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Abstract

While video compression based on implicit neural repre-
sentations (INRs) has recently demonstrated great poten-
tial, existing INR-based video codecs still cannot achieve
state-of-the-art (SOTA) performance compared to their
conventional or autoencoder-based counterparts given the
same coding configuration. In this context, we propose a
Generative Implicit Video Compression framework, GIViC,
aiming at advancing the performance limits of this type
of coding methods. GIViC draws inspiration from the re-
markable ability of large language and diffusion models to
capture long-range dependencies, a characteristic also in-
herent to Implicit Neural Representations (INRs). Through
the newly designed implicit diffusion process, GIViC per-
forms diffusive sampling across coarse-to-fine spatiotem-
poral decompositions, gradually progressing from coarser-
grained full-sequence diffusion to finer-grained per-token
diffusion. A novel Hierarchical Gated Linear Attention-
based transformer (HGLA), is also integrated into the
framework, which dual-factorizes global dependency mod-
eling along scale and sequential axes. The proposed GIViC
model has been benchmarked against SOTA conventional
and neural codecs using a Random Access (RA) configura-
tion (YUV 4:2:0, GOPSize=32), and yields BD-rate savings
of 15.94%, 22.46% and 8.52% over VVC VIM, DCVC-FM
and NVRC, respectively, on the UVG test set. As far as we
are aware, GIViC is the first INR-based video codec that
outperforms VIM, in terms of coding performance, based
on the RA coding configuration.

1. Introduction

The ubiquitous consumer demand for high-quality digital
video has accelerated the development of increasingly pow-
erful compression techniques [12]. While the latest video
standards, such as MPEG H.266/VVC [10] and AOM (Al-
liance for Open Media) AV1 [29], offer impressive cod-
ing efficiency and architectural compatibility with previous
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Figure 1. (Top) Illustration of the implicit diffusion framework
based on spatiotemporal downsampling of a GOP X with additive
noise, interlinking independent diffusion within constant-sized to-
kens {mfj} across k = 1,. .., K levels of abstractions. (Bottom)
The global spatiotemporal dependencies are captured by the 2D
hidden states S* . of the HGLA transformer, recurrently updated
along both scale and axes.

standards, their coding gains are achieved through the use of
increasingly sophisticated tools built upon the conventional
hybrid video coding framework. In contrast, neural video
compression [48, 50, 53] has emerged in recent years as a
data-driven framework, leveraging end-to-end optimization
to achieve a performance level that rivals, or in some cases,
surpasses [38, 50, 80] that of standard video codecs.

More recently, implicit neural representation (INR)
based solutions [13] have provided a more flexible, and po-
tentially lightweight, alternative to these ‘generic’ neural
video coding backbones. By adaptively overfitting a neu-
ral network to a specific (input) video sequence, INR-based
video codecs [14, 45, 47] exploit long-term spatiotempo-
ral dependencies through sequence-level parameter shar-
ing and stochastic optimization, showing the potential to
achieve competitive coding performance [24, 46].

However, the application scenarios, and more critically,
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the compression performance of existing INR-based codecs
are generally limited by their encoding latency, i.e., the
number of consecutive frames that can be represented with a
single set of learnable parameters. When the system latency
is constrained to be compatible with the Low Delay or Ran-
dom Access configurations [9] typically used in standard
video codecs, INR-based methods [24] are outperformed
by SOTA conventional codecs such as VVC VTM [11] and
generic neural codecs such as the recently improved DCVC
models [50, 59].

In this paper, we enhance the INR framework by
architecturally scaling its capacity for long-term depen-
dency modeling, employing diffusion models (DMs) and
transformer backbones capable of modeling full-GOP-
level spatiotemporal dynamics. The resulting video com-
pression framework, GIViC (Generative Implicit Video
Compression), is built on a novel conditional implicit dif-
fusion model, as shown in Figure 1 (top). This decomposes
a joint diffusion process into cascaded spatiotemporal pyra-
mids, where each stage is extrapolated from denoised rep-
resentations at coarser scales and previously denoised refer-
ence tokens, accelerating denoising while preserving repre-
sentation quality. GIViC also integrates HGLA (Hierarchi-
cal Gated Linear Attention), a novel linear transformer that
harmonizes efficiency and effectiveness by dual-factorizing
long-term dependency modeling along both scale and se-
quence axes. Leveraging hierarchically gated recurrence,
HGLA scales linearly with long context length spanning the
entire GOP, as illustrated in Figure 1 (bottom). The main
contributions of this paper are summarized as follows:

e This is the first time diffusion models and transformers
have been jointly integrated into an INR-based framework
for video compression, resulting in a highly expressive
architecture for full-GOP-level distribution modeling that
enables SOTA compression performance.

