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Abstract

This paper presents Bayesian-inspired Space-Time Super-
pixels (BIST): a fast, state-of-the-art method to compute
space-time superpixels. BIST is a novel extension of a
single-image Bayesian method named BASS, and it is in-
spired by hill-climbing to a local mode of a Dirichlet-
Process Gaussian Mixture Model (DP-GMM). The method
is only Bayesian-inspired, rather than actually Bayesian,
because it includes heuristic modications to the theoret-
ically correct sampler. Similar to existing methods, BIST
can adapt the number of superpixels to an individual frame
using split-merge steps. A key novelty is a new temporal co-
herence term in the split step, which reduces the chance of
splitting propagated superpixels. This term enforces tempo-
ral coherence in propagated regions, but allows for uncon-
strained adaptation in disoccluded regions. A hyperparam-
eter determines the strength of this new term, which does not
require special tuning to return consistent results across a
dataset of videos. The wall-clock runtime of BIST is over
twice as fast as BASS and over 30 times faster than the
next fastest space-time superpixel method with open-source
code.

1. Introduction
Superpixel models [23] represent images as a collection
of contiguous, deformably-shaped clusters of perceptually
similar pixels. They are inspired by Gestalt principles,
which posit humans view images by subconsciously group-
ing parts into a whole. Recent works show superpix-
els can be used to improve the quality of deep neural
networks (DNNs) for computer vision tasks. [8, 10, 40].
Space-time superpixels extend the single-image concept
to video by propagating the same label across multiple
frames, with applications in tracking, image registration,
and 3D reconstruction. However, the wall-clock runtime
of existing space-time superpixel methods can be over
one second per frame, which is unacceptably slow. This
paper presents Bayesian-inspired Space-Time Superpixels
(BIST), a method that achieves state-of-the-art superpixel

quality while dramatically reducing the wall-clock runtime.
BIST is a novel extension of the Bayesian Adaptive Su-

perpixel Segmentation (BASS) method and it is distinct
from previous space-time work.1 Previous methods process
several frames together, and focus on designing heuristic
energy functions to be minimized [3, 12, 13, 25, 26, 38].
In contrast, BIST is designed using heuristic modifications
to a theoretically justified sampler of a DP-GMM. BIST
proposes no heuristic energy functions to be minimized,
which clearly separates this paper from previous work. Ul-
timately, BIST achieves state-of-the-art benchmark quality
and is the fastest available space-time superpixel method
with open-source code. BIST processes images of size
480 × 320 at over 60 frames-per-second (fps), while the
next fastest space-time superpixel method with publicly
available code runs at about 2 fps [3].

BIST consists of three main steps: a shift-and-fill step
to move superpixels according to video motion, bound-
ary updates to deform the segmentation boundaries, and
split/merge/relabeling steps to adjust the number of super-
pixels. These steps are common to existing space-time su-
perpixel methods [3, 13, 38]. The novelty of BIST is a new
temporal coherence term used within the split step, which
adaptively controls the number of split superpixels accord-
ing to the video dynamics. This term is a heuristic modifica-
tion to the theoretically correct Hastings ratio used for pos-
terior sampling of a DP-GMM [3, 32]. Hence, the method
is Bayesian-inspired rather than actually Bayesian.

The theoretically correct method leads to several hun-
dred split/merge steps when estimating superpixels, and this
rapidly replaces old labels with new ones which makes en-
forcing temporal consistency challenging. The new tempo-
ral coherence term works by simply reducing the chance of
splitting a propagated superpixel. The strength of this term
is controlled by a hyperparameter, and selecting this hyper-
parameter does not require special tuning to return consis-
tent results across the entire dataset. This term allows BIST
to maintain approximately the same number of superpixels
per frame as its single-image analogue (BASS) while pre-
serving temporal consistency.

