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Abstract

Recent surface anomaly detection methods excel at iden-
tifying structural anomalies, such as dents and scratches,
but struggle with logical anomalies, such as irregular or
missing object components. The best-performing logical
anomaly detection approaches rely on aggregated pretrained
features or handcrafted descriptors (most often derived
from composition maps), which discard spatial and seman-
tic information, leading to suboptimal performance. We
propose SALAD, a semantics-aware discriminative logical
anomaly detection method that incorporates a newly pro-
posed composition branch to explicitly model the distribution
of object composition maps, consequently learning impor-
tant semantic relationships. Additionally, we introduce a
novel procedure for extracting composition maps that re-
quires no hand-made labels or category-specific information,
in contrast to previous methods. By effectively modelling
the composition map distribution, SALAD significantly im-
proves upon state-of-the-art methods on the standard bench-
mark for logical anomaly detection, MVTec LOCO, achiev-
ing an impressive image-level AUROC of 96.1%. Code:
https://github.com/MaticFuc/SALAD

1. Introduction
Surface anomaly detection aims to detect and localize abnor-

mal regions in the image while training only on anomaly-

free images. It is commonly used in the industrial inspection

domain [2–5, 46] where the limited availability and consider-

able diversity of abnormal images make training supervised

models impractical. The problem of surface anomaly detec-

tion can be split into structural and logical anomaly detection.

Structural anomalies are irregularities in the local appearance

distribution, e.g., dents or scratches. They can be detected

by modelling the object’s anomaly-free appearance and de-

tecting local texture deviation. Logical anomalies break the

semantic constraints of the image, e.g. incorrect number or

misplacement of object components. For such anomalies, a

model of local appearance does not suffice since object com-

ponents may fit the anomaly-free appearance distribution

Figure 1. While previous approaches rely on handcrafted features,

SALAD explicitly models the composition distribution by training

directly on the composition maps C. SALAD is trained on sim-

ulated anomalous examples that are enclosed by a green dashed

rectangle, whereas individual synthetic logical anomalies are high-

lighted with blue ellipses. SALAD improves the estimated anomaly

scores (AS) on near-in-distribution logical anomalies.

locally. Recent top-performing surface anomaly detection

methods [9, 12, 13, 23, 25, 33, 42, 44] are focused mostly on

detecting structural anomalies and fail to model the semantic

information required for logical anomaly detection.

Recent logical anomaly detection methods consist of a

base structural branch that is typically a time-tested surface

anomaly detection method and a logical anomaly branch fo-

cusing on detecting semantic anomalies. The output scores

of both branches are fused to produce a final anomaly score.

Best performing logical anomaly methods attempt to de-

tect deviations in appearance caused by logical anomalies

by either modelling the global image appearance [36] or

by utilizing object composition maps [16, 19, 24]. Global

appearance-based approaches build a global image descriptor

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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by aggregating pretrained features, disregarding the infor-

mation contained in the object components’ position, orien-

tation, and frequency. This results in missed detections in

harder, near-in-distribution anomalous examples (Figure 1,

left). Additionally, such approaches do not decouple log-

ical and structural anomalies because they use pretrained

features that focus on modelling appearance, leading to a

considerable emphasis on structural anomalies. Recent com-

position map-based logical anomaly detection methods ex-

tract composition maps from the input RGB images. They

then rely on handcrafted features extracted from composi-

tion maps, such as the class frequency, to better model the

global distribution. Similarly to the global appearance ap-

proaches, such representations do not sufficiently model the

available semantic and spatial information. Additionally, the

best-performing composition-based methods require either

hand-labelled training examples [19] or category-specific

procedures [16] to extract composition maps, making them

infeasible to apply to new datasets.

We hypothesize that training a model (in our case, a com-

position branch) to model the composition map distribution

would also capture the critical spatial and semantic informa-

tion unobtainable with global representations, which would

improve logical anomaly detection performance. Discrimi-

native methods, which rely on synthetic anomalies to learn

an anomaly-free distribution, present a possible solution.

However, synthetic anomalies are currently defined only for

RGB images [38, 42]. Therefore, we adapted them for com-

position maps. Additionally, as composition maps contain a

compressed representation of object class, shape, and posi-

tion while discarding appearance information, it is simpler

to simulate more expressive anomalies appropriate for de-

tecting logical anomalies. We propose a composition branch

defined as a discriminative anomaly detection model operat-

ing with composition maps (Figure 1, right).

