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Figure 1. We propose ANYPORTAL, a training-free framework for high-consistency video background replacement and foreground

relighting. Given an input foreground video and a text or image prompt of the background, our method produces a video with the target

background under harmonious illuminations, while maintaining the foreground video details and intrinsic properties.

Abstract

Despite the rapid advancements in video generation tech-

nology, creating high-quality videos that precisely align

with user intentions remains a significant challenge. Exist-

ing methods often fail to achieve fine-grained control over

video details, limiting their practical applicability. We in-

troduce AnyPortal, a novel zero-shot framework for video

background replacement that leverages pre-trained diffu-

sion models. Our framework collaboratively integrates the

temporal prior of video diffusion models with the relighting

capabilities of image diffusion models in a zero-shot setting.

To address the critical challenge of foreground consistency,

we propose a Refinement Projection Algorithm, which en-

ables pixel-level detail manipulation to ensure precise fore-

ground preservation. AnyPortal is training-free and over-

comes the challenges of achieving foreground consistency

and temporally coherent relighting. Experimental results

demonstrate that AnyPortal achieves high-quality results on

consumer-grade GPUs, offering a practical and efficient so-

lution for video content creation and editing.

1. Introduction

Teleportation, often regarded as one of the most popular su-

perpowers, offers the fascinating ability to travel anywhere

instantly. While true teleportation remains confined to the

realm of science fiction, digital technologies have made its

virtual counterpart a reality, particularly in the film and

entertainment industry. Through the use of green screens

and digital techniques, actors can be seamlessly transported

from a studio to virtually any location. However, this pro-

cess is far from trivial. It involves a complex pipeline that

includes constructing green screen environments, generat-

ing backgrounds that are geometrically consistent with the

camera’s perspective, and meticulously replacing the green

screen with the synthesized background while ensuring re-

alistic illuminations. Despite its widespread use in pro-

fessional settings, this workflow remains resource-intensive

and labor-expensive beyond normal users.

Recent years have witnessed rapid advancement in

AIGC, highlighting the potential to make “virtual telepor-

tation” accessible to the general public. The state-of-the-
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art image diffusion model, IC-Light [41], enables users

to replace the background of a photo with harmonized il-

luminations, achieving robust performance through exten-

sive training on paired image datasets. However, collect-

ing large-scale paired video datasets is considerably more

difficult compared to paired images, making scaling this

approach to video significant challenges. Meanwhile, re-

cent cutting-edge video diffusion models [37, 44] demon-

strate impressive capabilities in video generation and edit-

ing. Despite their potential, these models still fall short for

widespread video background replacement tasks. First, ex-

isting video diffusion models exhibit limited controllability

over generated content. While some approaches [9, 28, 31]

introduce coarse controls for edges, poses and motion, they

lack pixel-level precision, often resulting in unintended al-

terations to the foreground appearance. Second, adapting

video models to our specialized task typically requires task-

specific training or fine-tuning, which is hindered by the

scarcity of paired video data and the substantial computa-

tional resources needed to train large video models.

We believe that pre-trained large diffusion models inher-

ently possess rich prior knowledge for video background

replacement: IC-Light provides valuable insight into how

lighting should be rendered, while video models capture

real-world dynamics. Our key insight is to explore to which

extent these pre-trained models can manage tasks that ex-

tend beyond their original training task, collaboratively

leveraging their inherent priors in a zero-shot setting.

To this end, we investigate the zero-shot video back-

ground replacement problem. While IC-Light excels at il-

lumination harmonization, and video models provide pow-

erful temporal priors, naively combining them fails to

address the critical challenge of foreground consistency,

which requires precise pixel-level control over the gener-

ation process. While mature training-free control schemes

exist for image models – such as inference-time optimiza-

tion [38, 39] or DDIM inversion [30] with latent manipu-

lations [7, 17] – these methods face significant limitations

when applied to video models: 1) Optimization on video

models incurs prohibitive computational costs; 2) Video

models typically operate in a highly compact 3D latent

space [37], which degrades inversion quality and hinders

detailed manipulations. To address these challenges, we

propose a novel Refinement Projection Algorithm (RPA)

tailored for video models. RPA computes a projection di-

rection in the latent space that simultaneously ensures high

consistency with the input foreground details and high-

quality background, offering a robust and efficient solution

for zero-shot video background replacement.

