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Abstract

Current visual foundation models (VFMs) face a funda-
mental limitation in transferring knowledge from vision
language models (VLMs): while VLMs excel at model-
ing cross-modal interactions through unified representation
spaces, existing VFEMs predominantly adopt result-oriented
paradigms that neglect the underlying interaction pro-
cesses. This representational discrepancy hinders effective
knowledge transfer and limits generalization across diverse
vision tasks. We propose Learning from Interactions (LFI),
a cognitive-inspired framework that addresses this gap by
explicitly modeling visual understanding as an interactive
process. Our key insight is that capturing the dynamic in-
teraction patterns encoded in pre-trained VLMs — beyond
their final representations — enables more faithful and effi-
cient knowledge transfer to VFMs. The approach centers on
two technical innovations: (1) Interaction Queries, which
maintain persistent relational structures across network
layers, and (2) interaction-based supervision, derived from
the cross-modal attention mechanisms of VLMs. Compre-
hensive experiments demonstrate consistent improvements
across multiple benchmarks: achieving ~3.3% and +1.6
mAP/+2.4 AP™* absolute gains on TinylmageNet clas-
sification and COCO detection/segmentation respectively,
with minimal parameter overhead and faster convergence
(7x speedup). The framework particularly excels in cross-
domain settings, delivering ~2.4% and ~9.3% zero-shot
improvements on PACS and VLCS. Human evaluations fur-
ther confirm its cognitive alignment, outperforming result-
oriented methods by 2.7 X in semantic consistency metrics.

1. Introduction

“To teach someone how to fish is better than to
just give him a fish.”

— Huainanzi
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Figure 1. Humans and intelligent agents, including Vision-
Language Models (VLMs) and Visual Foundation Models
(VEMs), comprehend the world through analogous cognitive pro-
cesses, irrespective of the final form of representation. We de-
note this cognitive process as inferaction. By refining these
representation-agnostic interactions, we facilitate cross-modal and
cross-task knowledge transfer.

Recent advancements in Multi-modal Large Language
Models (MLLMs) [5, 6] have marked a transformative era
in Artificial Intelligence (Al), enabling unprecedented capa-
bilities in processing and integrating diverse data modalities
such as text, images, sound, and video. These models have
demonstrated remarkable proficiency in understanding and
synthesizing human-generated content, thereby absorbing a
vast spectrum of human knowledge. However, despite these
achievements, a critical challenge remains: facilitating ef-
fective knowledge transfer between heterogeneous models
while ensuring cognitive alignment. Current methodolo-
gies often prioritize superficial output imitation, neglecting
the fundamental processes that underlie knowledge acquisi-
tion.

Amidst this rapid progress, a fundamental question
arises: Do these models truly acquire *knowledge*? And
is the cognitive process of *knowledge* consistent across
different models? While MLLMs exhibit formidable capa-



bilities, the mechanisms underlying their knowledge acqui-
sition remain underexplored. Knowledge, being an abstract
concept, is inherently difficult to define. Its representation
varies across models and even among humans, manifesting
through language, writing, painting, and other forms. Con-
sequently, measuring knowledge solely based on its repre-
sentational form is inherently problematic.

Although knowledge itself may not be directly measur-
able, the cognitive processes that facilitate its understand-
ing can be represented. For instance, as illustrated in Fig-
ure 1, both humans and models recognize a cat through a
set of definitive interactions (e.g., pointed ears, round face,
long whiskers). This perspective is supported by extensive
research on model interpretability [23, 38]. We posit that
these definitive interaction sets constitute an alternative rep-
resentation of knowledge, and importantly, that this cogni-
tive process is quantifiable. Following [13], we term these
sets interaction. The essence of interactions lies in their
shareability and complementarity [1-3], implying that the
cognitive processes of different agents regarding the same
knowledge are analogous and can mutually enhance one an-
other. This mirrors the pedagogical process where an expe-
rienced teacher translates knowledge into concepts and ef-
fectively imparts them to students.