The contributions of this work are twofold. (i) As our

main contribution, we propose SALAD, a Semantics-Aware

discriminative Logical Anomaly Detection method that ex-

tends the recent appearance and global branch framework

with a new compositional branch that explicitly learns the

anomaly-free object composition distribution. (ii) As an ad-

ditional contribution, we propose a novel object composition

map generation process. The proposed approach produces

maps of high quality (Figure 1, right, columns C) without

requiring hand-labelled training data or category-specific

procedures in contrast to previous approaches. We showcase

its robustness by applying it to several objects and datasets.

To emphasize the value of the proposed contributions,

extensive experiments are performed on the standard logical

anomaly detection benchmark, MVTec LOCO [3]. SALAD

achieves a new state-of-the-art result on MVTec LOCO

(AUROC of 96.1%), outperforming competing methods by

a significant margin of 3.0 percentage points. Addition-

ally, SALAD is evaluated on standard MVTec AD [2] and

VisA [46] datasets, achieving excellent results (AUROC of

98.9% and 97.9%).

2. Related work
Surface anomaly detection has been extensively re-

searched, with methods categorized into three main

paradigms: reconstructive, embedding-based, and discrimi-

native.

Reconstructive methods train either an autoencoder-

like [23, 43] network, a generative adversarial network [21],

a diffusion model [37] or a transformer [30, 40] on anomaly-

free images and assume the resulting model will not general-

ize well to anomalous regions making them distinguishable

by reconstruction error. Embedding-based methods lever-

age pretrained models to extract features and fit a normality

model on top of them. The normality methods are often a

coreset [33], a student-teacher network [1, 9, 34] or a normal-

izing flow network [13, 41]. Discriminative methods focus

on learning the boundary between normal and abnormal

samples. Methods in this paradigm are learned to segment

synthetic anomalies [12, 25, 32, 38, 42, 44] and learn a nor-

mality model to generalize to real-world scenarios.

These methods fail on logical anomalies as they focus on

local characteristics and do not consider global semantics.

Logical anomaly detection is a new surface anomaly de-

tection research direction. The methods can be divided into

three paradigms: local-global reconstruction, global distribu-

tion approaches and composition-based.

Local-global reconstruction methods use a two-branch

neural network [1, 3, 8, 14, 39, 45]. These approaches con-

tain a local and global appearance branch and assume that

structural anomalies occur as local deviations and logical

anomalies impact a large part of the image, which does not

always hold. EfficientAD [1] uses a convolutional network

with a small receptive field as the local branch and an autoen-

coder as the global branch. These methods have difficulties

with categories without a constant object layout.

Global distribution approaches extract global appearance

descriptors from images and use a descriptor distribution

model [7, 28] to detect anomalies. LogicAD [17] uses a

large Vision Language Model to extract a global descrip-

tion. This is converted into a formal representation and

evaluated by an automatic theorem prover. PUAD [36] es-

timates the global distribution by fitting a Gaussian with

mean feature vectors extracted from feature maps produced

by EfficientAD’s student. During inference, the anomaly

is detected using Mahalanobis distance. Simply using the

mean of extracted pretrained features as a global appearance

representation disregards considerable spatial information,

leading to poor performance on spatially dependent logical

anomalies. Introducing spatial information might improve

the logical anomaly detection performance.

21844



Figure 2. SALAD is constructed from a local appearance branch,

a composition branch, and a global branch. Each branch focuses

on a different level of image semantics. Synthetic anomalies are

generated to train the composition branch. Composition maps are

segmented using a component segmentation network.

Composition-based approaches model the semantic infor-

mation by using composition maps, i.e. object component

segmentation maps of the image. This paradigm was in-

troduced with ComAD [24], which extracts features from

a pretrained network and clusters them to create a rough

semantic segmentation. The obtained segmentation maps

are used only to extract handcrafted features and store them

in a memory bank. PSAD [19] uses hand-labelled segmen-

tation maps to finetune a pretrained feature extractor with

an attached segmentation head. After the fine-tuning, PSAD

creates a memory bank with global statistics and extracted

feature vectors. PSAD’s manual annotation requirement

is impractical in real-world scenarios. CSAD [16] obtains

patch histograms of composition maps and stores them in

a memory bank. CSAD extracts object composition maps

automatically, but the parameters for each object category

must be tuned, which is a drawback in practical use.