We introduce ANYPORTAL, a novel training-free frame-

work for video background replacement. ANYPORTAL first

generates a coarse video with illumination harmonized by

IC-Light and then enhances its temporal consistency us-

ing a pre-trained video diffusion model. To achieve pre-

cise control over foreground details, a Refinement Projec-

tion Algorithm is proposed to enable pixel-level manipula-

tion. As shown in Fig. 1, ANYPORTAL seamlessly transfers

foreground subjects (e.g., humans or objects) from an in-

put video to a new environment, specified by either a text

prompt or a background image, while ensuring natural illu-

minations, realizing “virtual teleportation” in videos. Re-

markably, our framework operates efficiently on a single

24GB GPU. Furthermore, its modular design allows each

component to be implemented using the best available pre-

trained models, ensuring compatibility with the latest ad-

vancements in AIGC. Our contributions are threefold:

• We introduce ANYPORTAL, an efficient and training-free

framework for video background replacement.

• We design a modular pipeline that integrates the latest

pre-trained image and video diffusion models, to combine

their strengths for realistic and coherent video generation.

• We propose a novel Refinement Projection Algorithm that

enables pixel-level detail manipulation in compact latent

spaces, ensuring precise foreground preservation.

2. Related Work

Image Diffusion Model. Latent Diffusion Model (LDM)

has become a strong method for image generation, notably

gaining significant popularity with Stable Diffusion [27].

The main idea is to first compress the image data into la-

tent space using a Variational Autoencoder (VAE), then pro-

gressively denoise Gaussian noises with algorithms such as

DDPM [13] and DDIM [30], and finally decode the de-

noised latent back to an image. Traditionally, U-Net archi-

tectures were used, followed by DiT [23] that introduces

Transformers to improve generated results as in SD3 [5].

To meet user demands for generating images with spe-

cific conditions, SDEdit [18] allows for training-free image

editing in the LDM framework by denoising the noisy im-

age from an intermediate timestep. Methods like Control-

Net [40], T2I-Adapter [20] and ControlNeXt [24] create a

learnable branch of the denoising model to offer additional

control conditions such as edges and depth maps. Another

approach to image editing is using DDIM inversion [30] and

Null-Text Inversion [19], which inverts the denoising pro-

cess of a given image, then re-denoises it with text guidance

and attention manipulations [3, 12, 22, 32].

Video Diffusion Model. Many works attempt to ex-

tend image diffusion models to video diffusion generation.

Early attempts make partial modifications to image mod-

els, by redesigning the sampling scheme for zero-shot video

generation [15], fine-tuning inflated models for one-shot

video generation [33], and training a plug-and-play tem-

poral module to turn image models into animation gener-

ators [10]. With increased computational resources, full

model training on large-scale video dataset has been pro-
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Figure 2. Framework of ANYPORTAL. (a) Background Generation: A video diffusion model ϵθ is used to generate a basic background

video Ib following the first frame generated by IC-Light model ¶p and the camera motion of the input video I; (b) Light Harmonization:

a two-step pipeline based on IC-Light model ¶I and ¶p is proposed to combine the foreground and background video and harmonize its

illumination; (c) Consistency Enhancement: The video diffusion model ϵθ is used to improve the temporal consistency of IL, with a novel

Refinement Projection Algorithm (RPA) to further strengthen the foreground consistency with the input I. (^: All models are frozen)

posed [1, 2, 11, 14, 29, 45]. Modern practices such as

OpenSora [44] and CogVideoX [37] have focused on learn-

ing in the 3D latent space (2D for spatial + 1D for tempo-

ral). These methods typically extend the 2D image VAE to

3D VAE that compresses both spatial and temporal dimen-

sions, mapping videos into a 3D latent space. The denoising

model works in this latent space, usually using a DiT archi-

tecture [23], which exhibits better temporal consistency and

scalability.