Building on this understanding, we argue that although
Vision Language Models (VLMs) and Visual Founda-
tion Models (VFMs) differ in their representational ap-
proaches, VLMs can still impart their cognitive processes
of knowledge to VFMs through an interaction-based per-
spective. This approach diverges from traditional result- or
representation-oriented learning methods that rely on ex-
plicit labels. Moreover, given the extensive multi-modal
knowledge (e.g., vision and language) absorbed during
VLM training, VLMs can function as seasoned educators,
refining the cognitive processes of VFMs. This aligns with
the adage, “teach someone to fish.” To operationalize these
ideas, we propose a novel knowledge transfer methodology
termed Learning from Interaction. By emulating the cog-
nitive processes of VLMs for various tasks, this methodol-
ogy facilitates knowledge transfer from VLMs to VFMs.
The primary goal is to leverage the diverse knowledge
sources of VLMs to enhance VFMs, enabling them to com-
prehend the natural world more holistically.

The contributions of this work are threefold:

. We empirically validate the consistency of the cognitive
process of knowledge at the interaction level between
VLMs and VFMs.

We introduce Interaction Learning, a novel framework
that enhances the task cognition capabilities of VFMs
through additional interactive supervision from VLMs,
enabling cross-task and cross-modal knowledge transfer.
We demonstrate the effectiveness of our approach on
downstream visual foundation tasks. Through Interac-
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tion Learning, the model exhibits significant improve-
ments in accuracy, convergence speed, and generaliza-
tion. Human evaluations further confirm that our ap-
proach aligns more closely with human cognitive pro-
cesses for tasks.

2. Related Works
2.1. Foundation Visual Models

The transformer architecture [43] has revolutionized com-
puter vision, with numerous adaptations tailored to diverse
tasks. The Vision Transformer (ViT) [17] pioneered the
use of transformers in vision by segmenting images into
patches as inputs. The Swin Transformer [32] enhanced
efficiency through shifted windows, while the DEtection
TRansformer (DETR) [10] extended transformers to ob-
ject detection, eliminating the need for Non-Maximum Sup-
pression (NMS) and anchor designs. Subsequent works
[24, 31, 37, 48, 54] addressed slow convergence by refining
object queries and Hungarian matching algorithms. These
advancements underscore the versatility of transformers,
unifying model architectures across tasks.

2.2. Vision Language Models

Vision Language Models (VLMs) [15, 16, 25, 27, 29, 30,
44, 46, 50, 53] bridge visual and textual modalities, inte-
grating diverse perceptual and representational approaches.
BLIP-2 [25] introduced the Q-Former to align these modal-
ities, while LLaVA and MiniGPT-4 [29, 30, 53] employed
linear projection layers for alignment. Mini-Gemini [27]
enhanced VLMs with an additional visual encoder for high-
resolution refinement. Despite their strengths, VLMs’ large
scale limits their practical application. DeCo [46] addressed
this by compressing visual tokens at the patch level, and
SparseVLM [50] reused self-attention matrices to prune in-
significant vision tokens. These works inspire us to trans-
fer VLMs’ rich cognitive understanding to Visual Founda-
tion Models (VFMs), enhancing their comprehension of the
world.

2.3. Model Interpretability

Model interpretability is crucial for understanding the in-
ner workings of Deep Neural Networks (DNNs), which are
often regarded as black-box systems. Recent research has
increasingly focused on this area. [22, 26] demonstrated
that DNNs can learn symbolic interactions, distilling trans-
ferable knowledge from raw data. Similarly, transformer-
based vision models exhibit interactions between patches,
as analyzed by [4, 7, 11-13, 21, 34]. Multi-modal sys-
tems have also been explored [33, 40, 42, 45], with LVLM-
Interpret [42] designing interactive tools to uncover the
mechanisms of large vision-language models. These efforts



collectively aim to reveal the cognitive processes, or inter-
actions, between inputs and outputs.