Unlike recent logical anomaly detection methods,

SALAD does not focus on feature averaging or handcrafted

features but explicitly models the composition map distri-

bution, thus learning important composition information.

We also propose a highly accurate composition map gener-

ation procedure that does not require hand-labelled data or

category-specific information.

3. SALAD
Recent logical anomaly detection methods are composed

of a base local appearance model and a global model. The

global model typically constructs the global distribution by

either using aggregated pretrained features or handcrafted

descriptors. The best-performing methods use composition

maps to create better global representations. Due to such a

construction, a significant amount of semantic information

Reconstruction
Subnetwork

Synthetic
anomaly

generation

Discriminative
Subnetwork

Figure 3. Composition branch architecture.

is not captured. In the proposed method, SALAD (Figure 2),

we follow the initial framework of a base structural anomaly

detection model with a global appearance branch but pro-

pose a novel composition branch that explicitly learns the

distribution of composition maps, consequently learning crit-

ical spatial and semantic information. Additionally, SALAD

contains an improved global appearance model.

In the composition branch, the anomaly-free object com-

position distribution is learned in a discriminative fashion

through a novel anomaly simulation process. It uses the

information-dense composition maps to simulate near-in-

distribution anomalies that are difficult to simulate using

traditional simulation processes [42]. Such simulated anoma-

lies facilitate the learning of a tight decision boundary around

the anomaly-free semantic structure of the images, leading to

an improvement in logical anomaly detection performance.

At inference, structural anomalies are detected by the

local appearance branch, while the global appearance and the

composition branch focus on logical anomalies. Individual

branch outputs are then combined using a score fusion model.

In the rest of this section, we describe SALAD in detail.

3.1. Local appearance model
Following recent advancements in logical anomaly detection,

a powerful surface anomaly detection model is used as the

base structural anomaly detection branch. In SALAD, the

initial structural branch follows the EfficientAD architec-

ture [1], a top-performing surface anomaly detection frame-

work. EfficientAD takes an RGB image I as input and works

as an embedding reconstruction model. The input image I is

mapped to a feature representation FT by a teacher encoder

trained on natural images [10]. An autoencoder network

takes I as input and is tasked with reconstructing the teacher

output FT , outputting FA. The student encoder is tasked

with reconstructing both FT and FA, outputting F̂T and F̂A.

The anomaly map Aa output by EfficientAD is based on the

difference between FT and F̂T and between FA and F̂A.

3.2. Object composition model
The composition branch is formulated as a discriminative

anomaly detection method that operates on object composi-

tion maps C. Training such a model requires both an auto-

mated way of obtaining object composition maps (Section
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Figure 4. Left: Pseudo label Cpseudo generation procedure. The main idea is to combine precise mask generation from SAM-HQ [18]

and the discriminative power from DINO [6]. Right: Comparisons of the final object composition maps C (generated by the composition
segmentation model) and the pseudo labels Cpseudo. Input images I are also depicted for comparison. Final object composition maps C
contain less misclassified components than the pseudo labels Cpseudo.

3.3) as well as a well-defined anomaly simulation process

specifically designed for composition maps (Section 3.4).

The composition branch follows a general discriminative

anomaly detection architecture [42] composed of a composi-

tion reconstruction network and a composition discrimina-

tive network (Figure 3). The composition reconstruction net-

work first restores the (synthetically) anomalous parts of the

composition map to their anomaly-free appearance. Then,

the input composition map and its anomaly-free reconstruc-

tion are passed to the composition discriminative network to

output an anomaly mask. The composition branch operates

solely in the space of object composition maps C. During

training, the composition reconstruction network takes as

input a composition map Ca, which has been augmented to

include simulated anomalies. The network is then trained

to restore the original anomaly-free composition C by out-

putting an anomaly-free composition reconstruction Crec.

During inference, C is used as the input instead of Ca.