Diffusion models can be used for video editing. An

intuitive idea is to apply image editing techniques like

SDEdit [18] and Prompt-to-Prompt [12] to the image mod-

els with cross-frame attention to strengthen temporal con-

sistency [8, 25, 35, 36, 42]. However, image models intrin-

sically lack modeling of real-world motion, leading to un-

natural dynamics. Meanwhile, due to the high complexity

and compactness of 3D latent space, the above editing and

DDIM inversion techniques [30] are not directly compat-

ible with the DiT-based diffusion models, resulting in mo-

tion degradation and appearance distortions. To leverage the

latest advancements of video models, we propose an effec-

tive Refinement Projection Algorithm to maintain the input

video details without harming the generated motions.

Foreground Relighting and Background Replace-

ment. TotalRelighting [21] and SwitchLight [16] train neu-

ral networks to predict surface normals and albedo to re-

compute new lighting. Relightful Harmonization [26] fine-

tunes an image diffusion model conditioned on the back-

ground for foreground relighting. IC-Light [41] simultane-

ously achieves impressive background replacement and il-

lumination harmonization by concatenating the input noise

and foreground condition (and optionally background con-

dition) before feeding into the diffusion model and fine-

tuning the model with light transport consistency. Cur-

rently, there are few diffusion models specifically for video

background replacement and foreground relighting. Re-

lightVid [6] combines IC-Light and AnimateDiff [10] with

finetuning. By comparison, our method does not require

any training, achieving high compatibility and modularity.

Each of the modules can be implemented by the best pre-

trained models, allowing us to leverage the latest advance-

ments (e.g., CogVideoX [37]) for better video consistency.

3. ANYPORTAL

3.1. Preliminary

Video Diffusion Model. The latest video diffusion gener-

ation models [37, 44] typically includes a 3D VAE D ◦ E
and a denoising DiT model ϵθ. The VAE consists of a video

encoder E to encode a video clip I into the compressed la-

tent feature x = E(I) and a video decoder to the latent back

into a video I = D(x). The denoising DiT model ϵθ is

trained for denoising in the latent space. At the timestep t,
ϵθ takes as input noisy latent xt and condition c (typically,

the prompt) to output a noise prediction ϵθ(xt, c, t). A clean

x0 could be sampled from a Gaussian noise xT ∼ N (0, 1)
by iteratively predicting xt−1 from xt following denoising

schemes such as DDIM [30],

xt−1 =
√
³t−1x

t
0
+
√

1− ³t−1ϵθ(xt, c, t), (1)

where ³s are a group of parameters related to t and xt
0

is the

denoised latent at timestep t,

xt
0
=

xt −
√
1− ³tϵθ(xt, c, t)√

³t

. (2)

Finally, the generated video I = D(x0) is obtained.

IC-Light. IC-Light [41] is an image diffusion model for

background replacement and foreground relighting. It has

two versions ¶p and ¶I . ¶p is conditioned on prompts p de-

scribing the appearance of the background, while ¶I is con-

ditioned on background images Ib. Given a foreground im-

age If , it generates I ′ = ¶p(If , p) or I ′ = ¶I(If , Ib) with
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(a)

(b)

(c)

Figure 3. Motion-aware background generation. The generated

background video Ib follows the camera motion of the input video.

(a) Input video I. (b) Video output Ib. (c) Inpainted output Ib. The

blue dotted lines indicate the inconsistent foreground areas.

the corresponding foreground and background under har-

monized illumination. For simplicity, we omit the iterative

sampling operations and transformations between the image

space and the 2D latent space. We experimentally find that

the text-guided model excels at intensively harmonized illu-

mination, whereas the image-guided model can create more

consistent background. We will detail how we combine the

two models to leverage their strengths in Sec. 3.2.2 .