2.4. Knowledge Transfer

Knowledge distillation, introduced by [20], is a widely used
method for knowledge transfer, enabling student networks
to learn feature distributions or labels from teacher net-
works. Early works like [47] used attention maps for trans-
fer, while [14] leveraged multi-level teacher information. In
open-vocabulary object detection, [8, 19, 35] distilled VLM
knowledge to align region-level and image-level embed-
dings. Recent works [9, 41] extended distillation to trans-
fer knowledge between large-scale and small-scale VLMs.
However, these methods are limited to single-modality dis-
tillation and cannot achieve cross-modal or cross-task trans-
fer.

Building on the success of Vision-Language Model pre-
training, transfer learning has become a dominant approach
due to its scalability and efficiency. Techniques like prompt
tuning [51, 52] and visual adaptation [18, 49] adapt pre-
trained VLMs for downstream tasks. [39] demonstrated
that pre-trained LLMs can handle purely visual tasks with-
out language reliance, while LOAT [28] combined LLMs
with historical experiences for commonsense reasoning. In-
spired by these works, we propose leveraging the extensive
knowledge embedded in VLMs and transferring it to VFMs
to enhance their capabilities in downstream tasks.

3. Preliminary

3.1. Vision Transformer

The Vision Transformer (ViT) [17] processes an image as a
sequence of non-overlapping patches. For an image divided
into N patches {p1, ..., p }, each patch is linearly projected
into a token:

x; = Embedding(p;) + e;,

where e; denotes positional embeddings. These tokens are

processed through stacked Transformer layers, where the

multi-head self-attention mechanism computes dependen-
QK

cies between tokens:
V.
Vdy >

This operation can be factorized into two components by
identity transformation:

T

Attention(Q, K, V') = softmax <

KT
Attention(Q, K, V) =0(Q,K) ® ¢ <Q > Voo )
—— Vi
Structure —
Strength

where: - 0(Q,K) € {0,1}"*¥ is a binary matrix in-
dicating token relationships (1: related, O: unrelated), -
¢(-) computes normalized attention weights, - @ denotes
element-wise multiplication.
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3.2. Definition of Interaction

To establish a unified framework for cross-modal knowl-
edge transfer, we first formalize the concept of interaction
— the fundamental cognitive process underlying both human
and machine perception. Consider the human process of
recognizing a cat: it emerges from synergistic relationships
between features like pointed ears (A), round face (B), and
long whiskers (C). These features do not act in isolation;
their combinatorial relationships (e.g., “A AND B AND C”)
collectively define the concept. Analogously, in deep neural
networks, outputs are determined by structured interactions
between input elements.

Recent work [26] rigorously proves that the output of
any DNN v : R” — R can be decomposed into logical

interactions:
+

SeQ

SeQ

’U(p) Iand(s|p)
——

ad Conjunctive Interaction

I (Slp)
———

" Disjunctive Interaction

where I,,q encodes joint activation of variable subsets S
(e.g., “A AND B”), while I, represents alternative activa-
tion (e.g., “A OR B”). The sets 2,4 and 2, enumerate all
valid AND/OR relationships.

Bridging Logical Interactions to Transformer Atten-
tion In Transformer-based models, these logical interac-
tions are explicitly manifested through attention mecha-
nisms. To align the decomposition with architectural prim-
itives, we re-express interactions at the token-pair level.
For each attention head h, the logical subsets S € Quug/or
can be mapped to pairwise interactions between query-key
pairs (g;,k;). Specifically: - Conjunctive Interaction
(Iana): Implemented as the product of binarized logic gates
o(gi, k;) and contextualized signals ¢(-)W,v;. - Disjunc-
tive Interaction (/,;): Corresponds to the sum of indepen-
dent pairwise activations.
This yields the unified formulation:

il T
q; k;
v(p) = a(q',k»)-qb( )Wv. (2)
;; Zj\ﬁf—* = A\vd) "
™ Logic Gate
(AND/OR)  Contextualized Signal

(Content & Strength)

Here, o(-) acts as a binary selector (1 for active in-
teractions, 0 otherwise), while ¢(-) modulates interaction
strength. Notably, setting ¢(-) = 1 simplifies the model
to pure symbolic reasoning (e.g., “A AND B”), enhancing
interpretability without loss of generality.