Since the composition map C values belong to individual

classes, segmentation losses are used to train the composition

reconstruction network. Namely, the focal loss Lfoc [22]

and dice loss Ldice [35] are used:

Lc_rec = Lfoc(C,Crec) + Ldice(C,Crec) , (1)

where C is the original object composition map, Crec is the

reconstructed object composition map. The composition

reconstruction network generalizes to real anomalous exam-

ples, successfully reconstructing them to be anomaly-free.

After obtaining the anomaly-free composition reconstruc-

tion Crec, Crec and the augmented composition map Ca

(during inference Crec and C are used) are concatenated

and used as input for the composition discriminative net-

work. The discriminative network is trained to predict the

difference between Crec and Ca to output an anomaly seg-

mentation map Ac.

Following recent literature [38], the loss for the composi-

tion discriminative network is defined as:

Lc_disc = αLfoc(Ac_gt, Ac) + L1(Ac_gt, Ac) , (2)

where Ac_gt is the ground truth anomaly map corresponding

to synthetic anomalies, Ac is the predicted anomaly map, and

α is the weighting parameter (set to 5 in all our experiments).

3.3. Object composition maps

A semantically meaningful representation of the composition

must first be extracted to model the object composition dis-

tribution accurately. Segmentation of object parts concisely

represents part frequency, shapes, sizes, and positions with-

out additional appearance information that is redundant for

object composition and increases the complexity of the rep-

resentation. Accurate component-level segmentation maps

(dubbed composition maps) are used in SALAD.

A two-step process is used for composition map extrac-

tion. First, pseudo-labels Cpseudo for the training set are

created by clustering DINO [6] features to obtain rough seg-

mentation maps Cfeat, which are then used to classify highly

accurate mask proposals Cmask generated by SAM-HQ [18].

Finally, the pseudo-labels are used to train a component seg-
mentation model to predict the final object composition maps

C. Pseudo-label creation is illustrated in Figure 4.

For the initial pseudo-labels, background maps for each

training image are generated by querying SAM-HQ on im-

age corners and combining the resulting masks to produce a

background mask. This mask is inverted to create the fore-

ground mask Mfg. DINO [6] feature maps are extracted

and resized to 256× 256. Features outside Mfg , that is, the

background features, are set to 0 to reduce noise; the rest are

then subsampled and clustered into K clusters (in our case

K=6) to produce a rough object composition map Cfeat.

SAM-HQ is queried on a grid over the input image I to

obtain mask proposals Cmask. Each mask proposal is clas-

sified as the class of the corresponding majority cluster in

Cfeat, aligning high-quality masks with component labels

to create high-quality pseudo-labels Cpseudo. Due to the

computational intensity of SAM-HQ and DINO, a compo-
nent segmentation model is trained with I and corresponding

Cpseudo pairs. Specifically, we use a simple UNet trained
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with a cross-entropy loss. Even though some Cpseudo con-

tain mistakes, the components are correctly classified on

average across the dataset. Due to that, the component seg-

mentation model generalizes and outputs composition maps

C without incorrectly labelled components. The trained

component segmentation model infers the desired composi-

tion map C directly from I , enabling efficient composition

map extraction. Figure 4 shows examples of Cpseudo and

object composition maps C produced by the component

segmentation model.

3.4. Synthetic anomaly generation

An appropriate synthetic anomaly generation procedure is

required to facilitate the training of the discriminative com-

position branch. Due to differences between structural and

logical anomalies, different anomaly generation strategies

are required. To simulate structural anomalies, we extend

the synthetic anomaly generation proposed by DRÆM [42]

by pasting a random class on top of the composition map ac-

cording to an anomaly map generated using Perlin noise [29].

To generate near-in-distribution logical anomalies, a random

component is either inpainted (from another image) or erased.

When a component is erased, the corresponding region is

inpainted with a component class randomly selected from

the neighbouring components. In this case, the anomaly

map marks both the erased component and the neighbouring

component class used for inpainting. For cases where a com-

ponent is inpainted, identifying the exact anomaly location is

ill-posed (e.g., an extra screw added to a screw bag). There-

fore, the anomaly map in these cases includes all regions

containing the inpainted component class. Several examples

of synthetic anomalies can be seen in Figure 1.

3.5. Global appearance model

Using a strong global appearance model can also improve

the detection of structural anomalies. The global appearance

branch utilizes features extracted from the input image I and

its corresponding object composition map C. In C, pixels

belonging to individual image components are marked with

their corresponding class labels c.

