via
MeanShift algorithm and distribution normalization, re-
spectively. Cache-based methods include the Dual Memory
Network (DMN) [55] and TDA [17]. DMN comprises a
dynamic and a static cache, while TDA employs a positive
and a negative cache. For a fair comparison, we reproduced
DMN’s zero-shot results using our standardized prompts
instead of DMN’s original LLM-generated prompts, and
we reduced the batch size to 1. We also compare against
ZERO [8], an entropy-based method. ZERO sets the tem-
perature of most confident predictions as zero to approxi-
mate marginal entropy minimization.
Results on the Cross-domain Benchmark. Despite hav-
ing the advantage of task-specific training, training-based
adaptation methods, such as CoOp, CoCoOp, TPT, and
DiffTPT, show limited generalization capabilities. TT-RAA
outperforms these methods by significant margins (about
3%-4%). On fine-grained recognition tasks such as Flow-
ers102, TT-RAA achieves 72.68% accuracy, surpassing Co-
CoOp (70.85%) by 1.83%. This gap widens further on spe-
cialized datasets like SUN397, where TT-RAA (67.69%)
demonstrates superior feature adaptation compared to Co-
CoOp (64.15%). These results suggest that static prompt
learning, even with input-conditional mechanisms, may not
be sufficient enough for handling significant domain shifts.

In comparison to existing training-free adaptation ap-
proaches, TT-RAA demonstrates consistent superiority
across various domain shifts. On remote sensing data (Eu-
roSAT), TT-RAA (66.12%) significantly outperforms TDA
(58.00%) by 8.12%. This substantial gain can be attributed
to our SMGD effectively capturing the unique characteris-
tics of satellite imagery. Similarly, for action recognition
(UCF101), TT-RAA (71.29%) surpasses TDA (70.66%) by
0.63%, demonstrating robust feature adaptation. The per-
formance advantages extend to other specialized domains
as well. This consistent improvement across diverse do-
mains validates the effectiveness of our method in bridging

domain gaps in test-time settings.
Results on the Out-of-distribution Benchmark. The ex-
perimental results in Table 2 demonstrate that our proposed
TT-RAA method achieves state-of-the-art performance on
the OOD benchmark with an average accuracy of 63.96%
across all ImageNet variants, outperforming both training-
based adaptation methods (CoOp, CoCoOp, TPT, DiffTPT)
and training-free approaches (MTA, DN, ZERO, DMN,
TDA). Notably, TT-RAA exhibits good performance on
ImageNet-R (80.58%) and ImageNet-A (60.59%), high-
lighting its robust generalization capabilities under diverse
distribution shifts. When examining performance across
different distribution shifts, we observe that most meth-
ods achieve their highest accuracy on ImageNet-R and
ImageNet-V2. ImageNet-S with sketches poses the great-
est challenge for all methods, indicating that semantic vari-
ations remain difficult to address even with advanced adap-
tation techniques.

4.4. Ablation Studies
We conduct ablation studies on the CD benchmark to sys-
tematically evaluate the effectiveness of each proposed
component in TT-RAA. Figure 4 presents the quantita-
tive results of our analysis with both ResNet-50 and ViT-
B/16 backbones. We establish our baseline using the TDA
method with one-shot capacity, which achieves 59.82%
(ResNet-50) and 67.04% (ViT-B/16) accuracy.
Streaming Mixture of Gaussian Database Module.
When integrating the SMGD module with the baseline, we
observe a performance improvement of about 1.4% with
ViT-B/16 and 1.2% with ResNet-50. This enhancement
demonstrates that our SMGD effectively captures the dy-
namic distribution of test samples while maintaining com-
putational efficiency. Its adaptive nature in updating class
statistics online is useful for handling distribution shifts.
Multimodal Retrieval Augmentation Module. Incorpo-
rating the MRA module also improved the performance by
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Figure 4. Ablation studies of TT-RAA. The SMGD and MRA
modules independently improve performance over the baseline.
Their combination yields further performance gains, demonstrat-
ing complementary benefits.

about 0.4% and 0.2% with ViT-B/16 and ResNet-50, re-
spectively. This gain supports our hypothesis regarding
vision space misalignment in CLIP, which stems from its
vision-text joint optimization objective. The performance
improvement demonstrates that projecting both the SMGD
database and test samples from vision space to multimodal
space effectively addresses this misalignment.
Complementary Benefits of Proposed Modules. When
combining both SMGD and MRA modules (denoted as TT-
RAA), we achieve the best performance of 68.76% with
ViT-B/16 and 61.25% with ResNet-50, representing a sub-
stantial improvement of 1.72% and 1.43% over the baseline.
These gains suggest that SMGD and MRA offer comple-
mentary and synergistic benefits.
Analysis of Feature Backbone Impact. The effective-
ness of our approach is further validated across two vi-
sion ecoders: ViT-B/16 and ResNet-50. These consistent
improvements across different backbones suggest that our
adaptation strategy effectively addresses fundamental do-
main shift challenges rather than exploiting architecture-
specific characteristics.

4.5. Hyperparameter Analysis
The hyperparameter analysis of the update coefficient η on
the UCF101 is shown in Fig. 5a. When η = 0, the model
maintains a static Gaussian center initialized at the start, re-
sulting in poor adaptation. From 0 to 0.55, accuracy in-
creases sharply, highlighting the importance of incorporat-
ing new information. However, the performance deteriora-
tion beyond 0.65 reveals a critical threshold where exces-
sive emphasis on new samples compromises the model’s
stability. This observation aligns with theoretical expecta-
tions, as larger η values reduce the influence of historical
information, potentially leading to over-adaptation to new
samples. The empirical optimal value of η = 0.65 suggests
that maintaining approximately 35% of historical informa-
tion while incorporating 65% of new information achieves
the best trade-off.
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Figure 5. (a) Hyperparameter analysis of the update coefficient
η. It shows that the best coefficient is 0.65. (b) Experiment with
additional data. The method can accept additional data, which
improve the performance significantly.

4.6. Experiments with Access to Additional Data
In the standard test-time adaptation setting, access to the tar-
get domain’s training set is typically restricted. However, in
many cases, the training set data might be available. Fine-
tuning large-scale vision-language models in such scenar-
ios remains computationally expensive. This raises an im-
portant question: how can performance be improved using
the training data without computationally expensive fine-
tuning? With a slight modification to TT-RAA, we propose
leveraging the target domain training set (if accessible prior
to test time) to construct a database and calculate class cen-
ters using a Gaussian mixture model. By doing so, we per-
form the same MRA process as in TT-RAA. This modified
approach, referred to as TT-RAA-A, demonstrates signif-
icant performance improvements while maintaining a low
computational requirement. The corresponding results are
presented in Fig. 5b, where TT-RAA-A outperforms TT-
RAA by a large margin, highlighting the benefits of in-
corporating target training data in a training-free manner,
which open a new direction on adaptation without training.

5. Conclusion
In this paper, we introduced TT-RAA, a novel test-time
retrieval augmented adaptation method that effectively ad-
dresses the computationally expensive domain adaptation
challenges faced by vision-language models. Experimen-
tal results validated the effectiveness of SMGD by contin-
uously estimating the test distribution and compressing all
useful information into a single representation for each class
without discarding old samples. By transforming Gaussian
centers from vision space into a shared multimodal space,
MRA enables more effective retrieval that leverages both
visual and textual features. The success of TT-RAA opens
up new possibilities for deploying vision-language models
in real-world applications where computational resources
are limited and rapid adaptation to new domains is crucial.
Further exploration on adapting our method to larger multi-
modal foundation and large language models is promising.
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