Critically, while V' varies across tasks (e.g., classification
vs. detection), the interaction structure Cly, and strength
Citrength remain spatially consistent due to the shared visual
grounding in natural images. This spatial coherence allows
interactions to serve as universal carriers for cross-modal
knowledge transfer.
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Figure 2. Pipeline of Learning from Interaction. The process consists of several steps: (1) Extracting Vision-Language Interactions from
pre-trained Vision Language Models (VLMs) using a Visual Question Answering (VQA) framework; (2) Generating additional interaction
queries during query formulation in the Vision Transformer, supervised by the extracted Vision-Language Interactions; (3) Integrating both
sets of interactions via a Gated Control Network; (4) Producing the final Interaction Tokens, which serve as the basis for task predictions.

4. Interaction Learning

Building on the theoretical foundation of structured interac-
tions (Section 3.2), we present the Interaction Vision Trans-
former (I-ViT) that operationalizes cross-modal knowledge
transfer through explicit interaction modeling. The overall
pipeline is shown in Figure 2.

4.1. Interaction Vision Transformer (I-ViT)

The I-ViT enhances standard ViT through dual interaction
pathways that preserve both visual and linguistic reasoning
patterns. Given input tokens X, it generates:

* Original Queries (F,): Maintain task-specific interac-
tion structures learned from visual data

¢ Interaction Queries (P(;): Encode cross-modal interac-
tion patterns distilled from VLMs

Interaction Strength Modeling Both query types inter-
act with shared keys Py to compute interaction strength ma-
trices:

Pyby
en

/' pT
qu

Vdy

Cvem = ¢ < ) (Visual Foundation Model) (3)

Cacr = ¢ ( (VLM Guidance) (4)

where ¢(-) denotes softmax normalization. Here, Cypy
captures visual-centric interaction strengths, while Cagr
incorporates linguistic-aware interaction intensities from
VLMs.
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Structural Interaction Fusion The Gated Control Net-
work (GCN) dynamically fuses interaction structures across
modalities:

[91, g2] = sigmoid (FEN([Cagr; Cvim])) , ()
Cr = g1 © Cagr + 92 © Cvpm, (6)

where g1,g2 € (0,1) are continuous gating weights. This
implements soft structure selection:

Fused Structure = g1 -ovim  + g2 - 0vem
—— —_——

Vision-Aware
Interaction Importance

(N
preserving the AND/OR logic through ovyim,ovem €
{0,1} (from Eq. (2)) while allowing adaptive importance
weighting. Here: - oyim/ovem: Binary interaction struc-
tures (0/1) from VLMs/VFMs - g1 /gs: Continuous impor-
tance scores for cross-modal alignment

This formulation separates what to interact (binary o)
from how importantly to interact (continuous g), where the
former enforces logical rules and the latter enables context-
aware fusion.

Linguistic-Aware
Interaction Importance

Content-Aware Interaction Generation The fused in-
teraction matrix modulates value transformations:

P. =FFN(Cp © P,), ®)

where P, carries task-specific content information. This
implements:

Interaction Tokens = Cr o P, , )
~—~
Structure+Strength ~ Content



strictly adhering to the interaction formulation Cyyyey ©@
Citrength - V from Section 3.1.

4.2. Vision-Language Interaction Extraction

Unified Interaction Extraction Protocol We establish a
task-agnostic framework for extracting vision-language in-
teractions from pre-trained VLMSs, applicable to classifica-
tion, detection, and segmentation. The pipeline comprises
three stages: 1. Task-Conditioned Prompting: Inject
task semantics through language-vision prompts 2. Cross-
Modal Activation: Compute token-level interactions be-
tween visual and linguistic modalities 3. Cognitive Align-
ment Filtering: Refine interactions to match human per-
ceptual patterns
For all tasks, the VLM processes concatenated inputs:

Qinput = [X; Q] € RWFLIXD (10)

where Qinput represents the concatenated sequence of im-
age tokens X includes visual prompts (e.g., bounding boxes
for detection) as part of the input image and question token

Q.