For each class label c in C, the mean feature vector gc
is computed from the feature vectors in FT corresponding

to pixels belonging to c in C. The set of gc values for all

classes C represents the global appearance descriptor g.

The procedure is repeated for each sample i in the training

set to obtain global appearance descriptors g(i) upon which

the global distribution is estimated by fitting a Gaussian

distribution [31]. The mean μc and covariance Σc for each

class in C are calculated from all samples g
(i)
c in the training

set. During inference, the anomaly score Sg is calculated

using the average Mahalanobis distance [31] for each class,

that is:

Sg =
1

K

K∑
c=1

√
(gc − μc)�Σ−1

c (gc − μc), (3)

where K is the total number of classes in C.

3.6. Anomaly score calculation
Each model branch outputs an anomaly score at inference:

ASa, ASc and ASg for the appearance, compositional and

global branches, respectively. Individual scores are calcu-

lated as follows:

ASa = max(Aa), ASc = max(Ac), ASg = Sg , (4)

where Aa is the output of the appearance branch, Ac is the

output of the composition branch, and Sg is the output of the

global branch. The outputs are normalized using the means

μa, μc and μg and standard deviations σa, σc and σg of the

anomaly scores on the validation set. The final anomaly

score is then defined as:

AS =
ASa − μa

σa
+

ASc − μc

σc
+

ASg − μg

σg
. (5)

4. Experiments
4.1. Datasets
Experiments are performed on the standard anomaly detec-

tion dataset for logical anomalies: the MVTec LOCO [3]

and two standard anomaly detection datasets for structural

anomalies: MVTec AD [2] and VisA [46]. The MVTec

LOCO dataset comprises 3,644 images distributed across

five object categories, the MVTec AD dataset comprises

5,354 images distributed across ten object categories and five

texture categories, and the VisA dataset comprises 10,821 im-

ages distributed across twelve categories. All three datasets

provide pixel-level annotations for the test images, enabling

accurate evaluation and analysis.

4.2. Implementation Details
For the composition map generation, SAM-HQ-h [18] and

a DINO [6] pretrained ViT-b\8 [11] are used. A UNet is

used as the component segmentation model. The UNet was

trained for 15 epochs with AdamW [26] using cross-entropy

loss with a learning rate of 5 · 10−4 and a batch size of 8.

SALAD follows the training regime from EfficientAD -

70000 iterations with the Adam [20] optimizer. The learning

rate was set to 10−4 for the appearance branch and 10−5 for

the composition branch. Both learning rates were multiplied

by 0.1 after 90% (66500) of the iterations. Synthetic anoma-

lies were added to the object composition maps with a 50%

probability. All of the images were resized to 256× 256 pix-

els. Following the standard protocol, a separate model was
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Method Venue Supervised Masks Breakfast box Juice bottle Pushpins Screw bag Splicing conn. Average

DRÆM [42] ICCV’21 80.2 94.3 68.6 70.6 85.4 79.8

TransFusion [12] ECCV’24 82.4 99.7 63.8 71.5 83.7 80.2

DSR [44] ECCV’22 85.8 99.2 76.5 64.9 85.5 82.6

THFR [14] ICCV’23 77.3 80.1 80.8 79.7 81.0 83.3

LogicAD [17] AAAI’25 92.1 81.6 98.1 83.8 73.4 86.0

Sinbad [7] ArXiv’23 91.8 94.4 83.9 86.8 84.5 88.3

ComAD + Patchcore [24] AEI’23 86.4 96.6 93.4 80.2 94.1 90.1

SLSG [39] PR’24 88.9 99.1 95.5 79.4 88.5 90.3

SAM-LAD [28] KBS’25 91.0 97.6 88.2 86.6 90.0 90.7

EfficientAD [1] WACV’24 88.5 99.0 93.6 73.6 97.1 90.7

PUAD [36] ICIP’24 87.1 99.7 98.0 81.1 96.8 93.1

SALAD 89.3 99.7 99.4 95.0 97.3 96.1

PSAD [19] AAAI’24 � 92.5 98.7 94.9 97.5 90.6 94.9

CSAD [16] BMVC’24 � 92.8 95.3 98.7 96.5 93.5 95.3

SALAD† � 94.2 99.3 99.1 96.6 97.0 97.2

Table 1. Anomaly detection (AUROC) on MVTec LOCO [3]. First, second and third place are marked. SALAD† is trained using composition

maps from PSAD [19].