* We propose a novel implicit diffusion framework that
reformulates the standard diffusion method into an equiv-
alent multi-resolution approach. It decomposes the dif-
fusion process into spatiotemporal pyramidal stages, in-
terlinking coarser-grained global variations with finer-
grained local details during the per-token diffusion de-
noising process.

* We further develop a gated linear transformer backbone,
HGLA, tailored specifically for our diffusion formula-
tion, that captures long-term dependencies jointly along
scale and sequence axes. HGLA achieves linear complex-
ity w.r.t (long) context lengths while maintaining compet-
itive performance compared to vanilla transformers that
have quadratic complexity.

We have benchmarked GIViC against SOTA conven-
tional and neural video codecs on the UVG, MCL-JCV,
and JVET-B datasets under the Random Access (RA) con-
figuration (YUV colorspace). Results demonstrate signif-

icant coding gains, with GIViC outperforming VTM 20.0,
DCVC-FM, and NVRC by 15.94%, 22.46%, and 8.52%, re-
spectively, on the UVG test set, and by 7.71%, 22.34%, and
16.13%, respectively, on the JVET-B test set. To the best of
our knowledge, GIViC is the first INR-based video codec
to surpass VIM performance in the RA coding mode.

2. Related Work

Neural video compression. The focus of video com-
pression research is progressively shifting from conven-
tional hand-crafted codecs [10, 69, 79] to those that in-
corporate learning-based enhancement of individual coding
tools [1, 88, 88] often within end-to-end optimized coding
frameworks. Recent contributions have been based on vari-
ous innovations including: improving sub-components [34,
36, 38, 49, 54, 80], optimizing rate control [82, 92], leverag-
ing instance-specific overfitting [56, 74] and accelerating in-
ference [35, 58]. Currently, the best-performing model [59]
has been reported [72] to offer improved performance over
ECM [68] under the Low-Delay configuration.

Implicit neural representations (INRs), which use neu-
ral networks to map multimedia signals into coordinate-
based representations [22, 39, 65, 81], offer an efficient and
elegant (albeit unconventional) alternative for video com-
pression. INR-based methods [3, 13, 14, 31, 47, 84] ex-
ploit sequence-level spatiotemporal redundancy by encod-
ing video sequences within a compact set of network param-
eters, reformulating visual data compression into a model
compression task that leverages pruning, quantization, and
entropy penalization techniques [25, 30, 91]. While re-
cent advances have improved the compression efficiency
of INRs through hierarchical encoding [45] and more ad-
vanced compression methods [24, 46], they are still outper-
formed by SOTA conventional [11, 68] and neural video
codecs [50, 59] under the same latency constraints.

Long sequence modeling. Recently, the success of Large
Language Models (LLMs) [19, 37] has been driven by a
core principle in information theory - jointly modeling long
token sequences can maximize compression efficiency [15].
However, unlike natural languages, visual signals are asso-
ciated with bidirectional dependencies that defy simple uni-
directional structures, resulting in poorer performance with
decoder-only architectures compared to diffusion and non-
autoregressive methods [70, 77]. Additionally, the quadratic
complexity of self-attention in LLMs poses challenges for
scaling to long contexts, motivating the development of lin-
ear attention [27, 57, 86], which enables parallelized train-
ing, linear complexity inference, and performance compara-
ble to standard transformers. This design has been recently
adopted in some neural compression methods [38, 60].