3.2. Zero­Shot Video Background Replacement

As illustrated in Fig. 2, our framework is divided into three

stages: (1) Background Generation; (2) Light Harmoniza-

tion; (3) Consistency Enhancement. Our input is a fore-

ground video I and a prompt p describing the background.

In the first stage, we generate a background video Ib that

matches the camera movements of I with the help of a pre-

trained video diffusion model ϵθ. The second stage harmo-

nizes the lighting of the foreground object in the new back-

ground based on our proposed two-step IC-Light pipeline

to produce a coarse video IL. The third stage introduces a

novel Refinement Project Algorithm (RPA) that addresses

inconsistencies between frames and refines the foreground

details to match those of I, yielding the final video I
′.

Note that our method is zero-shot and modular, fully

leveraging the powerful generative ability of the pre-

trained diffusion models ϵθ and ¶s without any training or

inference-time optimization. This allows us to generate im-

pressive videos on a single 24GB-memory GPU. Moreover,

our method fully benefits from rapidly growing vision dif-

fusion research, as it can be implemented on the latest pre-

trained models once available to boost the performance.

3.2.1. Background Generation

To seamlessly integrate the foreground with the back-

ground, the first stage produces a basic background video

Ib that corresponds with the background prompt p and, cru-

cially, matches the camera motion of the I. To this end,

(a) 

(b)

(c) 

(d)

Lighting 
Quality

Style 
ConsistencyFrame#1 Frame#32

Figure 4. Two-step light harmonization. Our two-step harmo-

nization pipeline with cross-frame attention enables high lighting

quality (enlarged red region) and inter-frame style consistency (en-

larged blue region). Light harmonization results of (a) ¶I , (b) ¶p,

(c) ¶I + ¶p, (d) ¶I + ¶p+ cross-frame attention.

we follow Diffusion-As-Shader (DAS) [9], a ControlNet-

based video generation framework that guides the video dif-

fusion model with the first frame and the motion (tracked

3D points) of a guiding video. Specifically, I serves as the

guiding video. To obtain the first frame, we apply IC-Light

to the first frame I1 of I, resulting in I ′
1
= ¶p(I1, p). Then,

we apply DAS to the backend video diffusion model to gen-

erate Ib based on I ′
1

and I. As shown in Fig. 3, Ib has the

same camera motion as the input I, but its foreground object

may differ significantly from I and cannont be directly used

as our video background replacement result. Finally, we use

ProPainter [46] to remove the foreground object, obtaining

the basic background video Ib.

3.2.2. Light Harmonization

We first extract foreground objects If from I with an image

segmentation model BiRefNet [43]. Now, for each frame

of I′, we have a background prompt p, a background image

Ib ∈ Ib and a foreground image If ∈ I. We have tried ap-

plying both the image-guided and text-guided IC-Light to

combine them. However, neither produces reasonable re-

sults. As shown in Figs. 4(a)(b), the image-guided result

I ′ = ¶I(If , Ib) has an insufficiently harmonized illumina-

tion (missing backlight effect), while the text-guided result

I ′ = ¶p(If , p) has a strong illumination effect and suffers

from temporal inconsistency and mismatched camera mo-

tions in the background due to the lack of image guidance.

To strike a balance of the illumination effect between ¶I
and ¶p while simultaneously utilizing the temporally coher-

ent visual guidance from Ib, we propose a two-step harmo-

nization pipeline, as illustrated in Fig. 2(b). In the first step,
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Figure 5. Consistency enhancement via Refinement Projection

Algorithm (RPA). (a) Input video. (b) Video diffusion model

strengthens temporal consistency, but creates inconsistent fore-

ground appearance. (c) Foreground refinement without RPA intro-

duces quality degradation in the background. (d) RPA effectively

constrains foreground details while preserving other regions.