Category Venue Supervised Masks Breakfast box Juice bottle Pushpins Screw bag Splicing conn. Average
Log. Str. Log. Str. Log. Str. Log. Str. Log. Str. Log. Str.

DRÆM [42] ICCV’21 75.1 85.4 97.8 90.8 55.7 81.5 56.2 85.0 75.2 95.5 72.0 87.6

TransFusion [12] ECCV’24 78.8 86.0 99.8 99.6 56.4 71.3 54.8 88.2 69.2 98.2 71.8 88.7

DSR [44] ECCV’22 83.6 88.0 99.5 98.9 69.4 83.6 54.4 75.4 75.9 94.9 75.0 90.2

Sinbad [7] ArXiv’23 97.7 85.9 97.1 91.7 88.9 78.9 81.1 92.4 91.5 78.3 91.2 85.5

ComAD + Patchcore [24] AEI’23 81.6 91.1 98.2 95.0 91.1 95.7 88.5 71.9 94.9 93.3 89.4 90.9

SLSG [39] PR’24 93.7 84.5 99.2 98.8 97.4 93.4 69.4 91.6 88.4 88.5 89.6 91.4

SAM-LAD [28] KBS’25 96.7 85.2 98.7 96.5 97.2 79.2 95.2 77.9 91.4 88.6 95.8 85.5

EfficientAD [1] WACV’24 87.4 89.5 98.8 99.1 93.5 93.6 58.1 89.1 96.0 98.2 86.8 94.7

SALAD 92.9 85.7 99.7 99.6 100.0 98.8 93.9 96.0 96.0 98.6 96.5 95.7

PSAD [19] AAAI’24 � 100.0 84.9 99.1 98.2 100.0 89.8 99.3 95.7 91.9 89.3 98.1 91.6

CSAD [16] BMVC’24 � 94.4 91.1 94.9 95.6 99.5 97.8 99.9 93.2 94.8 92.2 96.7 94.0

SALAD† � 99.6 88.8 99.6 98.9 99.9 98.3 98.6 94.7 95.8 98.6 98.7 95.8

Table 2. Anomaly detection (AUROC) split by type (Logical/Structural) on MVTec LOCO [3].

Category Logical MVTec AD VisA Average

SimpleNet [25] 99.6 87.9 93.8

DRÆM [42] 98.0 88.7 93.4

TransFusion [12] 99.2 98.5 98.9
DSR [44] 98.2 91.6 94.9

RD4AD [9] 98.5 96.0 97.3

Patchcore [33] 99.1 94.3 96.7

EfficientAD [1] � 99.1 98.1 98.6

PUAD [36] � 98.5 96.9 97.7

CSAD [16] � 96.2 89.5 92.6

PSAD [19] � 98.0 90.3 94.2

SALAD � 98.8 97.9 98.3

Table 3. Anomaly detection (AUROC) on MVTec AD [2] and

VisA [46].

trained with a predefined train-test split for each category,

and the same hyperparameters were set across all datasets

and all categories. Anomaly Scores are normalized using the

anomaly scores from the validation set. As MVTec AD and

VisA do not have a validation set, we create it by taking a

part of the training set (more specifically, 10%).

4.3. Experimental results

Following recent literature [1, 33], anomaly detection perfor-

mance is evaluated using the Area Under the Receiver Oper-

ator Curve (AUROC). Most concurrent works [7, 16, 19, 36]

do not report localization results due to the ambiguity of the

ground-truth masks regarding logical anomalies. Due to that,

we omitted them from the main paper. However, they are

reported in the supplementary material for completeness.