Diffusion models. Diffusion models (DMs) [16, 32, 66]
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Figure 2. llustration of the GIViC network architecture.

have proved to be more reliable and expressive compared
to other types of generative models, e.g., VAEs [42] and
GANs [26]. They have contributed to (generative) vi-
sual compression by unconditionally communicating lossy
Gaussian samples [73] or by generating photorealistic im-
ages conditioned on entropy-encoded information [62, 85,
89, 93]. Although most diffusion models enforce a fixed
forward corruption process and operate at a single resolu-
tion [66], recent studies [5, 18, 33, 71] demonstrate a more
generalized and efficient alternative, i.e., performing diffu-
sion across multiple resolutions and incorporating arbitrary
degradations such as blurring and vector quantization.

3. Methods

Let X € RT*HxWX3 e 3 GOP (Group of Pictures) with
T consecutive video frames with spatial resolution H x W.
As shown in Figure 2, a set of latents Y = {yl}le, yl €
RS:xS1x5,xD' " embedded within a compact local grid
structure [45], is initialized by a spatiotemporal encoder £4,
ie., Y = &4(X) and stochastically overfitted to X dur-
ing encoding. Here (S!, S}, S!)) denotes the local grid size
at level [, and D! is the channel dimension. The complete
representation ) is quantized into Y = {§'}~, by Q(-),
which we relax as ¢, (Y|X) = U(Y — 0.5, + 0.5) dur-
ing encoding to address the non-differentiability issue [4].
A context model Pg(+) is then used to evaluate the proba-
bility mass function (PMF) of ), with which ) could be
losslessly entropy encoded into the bitstream.

At the decoder, the quantized hierarchical latents 5) are
entropy decoded from the bitstream based on the same con-
text model Pg (-), which is recurrently updated by the previ-

ously decoded latents from the previous spatiotemporal sub-
groups - see the description in Tokenization and shuffling
for detailed definitions. )’ contains per-token visual priors
that could be extracted via coordinate-based interpolation
and used to steer the denoising process towards faithfully
reconstructing X. The conditional denoising processing is
based on a per-token denoising diffusion variational autoen-
coder, implemented by unrolling a small, L-layer (plus a
head layer mapping to the pixel space) INR-based denoiser
over K representation levels, i.e., €5 := {ek’}kK;Ol. Each
€* predicts the noise ¥ at step k, from which the denoised

output is produced as X k, conditioned by 7(k, pos) + z*.
Here ~(-) denotes positional embedding [67], pos denotes
the token’s global 3D coordinate, and Z" is the condition-
ing vector sampled by the HGLA transformer based on the

|
previously denoised output X " (or a mask token [M] if
k = K) as input, and its parameters are optimized offline.

3.1. Spatiotemporal Encoder

The spatiotemporal encoder £, relies on large spatiotempo-
ral receptive fields to generate consistent and compact la-
tents. To avoid pretraining £, entirely from scratch, we in-
stead ‘inflate’ a pretrained image autoencoder [21] to han-
dle the additional temporal dimension, inspired by recent
image-to-video generation methods [7, 87], by inserting
temporal downsampling, convolutional, and attention layers
in between 2D spatial operations, as illustrated in Figure 2.

3.2. Implicit diffusion

The proposed implicit diffusion is a generalized [5, 28, 63]
spatiotemporal pyramidal framework, which subsumes tra-
ditional explicit multi-resolution diffusion models into a
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single, continuous forward-reverse chain. Instead of treat-
ing sub-band and resolution transitions separately, we em-
bed them implicitly within a unified process, ensuring end-
to-end consistency across continuous representation scales.
We perform per-token diffusion while maintaining a con-
stant token size across scales, eliminating the need to chain
separate models at progressively higher resolutions. This
design significantly enhances training and inference effi-
ciency by leveraging (i) distributed computations across
multiple spatiotemporal resolutions, and (ii) a novel dual-
factorized conditional denoising strategy which enables
finer-grained subspaces to be extrapolated from those at
coarser scales and fully decoded/denoised reference frames.