we obtain the image-guided result I ′img = ¶I(If , Ib). In the

second step, we take the idea of SDEdit [18] to refine the

illumination of I ′img by denoising it using ¶p. In particular,

we add noise of T0 steps (T0 < T ) to I ′img with DDPM

forward process [13], which is then denoised for T0 steps

using ¶p under the conditions of If and p. As shown in

Fig. 4(c), the foreground lighting is well enhanced. How-

ever, such per-frame processing cannot ensure style consis-

tency (e.g., the inconsistent appearance of beaches and the

varied position of palm leaves in two frames). To alleviate

this issue, we employ cross-frame attention [15, 33, 35] to

¶I and ¶p. We replace ¶’s self-attention layers with cross-

frame attention layers, where all frames aggregate key and

value features from the first frame rather than themselves.

As a result, the style consistency is strengthened, as shown

in Fig. 4(d). Note that our pipeline allows one to adjust the

illumination effect via T0, i.e., a large T0 produces results

with intensive lights and shadows.

3.2.3. Consistency Enhancement

The video IL generated in Sec. 3.2.2 still presents two is-

sues: 1) Even introducing cross-frame attention for global

style consistency, there are still pixel-level jitters between

frames. 2) IL’s foreground details do not exactly match I’s

foreground details. Therefore, we aim to take advantage of

the ability of the video diffusion model ϵθ to improve both

the inter-frame temporal continuity and the foreground de-

tail consistency. As with Sec. 3.2.2, our high-level idea is

to use SDEdit to refine the temporal consistency of IL by

denoising it using ϵθ for T1 steps (T1 < T ). We addition-

ally apply edge-based ControlNet to ϵθ to preserve the main

structure of I, as shown in Fig. 2(c). However, ControlNet

Algorithm 1: Foreground Refinement

Input: Edited video I
t
0
, original input video I

Output: Refined video Ĩ
t
0
= Refine(It

0
, I)

1 I
t
0,LF = GaussianBlur(It

0
);

2 I
t
0,HF = I

t
0
− I

t
0,LF;

3 ILF = GaussianBlur(I);
4 IHF = I− ILF;

5 M
t
0
= ForegroundSegmentation(I);

6 IBG = Inpaint(It
0
, ForegroundSegmentation(It

0
));

7 Ĩ
t
0
= M

t
0
· (IHF + I

t
0,LF) + (1−M

t
0
) · IBG;

only provides coarse structure guidance, failing to maintain

the identity in Fig. 5(b). Thus, we propose a Refinement

Projection Algorithm (RPA) to enforce the consistency of

the foreground details at the pixel level.

The key idea is to transfer the high-frequency details

(since high-frequency information of a frame typically de-

picts its edges and textures, while low-frequency informa-

tion characterizes its colors and illuminations) from I to IL

in the foreground during SDEdit denoising. As analyzed in

Sec. 1, the compact 3D latent space impedes direct high-

frequency refinement in the pixel domain. Thus, we first

decode the latent back to the pixel domain to apply the re-

finement, and then encode the refined video back to the la-

tent space. To avoid quality degradation from the inherent

reconstruction error of the 3D VAE, RPA computes a zero-

error projection direction to guide the encoding. Specifi-

cally, RPA has two parts: foreground refinement and DDIM

denosing with RPA.

Foreground Refinement. To avoid the interference of

noises, we follow common practice [35] to operate on

noise-free latent xt
0

in Eq. (2). xt
0

is first decoded back to

video I
t
0
= D(xt

0
). Subsequently, It

0
and I are decomposed

into their low-frequency (LF) and high-frequency (HF)

components. In the foreground region of the refined video

Ĩ
t
0
, we combine I

t
0
’s LF component and I’s HF component.

The background region of Ĩt
0

is set to the inpainted I, which

removes the foreground object using ProPainter [46]. The

refinement details is summarized in Algorithm 1.