Task-Specific Formulations The unified interaction ex-

traction framework adapts to different tasks through spe-

cialized components in the response template:

¢ Classification: Language Prompt: “Classify foreground
vs.  background” Response Structure: {foreground:
[class], background: [...]}

maX(O, Core — Cback)
| max(0, Core — Chack) 1

where Cioe and Ch,e denote interaction strengths for
foreground class and background clusters respectively.
Dense Prediction (Detection/Segmentation): Language
Prompt: “Locate all {tgt_obj} instances” Response Struc-
ture: {objects: [list], background: [...]}

C(k)

max (0725:1 obj CbaCk)
‘max (0, Zszl Cét’fj) - Cb“k) Hl

Y

Cvim =

Cvim = ‘ 12)

where O(Efj) represents interaction strength for the k-th tar-
get object instance, aggregated across all K instances.

Visual Prompt Integration For detection/segmentation,
spatial constraints Bounding Boxes (drawn on input im-
ages) are pre-encoded in the input image through.

This directly shape the VLM’s cross-attention patterns.
As shown in Figure 9 (in Supplementary Material), bound-
ing boxes induce stronger activations on target regions dur-
ing Copj computation and act as attentional anchors that
guide the VLM to: - Attend to object parts within prompted
regions (high Cip; values) - Suppress irrelevant background
(near-zero Cop;) .
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max(0,-)

Cognitive Filtering Mechanism The operator T
implements two biological principles: 1. Non-Negative
Competition: Neural activations are constrained to non-
negative values to align with the stability conditions of soft-
max in Equation (4), preventing instability. 2. Contrast
Enhancement: Amplify foreground-background differen-
tiation through selective signal amplification.

4.3. Optimization Objective

The learning objective combines task performance and cog-
nitive alignment through a dual-loss framework:

13)
(14)

Etolal = »Ctask + ['aligna
['align - DKL(CAGT || CVLM)»

where Ly, is task-specific, and L, measures the KL-
divergence between VLM-guided interactions (Cagr) and
visual foundation model’s intrinsic patterns (Cygy). The
Gated Control Network dynamically adjusts the contribu-
tion of these interactions, eliminating the need for manual
hyperparameter tuning.

5. Experiments

5.1. Experimental Setup
5.1.1. Datasets and Metrics.

Evaluations cover TinyImageNet (classification),
COCO/VOC (detection/segmentation), and PACS/VLCS
(zero-shot domain generalization). Metrics include Zop-
I accuracy (classification), mAP (detection), AP,,qsk
(segmentation), and cross-domain variance (zero-shot).

5.1.2. Implementation.

We adopt LLaVa-1.5 [30] as VLM and ViT [17] as classi-
fication model. For detection/segmentation, DETR[10] is
used for COCO benchmark while Conditional-DETR[36]
is used for few-shot evaluations. Training uses 4 x A6000
GPUs with 50 epochs (25 for segmentation), freezing orig-
inal transformer layers and only updating the GCN, in-
teraction queries, and task heads. Other hyperparameters
follow VIT/DETR defaults.

5.2. Experimental Results

5.2.1. Comparison with baseline methods.

Given the limited research on knowledge transfer from
VLMs to VFMs, we compared Vision Transformers (ViT)
and Interaction Vision Transformers (I-ViT) on fundamen-
tal visual tasks. As shown in Table 1, I-ViT significantly
outperforms ViT with a reasonable increase in parameters.
We also hypothesized that Interaction Learning, which fo-
cuses on teaching cognitive processes rather than results,
would lead to faster convergence and better performance



Table 1. Comparison of I-ViT and ViT on TinylmageNet.