Tokenization and shuffling. We start off by defining a
tokenization-and-shuffle operation' that specifies the order
by which tokens are denoised. We first partition the input
GOP X into N; = [T/r;] subgroups along the temporal
dimension and reorder these subgroups according to the hi-
erarchical frame structure in the RA configuration used by
modern standard video codecs [9]. Here r; is the resolu-
tion of the token in the temporal domain. Within each sub-
group (indexed by 1), the frames are further patchified into
continuous-valued, non-overlapping 3D tokens with spa-
tial resolution (7, 1y, ), yielding {wi,j};\];l, where Ny, =
[H/ry] x [W/ry,] and x; ; € R*"nX7wX3 The par-
titioned tokens are further grouped spatially according to
the Quincunx pattern [23], resulting in {x; ;}jeq,,d =
1,...,5. This defines the (causal) order in which tokens
are decoded. Here d stands for the spatial decoding step,
G4 denotes the group of tokens in this temporal subgroup
(¢) that are decoded at step d, and |G| = |G2| = [N,/16]
and |G| = 2x|Gg4—1| ford = 3,4,5. Based on this group-
ing method, the number of tokens decoded per step is dou-
bled along both spatial and temporal axes, which reduces
the number of decoding steps” to 5K - (logs (N; — 1) + 2).

Forward diffusion. We define a forward diffusion process
that entails a sequence of transforms F = {F*}K | that
progressively “corrupt” X'

XF = Fr(x, ek = DS(X, R¥) + gk, (D

in which X% ¢ RT"*H"xW"x3 mk _ [T/RK| HF =
[H/RF], and Wk = [W/RF]. &F ~ q(e*) represents
the Gaussian noise with a normal distribution. DS(-, R¥)
denotes the frequency decomposition operation that down-
samples the input temporally and spatially by a factor of
R* = (RF, RF) atscale k. q(+) corresponds to a normal dis-
tribution. When k& = 1, X° = X. 3% is the noise schedul-
ing parameter controlling the strength of noise at step k.

IFor better clarity, a visual illustration of this process is available in
the Supplementary.
2Here, we assume logy (N — 1) € Z.
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Figure 3. [llustration of cross-resolution consistency training.

Tokenization-and-shuffle is also applied to each X k,
producing re-ordered 3D tokens {{x} ;} jeah }f\i with the
constant token size (r¢,75,75), where NF = [T*/r;] and
NE = [H*/r ] x [W¥/rs]. In this way, the number of
tokens is reduced with the scales and each token :cf’ , encap-
sulates the visual contents of multiple corresponding tokens
in X~ at a coarser scale. The transforms F - .. F* grad-
ually destroy the original information, i.e., I(X, &%) <
I(x, X", Vk e {1,..., K} and I(X, X5) =~ 0. I(-, ")
denotes the mutual information.

Conditional denoising. At step & (with the corresponding
denoiser €*), the per-token denoised output® &*~! is de-
rived by:

ik_l _ Siik _ Bksk

=gk — ke (mk, 2 4+ 4(k, pos), {?Jl}szl) (@

where 2" is the corresponding conditioning token of x*
produced by the HGLA transformer (£ = {2*}). ~(-) de-
notes the positional embedding [67].

We then define a set of uniform intervals 0 = 79 < 7 <

- < T = 1, as shown in Figure 3, along the contin-
uum of spatiotemporal resolutions, which partitions the dif-
fusion time interval [0, 1] into K sub-intervals. Here, we
allow K — oo during training. Considering a random dif-
fusion step tj falling into the sub-interval |7y, Tgy1), We
calculate the normalized position of ¢;, within the interval as
t' = (tx —7%)/(Tk+1 — 7& ). The corresponding denoised to-
ken &'+ could be yielded via two interpolation paths “blend-
ing” the higher-resolution clean and lower-resolution noisy
counterparts:

5y =tiDS(z, R™) + (1 — t)Us(z™, R™ /R'), (3)

(5, =t'US(z™+, R™ /R™+)

+ (1 —t)DS(x™, R™ /R™), (4)

where US(+, -) stands for the upsampling operation, similar
to DS. With this formulation, the K stages at inference time
could be viewed as a discretization of continuous, densely
sampled downsampling stages over timesteps 7 € [0, 1]

3We omit the subscripts 4, j in subsection 3.2 for simplicity.
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during training. The denoising objective Leonsistency (6) is
defined as:

Econsistency(e) |:||50( (1)7 )769(3}?5)’#6)”2 s (5

which enforces that the output at time t* for arbitrary & is
similar regardless of the path taken.