The results for anomaly detection on MVTec LOCO are

shown in Table 1. SALAD achieves the best score with a

mean average AUROC of 96.1%, beating the best previous

method by a significant margin of 3.0 percentage points. To

enable future comparison, SALAD was also trained with

composition maps from PSAD [19], which were obtained in

a supervised manner. In this scenario, marked SALAD†, it

outperforms all methods with supervised (or category-tuned)

composition maps by a significant margin of 1.9 percentage

points. The results split by the anomaly type can be seen in

Table 2. SALAD achieves both the highest logical anomaly

detection and the highest structural anomaly detection result,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5. Qualitative comparison of the anomaly segmentation masks produced by SALAD and three other state-of-the-art methods. In the

first row, the image is shown. In the next four rows, the anomaly segmentations produced by DRÆM [42], TransFusion [12], EfficientAD [1]

and SALAD are depicted, and in the last row, the ground truth mask is depicted. For SALAD, we visualized the sum of Aa and Ac (the

outputs of the appearance and the composition branch).

suggesting that introducing the composition branch improves

anomaly detection efficiency.

Table 3 shows the results on the structural anomaly

datasets MVTec AD [2] and Visa [46]. SALAD achieves a

state-of-the-art result with a mean average AUROC of 98.3%

over both datasets. SALAD outperforms the vast majority

of logical anomaly detection methods, showing superior per-

formance in scenarios with only structural anomalies despite

not being specialized for this task.

Qualitative examples can be seen in Figure 5. SALAD

produces accurate anomaly localization even in hard near-

distribution cases, with which previously proposed methods

struggled (Columns 5, 8, 11 and 12). The extra successful

detections are primarily due to the composition branch, and

the presented anomalies mainly concern the image’s com-

position. SALAD also detects all of the regions containing

an anomaly as opposed to previous methods (Columns 1, 5

and 11). The better coverage comes from the composition

branch, which detects different parts of the anomaly.

5. Ablation study
Ablation experiments validating the contributions of SALAD

are performed. Results are shown in Tables 4 and 5.

Branch performance To show each branch’s overall impor-

tance and especially the composition branch’s importance,

we evaluated the model by excluding one branch at a time.

Dropping the appearance branch leads to a 0.9 p. p. drop in

logical anomalies and a 4.5 p. p. drop in structural anomalies.

Dropping the composition branch results in a 3.5 p. p. drop

in performance with logical anomalies and a 1.0 p. p. drop

with structural anomalies. Dropping the stat branch results

in the lowest overall performance drop with an overall drop

of 1.8 p. p. While not using the composition branch would

still achieve SOTA results, it wouldn’t improve them signifi-

cantly. This confirms that modelling the composition map

distribution will improve logical anomaly detection.

Choice of the architecture To show the generality of the

proposed framework, we exchanged the appearance branch

with three other state-of-the-art models: DSR [44], Trans-

Fusion [12] and DRÆM [25]. To maintain a unified eval-

uation process, we disabled the centre-cropping for Trans-

Fusion. No model selection strategy or parameter tuning

was performed for each model. Using all three architectures

for the appearance branch produced state-of-the-art results.

TransFusion performs better than the other two due to better

overall performance with structural anomalies, where the

composition and the global branch struggle. The results still

show robustness to the choice of the appearance branch.

Different synthetic anomaly generation strategies Three

synthetic anomaly generation techniques are used during

training - DRÆM anomaly, component inpainting and com-

ponent removal. Each strategy was removed from training

to verify the contribution to the overall performance. Re-

moving each strategy resulted in a drop in performance. The

highest drop is seen by removing the component removal

strategy (0.9 p. p.) and the lowest when we remove the com-

ponent inpainting strategy (0.4 p. p.). The results show the

contribution and necessity of each strategy.

Different global representation To investigate the improve-

ment of the global representation, we exchanged our global
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Group Condition Det. Logical Det. Struct. Det. Avg

Full model
w/o Appearance branch 95.6 (-0.9) 91.2 (-4.5) 93.4 (-2.7)

w/o Composition branch 93.0 (-3.5) 94.7 (-1.0) 93.8 (-2.3)

w/o Stat branch 93.6 (-2.9) 94.9 (-0.8) 94.2 (-1.9)

Appearance branch
DSR [44] 95.2 (-1.3) 93.7 (-2.0) 94.4 (-1.7)

TransFusion [12] 95.3 (-1.2) 95.5 (-0.2) 95.4 (-0.7)

DRÆM [42] 94.8 (-1.7) 93.1 (-2.6) 94.0 (-2.1)

Composition branch
w/o DRÆM anomalies 96.0 (-0.5) 95.2 (-0.5) 95.6 (-0.5)

w/o component inpainting anomalies 95.9 (-0.6) 95.6 (-0.1) 95.7 (-0.4)

w/o component removal anomalies 95.5 (-1.0) 95.1 (-0.6) 95.2 (-0.9)