Model | Top-1Acc. (%) #params FLOPs
ViT-S/16 [17] 79.94 22M 15.5B
I-ViT-S/16 81.52 (+1.6) 24M 18.1B
ViT-B/16 80.24 86M 55.5B
I-ViT-B/16 82.14 (+1.9) 93M 62.7B
ViT-L/16 87.83 304M 191.2B
I-ViT-L/16 91.08 (+3.3) 329M 213.9B

with fewer training samples. Figure 3 demonstrates that I-
ViT converges approximately 7x faster than result-oriented
learning.

Comparison of Convergence Speed and Accuracy

Peak Epoch: 14

Accuracy (%)

7.0x faster

Reach ViT Max Acc
Epoch: 2

Epochs

Figure 3. Comparison of Convergence Speed. I-ViT-L/16 ex-
hibits faster convergence and achieves higher accuracy compared
to the traditional Vision Transformer (ViT-L/16), further highlight-
ing the efficiency of learning from interactions.

We further evaluated our method on reduced-scale
datasets (1%, 10%, and 50% of the training data). Table 2
shows that Interaction Learning consistently achieves sub-
stantial performance gains, even with limited data. Training
on 100% of the data from scratch also confirms the indis-
pensability of Cy pas.

Table 2. Comparison of I-ViT-L/16 and ViT-L/16 at Different
Training Data Ratios on TinyIlmagenet.

Model Training Data Ratio (%)
100% 50% 10% 1%
ViT 32.67 27.04 12.64 2.86
I-ViT 34.12 29.04 15.60 3.07

5.2.2. Ablations on Interaction Vision Transformer.

The I-ViT introduces additional queries and networks,
increasing parameters and computational overhead. To
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demonstrate that performance improvements stem from ef-
fective learning rather than increased parameters, we con-
ducted ablation studies, as detailed in Table 3.

Table 3. Ablations on Interaction Queries (IQ), Interaction Con-
straint (IC), and Gated Control (GC).

Model Interaction Interaction Gated Ace.
Query Constraint Control

ViT-L/16 87.8

v v 89.6

. v 80.7

I-ViT-L/16 v Y 90.3

v v N 91.1

Specifically, the second row of Table 3 shows the effect
of removing the supervision of Cy 15 in I-ViT and intro-
ducing an extra set of learnable queries to expand the net-
work’s scale. It is observed that this additional set of learn-
able queries indeed enhances performance. However, the
lack of additional supervision and the parallel operation of
Interaction Queries and Original Queries mean that the net-
work does not learn distinct and complementary informa-
tion during backpropagation.

Convergence Study on Key Components

90.0

88.0 1 ¢7.30% /
/" Progressive performance degradation
/ without IQ module

4
7
84.0 // 83.29°

%
N
°

Accuracy
~
4

80.0

0 10 20 30 40 50
Training Epochs

Figure 4. Component Ablation Analysis reveals distinct fail-
ure patterns. While removing INTERACTION CONSTRAINT (w/o
IC, dashed blue) or GATED CONTROL (w/o GC, )
causes temporary accuracy drops, both variants recover to 90.3%
and 89.6% through parameter adaptation. The 1Q-ablated model
(w/o 1Q, solid red) shows deceptive initial competence comparable
to standard ViT, benefiting from shared visual feature learning ob-
jectives. Progressive divergence between Cyrm’s task-specific rep-
resentations and Cypm’s semantic structures leads to irreversible
degradation (6% relative drop to 80.7%), demonstrating 1Q’s in-
dispensable role in cross-modal interaction reconciliation.

Furthermore, we explored directly supervising the Orig-
inal Queries with Vision-Language Interactions, as shown
in the third row. The results indicate not only a failure to



improve performance but also a degradation, further sup-
porting our hypothesis that interactions derived by different
models for the same task, due to different training sources,
are complementary rather than directly interchangeable.