3.3. HGLA Transformer

We propose a linear attention based transformer [27, 40,
57, 86] dubbed HGLA (Hierarchically Gated Linear At-
tention), which leverages fixed-size 2D hidden states to
store historical contexts, enabling recurrent updates that
are parallel during training and of linear complexity w.r.t
context length during inference. HGLA" is the backbone
in our framework for denoising conditioning, i.e., AN
H::K py(ZF| XK FH1)and for modeling the hierarchi-
cal prior H11: 5 Py ()"). It is inspired by HGRN2 [61] and
tailored for the GIViC’s multi-scale design by maintaining
matrix-valued state S¥ i; per representation level k that is
updated per spatiotemporal subgroup for scale k and inter-
acts across scales, which facilitates long-term dependency
modeling along both scale and sequence axes.

Architecture. Each HGLA module comprises M/ HGLA
layers (as shown in Figure 2). The dynamics of Sf, ; are
modulated by data-dependent decays, based on cumulative
softmaxing cumax [61] along the sequence dimension, that
specify a lower bound o € R™*" on how rapidly the his-
torical contexts are updated, thus guiding lower and upper
layers of each HGLA module to focus on short- and long-
term dependencies, respectively. Specifically, we maintain
a set of I* € RM*" per representation scale k, where h
stands for the hidden state dimension, and introduce a bias

term AF =

ak c RMxh:

log(ﬁ) - Lprxh, resulting in the gating

o = cumsum (softmax (f‘k, dim = O) ,dim = O) ,

where % =TF + AF, (6)
Further, to support cross scale information propagation,
we attend the query q . to a learned mixture of the cur-
rent scale’s hidden state S’“ and the updated hidden state
from the coarser scale Sk'H s

=(4,4)
g<(ij) € R", where we use < (4,4) to denote token in-

based on the gating value

dices that are smaller than ¢ spatially and j temporally”.

4In subsection 3.3 we use the notation for the case of diffusion condi-
tioning (i.e., k = 1,..., K), however the idea is easily generalizable (as
used for the entropy model Pg ).

5We have Sf’ = Sk Srqn where i/, j/ entail the indices for all

tokens to be decoded the next step.

The aforementioned HGLA operation at the scale k is for-
malized as:

gk =0 (W, ([qu;pool (SEFD]) +bg), (D)
St; =SiT! - Diag(af;) + Y v, @kf;, (8

Ok - (gz ]Sk+1 (1 g; ]) S<('L j)) : qi,j7 (9)

where pool(-) denotes the average pooling operation and
oﬁ v; 18 the output of the HGLA module. Here, the queries

k
q; ;. keys k; o
R" are generated as,

and values v ; for the module’s input 1n ij €

qf,] W1n k

2,77

= Wkln”, =W, 1n 39 (10)
in which {W, Wy, W,, € R"*"} are the learnable linear
embedding matrices. It is noted that, for the initial decoding
step where the first group of £ ; (or, equivalently, y L in the
case of context modeling) has not been decoded, we feed
the transformer(s) with a set of learned mask tokens [M].

3.4. Optimization

Loss function. The above-described per-token generative

framework p(&, 2%, §1'1) could be formalized as:

0
p@ )T, pe(@" 2", 955 py(z"&") (1)

denoising obj.

recurrent hidden state
1

p@) ], | Pe(@'l57"). (11b)

hierarchical prior

This can be re-written using negative log likelihood over all
tokens with a GOP-level Lagrange multiplier A, yielding the
rate-distortion (RD) objective of GIViC:
Lrp = E[-logp(X|Y) — Alogp(Y)].  (12)
It is noted that when X is stochastically generated dur-
ing decoding, it may result in unstable reconstructions and
potentially fail the distortion metric. Given that the ma-
jority of open-sourced video compression baselines remain
distortion-oriented, we modify the diffusion loss in Equa-
tion 5 using a post-hoc guiding mechanism [20] to optimize
GIViC for the MSE loss.