Global branch

Only Global Vector 95.6 (-0.9) 95.6 (-0.1) 95.6 (-0.5)

gDINOv2 95.4 (-0.5) 93.5 (-2.4) 94.4 (-1.7)

gDINO 96.2 (-0.3) 94.3 (-1.4) 95.3 (-0.8)

gResNet50 92.7 (-3.8) 92.8 (-3.0) 92.7 (-3.4)

Object composition
map generation

DINOv2 95.6 (-0.9) 95.4 (-0.3) 95.5 (-0.6)

4 clusters 95.4 (-0.3) 95.4 (-0.8) 95.4 (-0.7)

8 clusters 96.0 (-0.5) 95.8 (+0.1) 95.9 (-0.2)

SALAD EfficientAD, DINO, 6 clusters 96.5 95.7 96.1

Table 4. Ablation study results. Results are reported for MVTec LOCO [3] in AUROC and separated by the type of anomalies. In the last

column, the average for both types is reported. The difference from the base model is shown in blue.

representation with the one from PUAD [36], that is, using

only the global mean vector. The performance drops by

0.9 p. p. in logical anomalies and by 0.1 p. p. in structural

anomalies. The drop is due to the lack of spatial information

inside the global representation. The results indicate that our

representation does indeed improve the results.

Different feature representation for the global represen-
tation To verify the effectiveness of the EfficientAD’s fea-

ture extractor the global representation, we exchanged it

with a few different high-performing feature extractors – DI-

NOv2 [27], DINO [6] and ResNet50 [15]. The performance

drops the least (0.8 p. p.) when using DINO and the most

using ResNet50 (3.4 p. p.). We hypothesize this is due to

the subpar representation of ResNet50 features. However, it

shows the importance of choosing the right feature extractor

for the global representation.

Different feature extractor for the composition map gen-
eration To investigate the importance of the feature extractor

in the object composition map generation, we exchanged

DINO with DINOv2 [27]. The performance drops by 0.9 p.

p. in logical anomalies and by 0.3 p. p. in structural anoma-

lies. The drop is due to consistent small mistakes in the

generated composition maps made by DINOv2. Some ex-

amples are in the Supplementary material. Nevertheless, the

results suggest that the choice of feature extractor for the

composition map generation is robust.

Different number of clusters To show the robustness of the

cluster number parameter, we also evaluated our model for

K = 4 and K = 8. Having 4 clusters results in a 0.6 p. p.

drop in overall performance, and having 8 clusters results in

a 0.2 p. p. drop in overall performance. These results suggest

that the results are robust when K gets high enough. If K is

Method DRÆM [42] Patchcore [33] EfficientAD [1] SALAD

Inference [ms] 52.6 224.4 6.2 64.6

Table 5. Results for average inference time of a single sample with

NVIDIA A100 GPU. Inference times are reported in milliseconds.

too low, the results are lower. Qualitative examples and the

results for other values are in the Supplementary material.

Inference Speed and Computational Complexity The in-

ference speed can be seen in Table 5. SALAD is faster than

Patchcore [33] and lags slightly behind DRÆM [42] and

EfficientAD [1]. SALAD could be further optimized for

speed by successfully parallelising each branch. SALAD

requires approximately 1.5 hours to train on a single A100

GPU and has 65.1 million parameters.

6. Conclusion
A novel model for logical anomaly detection, SALAD, is

proposed. Unlike recent methods, SALAD explicitly models

object composition information by introducing a novel dis-

criminatively trained composition branch. For this purpose,

it introduces a novel automatic composition map generation

strategy and an anomaly simulation process, facilitating dis-

criminative training. SALAD achieves a new state-of-the-art

of 96.1% AUROC on the MVTec LOCO Dataset, outper-

forming all previous methods by a significant margin of 3.0

percentage points. Furthermore, SALAD also performs very

well on datasets with only structural anomalies, achieving

98.9% on MVTec AD and 97.9% on VisA. Further inter-

action between branches in the architecture may improve

performance and is a good avenue for future research. The

results indicate that explicit composition distribution mod-

elling is also a viable future research direction.
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