As shown in Fig. 4, removing INTERACTION CON-
STRAINT (IC) or GATED CONTROL (GC) causes only tran-
sient accuracy fluctuations (90.3% and 89.6% final accuracy
respectively), confirming their non-essential role in conver-
gence. The critical exception is IQ ablation — despite ini-
tial ViT-level performance (87.4%), it suffers catastrophic
decline to 80.7% accuracy as modality conflicts between
Cvem and Cypy escalate. This proves 1Q’s unique neces-
sity in sustaining stable multimodal integration.

The fourth row validates the necessity of the Gated Con-
trol Network (GCN). By adaptively adjusting the weights of
the two interactions, the model can synthesize more reliable
interactions, thereby enhancing its cognitive capabilities.

5.2.3. Visualization on Interaction

In this section, we compare Cygy, Cvim, and Cagr, as
shown in Figure 5.

Figure 5. Interaction Visualization Analysis. Cvrv predomi-
nantly emphasizes background information, whereas Cyim con-
centrates more on the instances themselves. Cagr synthesizes
the cognitive processes and capabilities of both Cyvem and Cvim,
enabling object recognition through a balance of minimal back-
ground context and a focus on the instances, thereby aligning more
closely with human cognitive patterns.

It is observed that Cygy tends to focus more on back-
ground information compared to Cagy and Cyry. This
bias is likely due to backgrounds occupying a larger
area in the training images, leading the model to learn
through background cues with minimal instance informa-
tion. Conversely, CyrLy, which benefits from extensive
visual-linguistic training data, exhibits a nuanced under-
standing of interactions, focusing more on instances rather
than environmental context.
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Despite being trained on the same data as Cygym, Cagr
integrates the cognitive processes and capabilities of both
Cvem and Clypy, recognizing objects through a combina-
tion of minimal background information and a greater fo-
cus on instances. We also compared Cagr with the human
cognitive process Cyym, and as expected, Cagr aligns more
closely with human cognition.

Similarity Comparison with Cyym
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Figure 6. Comparison with Human Cognition (Caum). Cvim
is closer to human cognition than Cvgm, but Cagr achieves the
highest score, effectively simulating human cognitive processes.

Furthermore, we quantitatively compared the proximity
of Cvem, Cvim, and Cagr to human cognitive process us-
ing Cosine Similarity, as depicted in Figure 6. Consistent
with the qualitative analysis, Cypy is closer to the human
cognitive approach than the result-oriented C'ypy. How-
ever, Cagr achieved a significantly higher score, effectively
simulating the human cognitive process. Additional experi-
mental settings and details are provided in Appendix 9.

5.2.4. Experiments on Cross-Domain Datasets

To validate the generalizability of Interaction Learning,
we conducted zero-shot experiments on the cross-domain
dataset PACS. As shown in Table 4, I-ViT outperforms ViT
across nearly all domains, reinforcing the efficiency of In-
teraction Learning.

Table 4. Comparison of ViT[17] and I-ViT on the PACS
Dataset. [-ViT demonstrates excellent domain generalization ca-
pabilities, validating that learning from interactions is a more effi-
cient and robust learning approach.

Art

Model . L. Cartoon Photo Sketch
Painting
ViT-L/16 45.28 29.89 49.86 15.49
I-ViT-L/16 51.89 31.90 51.22 15.18

On the Art Painting subset, which includes human-



created subcategories, I-ViT achieved a ~ 6.6% improve-
ment. This subset represents human interpretations of nat-
ural objects, with an abstraction level between Photo and
Sketch. However, I-ViT experienced slight performance
degradation in the Sketch category, likely due to the sim-
plistic content of sketches, which makes consistent interac-
tions challenging.

Table 5. Comparison of VLM, ViT and I-ViT on the VLCS
Dataset. I-ViT’s behavioral trends align with LLaVa, demonstrat-
ing effective knowledge transfer through interaction mechanisms.

Model | PASC. CALT. LABE. SUN
LLaVa-1.5 | 5640 6289  52.58 3271
VIT-L/16 | 6042 5859 3049 31.86
L-VIT-L/16 | 63.98 6875  49.35  36.61

In VLCS (Table 5), we further compared the accuracy of
LLaVa. It can be found that while I-ViT surpasses ViT, and
its behavioral trends align with LLaVa, proving the effective
transfer between interactions.