DDIM Denosing with RPA. We would like to re-encode

the refined video Ĩ
t
0

back into latent space as x̂t
0
, to replace

the original xt
0

during DDIM denoising. Ideally, apart from

refined HF details, x̂t
0

should remain unchanged compared

to xt
0
. However, there are two places where errors could

be introduced. First, encoding and decoding is not strictly

reversible; second, the stochastic nature of VAE causes in-

evitable discrepancies. Actually, VAE outputs the mean

and standard deviation of the latent: µ̂, Ã̂ = E(Ĩt
0
), and

x̂t
0

is sampled by reparameterization: x̂t
0
= µ̂ + ϵÃ̂ with

ϵ ∼ N(0, 1), which introduces randomness. As the DDIM

denoising iterates, such randomness and errors accumulate,

resulting in a blurred background as in Fig. 5(c).

Instead of a random ϵ, our RPA uses a deterministic ϵ̂
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Figure 6. Visual comparison on zero-shot video background replacement. Full video results are provided in the supplementary material.

Algorithm 2: DDIM Denoising with RPA

Input: Initial noise xT1
, input video I, condition c

Output: Refined denoised result x0

1 for t = T1 . . . 1 do

2 xt
0
=

(

xt −
√
1− ³tϵθ(xt, c, t)

)

/
√
³t;

3 I
t
0
= D(xt

0
);

4 µ, Ã = E(It
0
);

5 Ĩ
t
0
= Refine(It

0
, I);

6 µ̂, Ã̂ = E(Ĩt
0
);

7 ϵ̂ = (xt
0
− µ)/Ã;

8 x̂t
0
= µ̂+ ϵ̂Ã̂;

9 xt−1 =
√
³t−1x̂

t
0
+
√
1− ³t−1ϵθ(xt, c, t);

that is computed to ensure a perfect reconstruction on xt
0
.

Specifically, we assume a perfect reconstruction µ + ϵ̂Ã =
xt
0
. Note that xt

0
and µ, Ã = E(D(xt

0
)) are all available, so

we can deterministically calculate ϵ̂. Then, for the refined

video Ĩ
t
0
= Refine(It

0
, I), we obtain µ̂, Ã̂ = E(Ĩt

0
) and the

final projection solution is x̂t
0
= µ̂ + ϵ̂Ã̂. We summarize

our proposed RPA in Algorithm 2. Our key insight is that

if no refinement is applied (i.e., Ĩt
0
= I

t
0
), this projection

will cause x̂t
0

exactly equal to xt
0
. Such an alignment prop-

erty ensures the resulting video’s background area remains

almost identical with only foreground details refined, which

is also verified by Fig. 5(d).

4. Experiments

Implementation Details. We instantiate ANYPORTAL with

CogVideoX [37] as the video diffusion model ϵθ, and IC-

Light [41] as the image background replacement model ¶p
and ¶I . We set T = 20, (T0, T1) to (0.7T, 0.7T ) and

(0.4T, 0.4T ) for strong and weak illumination effects, re-

spectively, due to different scenario needs. All experiments

are conducted on a single NVIDIA 4090 GPU with CPU

offload activated for CogVideoX. The testing videos are

uniformly resized to 480×720 and trimmed to 49 frames

to comply with CogVideoX specifications. Each video re-

quires approximately 12 minutes for inference (which can

be further accelerated with CPU offload off if larger GPU

memory is available). The code of this work will be re-

leased along with the publication of this paper.

Baseline. Since there are few other works exactly han-

dling our zero-shot video background replacement task, we

choose the following most related baselines for comparison.

• IC-Light [41]: A state-of-the-art image background re-

placement model. We apply it frame-by-frame.

• TokenFlow [8]: A state-of-the-art zero-shot text-guided

video editing model.

• Diffusion-As-Shader (DAS) [9]: A versatile video gener-

ation control model. We use its motion transfer function,

which creates a new video by transferring motion from an

input video to a provided image as the first frame. Here,

we use IC-Light to generate the first frame.

Note that all above baselines are zero-shot diffusion-based

editing methods to ensure a fair comparison.