Pretraining. To improve training efficiency, we employ a
multi-stage pre-training procedure [49, 54], in which we
first fix (F,€) of the implicit diffusion and optimize &
and Pg with a pre-trained quadtree entropy model [24] for
entropy modeling, which we discard in later stages. We
then fix £y, swap the HGLA-based backbone with Py for
the context model, and only update P4 to optimize the rate
loss. Finally, we jointly optimize all components with the
RD loss defined by Equation 12.
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BD-rate (%) ‘ UvVG MCL-ICV JVET-B Model Complexity
Enc. Dec.
Codec | PSNR MS-SSIM | PSNR MS-SSIM | PSNR  MS-SSIM FPS FPS Params (M) kMACs/px

HM 18.0 (RA) [64] | -45.65 -40.67 | -44.41 -40.01 | -43.88 -46.94 0.06 39.5 N/A N/A
VTM 20.0 (RA) [11] | -15.94 -16.19 | -11.44 -8.57 -7.71 -6.32 0.02 23.1 N/A N/A
AV1 libaom v3.0.2 (RA) [29] | -26.80 -23.77 - - | -10.31 -9.98 0.03 24.5 N/A N/A
DCVC-DC [49] | -36.68 -40.12 | -37.03 -31.13 | -36.42 -30.63 0.99 1.39 50.8 1274
DCVC-FM [49] | -22.46 -27.23 | -20.31 -21.01 | -22.34 -24.28 0.93 4.87 44.9 1073
PNVC (RA) [24] | -34.87 -25.74 | -30.24 -31.98 | -25.86 -23.03 0.01 23.6 21.8 102

NVRC [46] -8.52 -4.92 | -33.59 -30.62 | -16.13 -10.66 | 44+21 165+6.7 | 16.8 £ 14.5 | 582.1 +396.9
GIViC w/o Overfit. 3.37 3.55 4.13 4.27 3.65 2.99 0.45 9.79 2259 2399
GIViC w/ Overfit. 0.00 0.00 0.00 0.00 0.00 0.00 0.03 9.79 2259 2399

Table 1. Compression performance results of the proposed GIViC framework. Here each BD-rate value is calculated when the correspond-
ing benchmark codec is used as the anchor. Complexity figures for all benchmarked methods have also been provided for comparison.

Encoding. The latent grids are initialized by running &4
and treated as learnable parameters to be iteratively updated
during the encoding process. Here we follow [41] to esti-
mate the gradients of j) based on soft-rounding [2] instead
of STE, and replace the additive uniform noise with samples
from the Kumaraswamy distribution [44] with progressive
annealing. Other components in the GIViC framework are
fixed during encoding.

4. Experiment Configuration

Implementation. We pre-trained five baseline models with
A = {85,170, 380,840, 1024}. By default, the number of
diffusive sampling steps is set to 500 at training time and 8
at inference time. The 3D token size is set to (4, 8, 8). Both
the MLP-based denoiser € and the HGLA transformer M
have a depth of 4 (i.e., L = M = 4). All submodules are
optimized using the ADAM optimizer [43] and with an ini-
tial learning rate set to 10~ that is progressively annealed
following a cosine scheduling.

Datasets. GIViC was pretrained on Vimeo-90k [83], and
fine-tuned on additional 3,024 videos extracted from raw
Vimeo footage, each of which consists of 32 frames, fol-
lowing the practices by [24, 50]. For a more comprehensive
assessment of GIViC under different training conditions, we
have ablated its performance by instead fine-tuning GIViC
on the 7-frame Vimeo-90k sequences (V1.1 in Table 2). For
testing, we evaluated all models on the UVG [55], MCL-
JCV [76], and JVET-B [8] test sets.

Baselines. GIViC is compared against seven SOTA
baselines, including (i) three conventional codecs -
H.265/HEVC Test Model HM 18.0 [64], H.266/VVC Test
Model VIM 20.0 [11] and AV1 libaom v3.0.2 [29]; (ii)
two neural video codecs - DCVC-DC [49] and DCVC-
FM [50], and (iii) two INR-based codecs - PNVC [24] and
NVRC [46]. Additional comparisons are available in the
Supplementary.