5.3. Extension on Dense Prediction
5.3.1. Main Results on COCO

Our experiments on COCO 2017 reveal consistent perfor-
mance gains across both detection and segmentation tasks.
As shown in Table 6, the integration of vision-language
interactions (Cypm) elevates detection mAP from 42.0 to
43.6 (+1.6 relative improvement). Notably, the segmen-
tation task benefits more substantially in mask-level accu-
racy (+2.4 AP™*K), suggesting that cross-modal cues par-
ticularly enhance boundary-sensitive predictions.

Table 6. COCO 2017 Benchmark Results (val set)

Task | Cyov | mAP  AP™k  #param FLOPs
Det v 43.6 - 41.9M 55.65B
X 42.0 - 41.5M 55.62B

Se v - 33.5 43.3M 162.6B
g1 x - 311 429M  162.4B

This cross-task success comes with minimal computa-
tional overhead - the added parameters less than ~1% of
base models (41.9M vs 41.5M for detection). The FLOPs
analysis confirms our design’s efficiency, showing less than
~0.6% increase. These findings collectively validate that
vision-language interactions provide generalized benefits
beyond specific task formulations.

5.3.2. Data-Efficient Learning on VOC

The VOC experiments in Table 7 demonstrate our
method’s effectiveness in data-scarce scenarios (Condition-
DETR][36]; Train from scratch).
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Table 7. Few-Shot Detection Analysis on VOC

Model ‘ mAP APS AP M AP L
w/ CVLM 40.9 49 24.2 53.5
w/oCyrm | 386 5.0 224 512

With only 10% of COCO’s training data, the C'ypy inte-
gration achieves 40.9 mAP, outperforming the baseline by
2.3 points. This significant gap (+6.0% relative) highlights
the method’s ability to compensate for limited annotations
through linguistic knowledge transfer. The Cyyy integra-
tion primarily enhances medium and large object detection
(APps: +1.8, APp: +2.3), as the query attention mecha-
nism naturally prioritizes salient regions where these ob-
jects dominate. Small object performance remains compa-
rable (APg: -0.1), indicating preserved spatial sensitivity
in the visual foundation model. This phenomenon aligns
with the inherent bias of vision-language interactions to-
ward capturing semantically prominent patterns in images.

6. Conclusions and Future Work

Multi-modal language models (MLLMs) have achieved re-
markable progress in various visual tasks, largely due to
the availability of large-scale image-text datasets. However,
the inherent discrepancy between input and output modali-
ties hinders the effective transfer of their natural scene un-
derstanding capabilities to downstream Visual Foundation
Models (VFEMs). To address this challenge, we propose
Learning from Interactions, a novel paradigm that em-
phasizes the alignment of cognitive processes in knowledge
transfer between Vision Language Models (VLMs) and Vi-
sual Foundation Models (VFMs). By introducing addi-
tional interaction-based supervision from VLMs to VFMs,
we enable cross-modal and cross-task knowledge transfer.
Our experiments demonstrate that interaction-based learn-
ing outperforms traditional result-oriented approaches in
terms of accuracy, convergence speed, and generalization,
while also aligning more closely with human cognitive pro-
cesses.

Future Work: Building upon the current framework, we
focus on knowledge transfer from VLMs to VFMs. In fu-
ture, we aim to explore bi-directional knowledge transfer,
including from VFMs to VLMs and VFEMs to VFEMs, to un-
cover a more fundamental knowledge system and the un-
derlying knowledge modeling process within models. Ad-
ditionally, we plan to extend this approach to other founda-
tional tasks, such as video understanding, to fully leverage
the world understanding capabilities of MLLMs. This will
further bridge the gap between human-like cognitive pro-
cesses and machine learning models, paving the way for
more robust and interpretable Al systems.
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