Evaluation. We construct a test set consisting of 30

samples and prompts for evaluation, and use the follow-

ing metrics for evaluation: 1) Fram-Acc [25]: The propor-

tion of video frames where the CLIP-based cosine similar-
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Table 1. Quantitative comparison and user preference rates

Metric IC-Light TokenFlow DAS Ours

Fram-Acc ↑ 0.983 0.541 0.937 0.973

Tem-Con ↑ 0.945 0.981 0.986 0.993

ID-Psrv ³ 0.578 0.632 0.364 0.313

Mtn-Psrv ↑ 0.844 0.985 0.878 0.987

User-Pmt 1.11% 1.11% 29.72% 68.06%

User-Tem 0.56% 5.56% 28.61% 65.28%

User-Psrv 2.78% 18.33% 17.22% 61.67%

User-Lgt 11.11% 11.11% 30.56% 47.22%

ity with the target prompt is higher than that with the source

prompt, to measure whether the background is successfully

edited. 2) Tem-Con [25]: CLIP-based cosine similarity be-

tween consecutive frames to measure temporal consistency;

3) ID-Psrv: Preservation of foreground detail of the gener-

ated video, measured by the identity loss [4] between the

human face (if applicable) in generated video and the input

video; 4) Mtn-Psrv: Preservation of the motion of the gen-

erated video, measured by point motion tracking similarity

between the generated video and the input video. We use

SpatialTracker [34] to track points.

For user study, we invite 24 participants. Participants

are asked to select the best results among the four meth-

ods based on three criteria: 1) User-Pmt: how well the

result aligns with the prompt, 2) User-Tem: the temporal

consistency of the result, 3) User-Psrv: how well the fore-

ground details and motions are preserved, and 4) User-Lgt:

the quality of relighting on foreground.

4.1. Comparison to State­of­the­Art Methods

Figure 6 visually compares the proposed method with other

baselines. IC-light [41], being fundamentally an image

diffusion model, inherently suffers from temporal incon-

sistency. Moreover, it tends to overly relight the subject,

even changing the intrinsic properties like the color of the

clothes and the headscarf. TokenFlow [8] demonstrates lim-

ited editing capabilities and insufficient foreground detail

control, while DAS [9] fails to maintain control over fore-

ground motion dynamics and intrinsic appearance proper-

ties. In contrast, our method achieves high-quality back-

ground replacement and foreground relighting while ensur-

ing temporal consistency and foreground detail consistency.

Full results are provided in the supplementary material.

Table 1 gives quantitative evaluations. IC-Light achieves

the best Fram-Acc as it is specifically trained for this back-

ground replacement task, without the need to consider tem-

poral consistency. Our method achieves the second-best

Fram-Acc, and the best results across all other metrics and

user preferences, striking a good balance between single-

frame relighting quality and overall video smoothness.

(a) T0 = 0 (b) T0 = 0.4T (c) T0 = 0.7T

Figure 7. Effect of T0 in illumination harmonization. With in-

creased T0, ¶p assumes a more prominent role in facilitating inten-

sive light and shadow effect for foreground.

(a)        (b)

Figure 8. Effect of Consistency Enhancement. The temporal

prior of video diffusion model effectively helps improve temporal

consistency, e.g., eliminating the inconsistent appearance of rocks

as in the enlarged blue region.

4.2. Ablation Study

To validate the contributions of different modules to the

overall performance, we systematically deactivate specific

modules in our framework. The results are reported in

Figs. 4, 5, 7, 8 and Table 2.

• Two-Step Harmonization. In the Image Harmonization

stage, we employ IC-Light ¶I and ¶p to provide improved

illumination for videos, enabling better integration of the

foreground into the background. A naive one-step har-

monization (i.e., w/o ¶p or T0 = 0) would result in video

models generating foregrounds with less natural lighting,

as reported in Table 2. As T0 increases, ¶p gradually

plays a stronger role in achieving more natural foreground

lighting, as shown in Fig. 7.