Test conditions. All experiments on conventional codecs
use the Random Access mode defined in JVET common
test conditions [9]. For each rate point, we calculate the
bitrate (bit/pixel, bpp) and quantitatively assess the qual-
ity of lossy reconstructions using PSNR and MS-SSIM [78]
in the YUV colorspace. In the Supplementary, we fur-
ther report VMAF[51] and LPIPS results which align bet-
ter with human visual preference. The Bjgntegaard Delta
Rate (BD-rate) [6] is then used to measure the relative com-
pression efficiency between codecs. We configured PNVC,
GIViC, and the conventional codecs in RA mode with a
GoPsize=32 and IntraPeriod=32. For HM 18.0 and VTM
20.0, we employed QP = {16, 20, 34, 38,32, 36} to cover a
broader range of bitrates. We note unlike the other selected
baselines, NVRC incurs a system delay equal to the full se-
quence length.

5. Results and Discussion

5.1. Overall Performance

Quantitative results. The rate-distortion performance of
the proposed GIViC codec, compared to conventional and
neural video codecs, is summarized in Table 1. Notably,
GIViC outperforms all tested neural video codecs in terms
of compression performance. Specifically, GIViC achieves
15.94%, 36.68%, and 8.52% BD-rate reductions compared
to VIM 20.0 (RA), DCVC-FM, and NVRC, respectively.
While we cannot directly benchmark GIViC against DCVC-
LCG [59] (the source code of the latter is not available),
we have compared GIViC with the results reported in its
original literature, which confirms the superior performance
of GIViC. Notably, GIViC remains dominant in coding
performance even without sequence-specific overfitting in-
volved, a result presumably attributed to its powerful 3D au-
toencoder and diffusion-transformer backbone, which accu-
rately capture global dependencies. Figure 4 illustrates the
rate-distortion curves of GIViC alongside a selected sub-
set of baseline methods from each category - conventional,
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Figure 4. (A) Rate-distortion curves on UVG, MCL-JCV, and JVET-B datasets. (B) Reconstruction quality PSNR w.r.t diffusive sampling
steps for low bitrate range (solid lines) and high bitrate range (dashed line) respectively. (C) BD-rate (PSNR, solid lines) and decoding

complexity (dashed lines) w.r.t context length.

autoencoder-based, and INR-based - for three different test
sets. GIViC demonstrates consistently strong performance
across diverse datasets and the entire tested bitrate range, in
terms of both PSNR and MS-SSIM.

Qualitative results. We further demonstrate the superior
performance of our method in terms of subjective visual
quality. Figure 5 compares frame reconstructions from the
proposed GIViC with those from VTM, DCVC-FM, PNVC,
and NVRC, showcasing GIViC’s improved perceptual qual-
ity and reduction of compression artifacts. Please refer to
the Supplementary for more examples at various distortion-
perception trade-offs.

Complexity. A complexity profiling is summarized in Ta-
ble 1. The average encoding and decoding speeds (FPS) for
each model are measured on a single NVIDIA A100 GPU.
For INR-/overfitting-based methods, the encoding FPS is
measured for one full forward and backward pass [45].
On average, the training of GIViC takes 1.78 hours on
one GOP with 32 frames at the 1920 x 1080 resolution.
While GIViC exhibits longer encoding and decoding times
than some benchmark codecs, this latency can be sub-
stantially reduced without incurring noticeable performance
drop through three strategies: 1) removing or decreasing the
number of overfitting steps, 2) initializing the model with
states and latent grids from the preceding GOP, and 3) re-
ducing the model size and the number of diffusive sampling
steps. More results can be found in the Supplementary.

Scaling performance. We assess GIViC’s scaling behav-

iors by reporting the variation in reconstruction or compres-
sion performance w.r.t number of diffusive sampling steps
and context lengths, respectively, in comparison with other
diffusion and transformer models. In Figure 4 (B) we com-
pare the generation fidelity (measured by LPIPS [90] in the
RGB colorspace) of the proposed implicit diffusion against
the vanilla DDIM [20] in a single resolution for three lower
bitrates (solid lines) and three higher bitrates (dashed lines),
respectively. It can be observed that our model scales more
favorably and converges at a faster rate for both bitrate
ranges. A similar trend is also seen from scaling HGLA on
the UVG dataset, shown in Figure 4 (C), where we config-
ure the GoPSize to 16, 32, 64, and 128, respectively, with
the corresponding context length equal to GOPE?%”. It
can be observed that the context length of HGLA leads to
a steady, non-trivial, and comparable gain in compression
performance with FlashAttention [17], despite its linear (in-
stead of quadratic) complexity w.r.t the context length.