• Cross-Frame Attention. The effect of cross-frame atten-

tion injection is studied in Fig. 4. Disabling cross-frame

attention leads to severe inter-frame appearance discrep-

ancy in the generated results (e.g., footprints suddenly ap-

peared on the beach), degrading temporal consistency.

• Temporal Prior. The Consistency Enhancement (Cst-

Enh) stage optimizes the foreground details and overall

temporal consistency of the video IL generated in the sec-
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User-Provided 
Background

User-Provided 
Background

Figure 9. Image-guided background replacement. In addition to

text prompts, our method also supports replacing the background

based on a user-provided image.

ond stage. Without Cst-Enh, Tem-Con drops significantly

as in Table 2. As demonstrated in Fig. 8, IL suffers from

inconsistent rock in the background. By leveraging the

strong prior of video diffusion models, this issue is effec-

tively solved in the stage-three result I′.

• RPA. RPA performs high-frequency detail refinement on

the latent. Without RPA, the identity discrepancy be-

comes greater as in Table 2 and Fig. 5(b). A naive high-

frequency detail refinement through decoding and encod-

ing leads to a blurry background, as in Fig. 5(c). Our

designed RPA provides a deterministic sampling scheme

that well preserves the non-refined regions like back-

ground areas, as in Fig. 5(d).

5. More Results

Image-Guided Video Background Replacement. Our

method can be easily adapted to image prompts. In the

first stage, we generate the first frame with ¶I and a user-

provided background scene image, while the subsequent

stages remain identical to those with text prompts. Our

image-guided results are shown in Fig. 1 and Fig. 9.

Comparison to Light-A-Video. We further provide

a visual comparison with a concurrent work of Light-A-

Video [47] in Fig. 10. The two methods, both based on

CogVideoX, produce outputs of comparable quality. How-

ever, the CogVideoX implementation of Light-A-Video can

only relight the existing background, while our method can

generate new background content.

6. Limitations

While ANYPORTAL demonstrates promising results, sev-

eral limitations remain. Figure 11 gives a typical example.

1) Low-quality inputs (e.g., low-resolution/blurry) reduce

high-frequency detail transfer, causing blurred results like

+ <... neon lights.= OursLight-A-Video

Figure 10. Comparison to Light-A-Video. As concurrent work,

Light-A-Video only relights backgrounds instead of generating

new content.

Table 2. Quantitative ablation study

Metric w/o ¶p w/o Cst-Enh w/o RPA Full

Fram-Acc ↑ 0.966 0.970 0.970 0.973

Tem-Con ↑ 0.989 0.961 0.987 0.993

ID-Psrv ³ 0.329 0.353 0.371 0.313

Mtn-Psrv ↑ 0.987 0.973 0.984 0.987

(a)

I

(b)

I'

Prompt: A woman boxer is boxing near a window

Figure 11. Limitations. Low-quality input, poor boundary condi-

tion and fast movement degrades the performance of our method.

Red boxes indicate the mismatched and blurry boundary region.

Fig. 11’s hair; 2) Unclear foreground-background bound-

aries lead to mismatched inpainting and enlarged blurry re-

gions around subjects; 3) Rapid motion challenges diffusion

models, causing artifacts on the left arm.

7. Conclusion and Discussion

In this paper, we propose ANYPORTAL, a zero-shot frame-

work for video background replacement and foreground re-

lighting that achieves high temporal consistency and de-

tail fidelity without task-specific training. Specifically, by

integrating motion-aware video diffusion for background

generation, extending image relighting models with cross-

frame attention, and introducing the Refinement Projection

Algorithm to preserve foreground details in latent space,

our method outperforms existing approaches in both light-

ing harmonization and temporal coherence.

One possible future direction is to investigate the exten-

sion of diverse editing tasks (e.g., recolorization, styliza-

tion, facial attribute editing, inpainting) to video domains

with the temporal prior of large video diffusion models.
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