5.2. Ablation Study

We analyze the impact of our methodological contributions
and design choices by systematically removing or replacing
sub-components and measuring the resulting change in BD-
rate and model complexity on two datasets: the UVG and
MCL-JCV datasets. The ablative variants include:

Effectiveness of pre-training is verified by replacing the
32-frame Vimeo raw sequences with the original Vimeo-
90k dataset for fine-tuning (V1.1) and removing the overfit-
ting process in the encoding pipeline (V1.2).
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Figure 5. Visual comparison of reconstructions by different video codec baselines, where we report the average sequence bpp and the

corresponding frame’s PSNR.

Effectiveness of temporal inflation is tested by instead
pretraining a 3D autoencoder entirely from scratch (V2.1)
for the same number of optimization steps.

Effectiveness of implicit diffusion model is confirmed by
respectively replacing the implicit diffusion with single-
resolution per-token diffusion (V3.1), employing RelayDif-
fusion [71] (V3.2), and replacing the proposed consistency
objective with simple flow matching [52] (V3.3).

Effectiveness of HGLA is verified by keeping the origi-
nal lower bound formulation (V4.1), removing the learned
gating across layers (V4.2), and replacing it with a vanilla
transformer [75] that performs next-scale prediction (V4.3).
Further, we ablate the context model Py by replacing it
with a convolution-based model [24] with a comparable size
(V5.1) and allowing for instance-specific overfitting ® fol-
lowing [24] (V5.2).

The ablation study results are reported in Table 2, where
all these ablative variants result in compression loss when
compared to the original GIViC, indicating that each contri-
bution in this work does improve the overall performance.

6. Conclusion

This paper proposes GIViC, an INR-based video coding
framework using generalized diffusion and a novel trans-
former architecture. GIViC achieves superior compres-
sion performance, significantly outperforming state-of-the-

| BD-rate (%) | Model Complexity
Version | UVG  MCL |  params.(M) kMACs/px
V1.1 | 587 5.51 | 256.1 (0.00%]) 2399 (0.00%.)
V12 | 366 3.19 | 256.1 (0.00%]) 2399 (0.00%.)
V2.1 \ 098 097 \ 303.5 (18.6%71) 2806 (16.9%71)
V3.1 | 235  2.69 | 256.1 (0.00%]) 3590 (49.6%1)
V3.2 | 253  3.23 | 256.1 (0.00%]) 2399 (0.00%.)
V3.3 | 3.09 341 | 256.1(0.00%]) 2399 (0.00%.)
V4.1 | 1.99 243 | 256.1 (0.00%]) 2399 (0.00%.)
V42 | 3.17  3.20 | 223.8 (0.09%]) 2371 (1.27%))
V43 | 0.19 0.25 | 219.7 (2.74%]) 2987 (24.5%7)
V5.1 | 677 6.25 | 221.2(2.17%]) 2380 (0.79%.)
V52 | 320 2.65 | 221.2(2.17%]) 2380 (0.79%.)
Table 2. Ablation study results on the UVG and MCL-JCV

datasets in terms of BD-rates (measured in PSNR), and the entire
model’s size and kMACs/pixel, measured against GIViC. Here, the
underlined ablative variants are irrelevant to architectural modifi-
cations and thus incur no changes in model complexity.

art codecs like VTM 20.0 and NVRC on various datasets.
To our knowledge, GIViC is the INR-based video codec that
has surpassed VTM under the same Random Access (RA)
constraint. However, it is also noted that GIViC does exhibit
relatively high computational complexity due to its reliance
on diffusion and transformer backbones, limiting its adop-
tion for applications that require real-time decoding speeds.
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