1 https://gauenk.github.io/bist_website/
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(a) (b) (c) (d) (e)
GPU Parallelism ✓ ✓ ✓
Connectivity ✓ ✓ ✓ ✓

Adaptive Sup. Pix. Num ✓ ✓ ✓ ✓
Spatial Coherence ✓ ✓ ✓
Spatial Covariance ✓ ✓
Temporal Coherence ✓ ✓ ✓

Table 1. Related Works Table. (a) BIST, (b) TSP [3], (c)
Streaming-GBH [38], (d) BASS [32], (e) gSLIC [1]. Connectivity
means the superpixels are guaranteed to be contiguous. Spatial co-
herence means the method encourages more compact superpixel
shapes, instead of producing snake-like dendrils. Like BASS,
BIST adopts a spatial coherence term that encourages smoother
superpixel boundaries and explicitly models the spatial covariance.

2. Related Works

Superpixels form a deformable partition of the input im-
age [23] with a bountiful number of related works. Most
work early focused on single-image superpixel estima-
tion [5, 6, 14, 28]. SLIC [1] marks a major milestone for
efficient superpixel estimation and there are several closely
related methods [16, 24]. Basically, SLIC runs a k-means
algorithm over the image pixels in the LAB color space.
The main problem with SLIC-like methods is that the es-
timated superpixels are not contiguous. Later works have
been designed to address this problem [12, 17, 29, 33, 39],
and fastSCSP [7] presents a method that executes bound-
ary updates in parallel on a GPU to enable incredibly fast,
contiguous boundary estimation. BASS [32] builds on this
method, adding a Potts term to encourage spatial cohesion
and split/merge/relabel steps to adapt the number of super-
pixels to a particular frame. This method is the launching
point for our space-time method, selected for its conceptual
clarity, superior superpixel quality, and exceptionally small
wall-clock runtime.

Several single-image methods have been extended to
space-time, but usually report a lower quality than special-
ized space-time superpixel methods. GBH [9] is a hier-
archical method that can span longer videos, but operates
on the entire video sequence at once which leads to exces-
sive memory consumption and a slow runtime. Streaming-
GBH [38] presents a streaming alternative to GBH, operat-
ing on chunks of frames at a time, but still takes tens of sec-
onds to process each frame. TCS [25] proposed minimizing
a heuristic space-time energy function and is much faster
than the GBH methods. TSP [3] soon outperformed TCS,
and presented their method as an inference problem. How-
ever, the boundary updates and split/merge steps of TSP
are far less efficient than the single-image BASS method,
and, ultimately, this makes TSP more than 30 times slower
than BIST. Additionally TSP focuses on refining the optical

flow estimate using a forward-and-backward process, while
BIST only processes forward in time.

Some recent methods report outperforming TSP [12, 13,
26], but the authors do not provide publicly available code.
Even comparing to their closed-source results, BIST is still
the fastest space-time superpixel method. CCS [12] re-
ports being 28% faster than TSP, while our method is 15
times faster than CCS. PPM [13] reports an average run-
time of 0.20 seconds per frame on SegTrackv2 [15], while
BIST averages about 0.015 seconds per frame. Finally, OA-
TCS [26] does not report a runtime nor provides code.

2.1. Bayesian Adaptive Superpixel Segmentation
(BASS)

We present a detailed summary of Bayesian Adaptive Su-
perpixel Segmentation (BASS) [32] since BIST uses simi-
lar concepts and notation. A previous method designed a
MCMC algorithm to efficiently sample cluster assignments
and parameters from a DP-GMM [2], and BASS applied
the theoretical findings to estimating superpixels for a sin-
gle image. This paper continues in this line of work by ex-
tending the single-image superpixels to space-time. BIST
is a space-time extension of BASS, using modifications to
enforce space-time consistency.

Say an image has a height (H) and width (W) withHW
total pixels. An image pixel is a vector xi = [ai li] of
size F + 2 where ai ∈ RF are the appearance features and
li ∈ R2 is the 2D spatial location. When working with
RGB images (F = 3), the features are transformed to the
Lab color space before running the segmentation algorithm.

Superpixel methods often model image pixels as follow-
ing some variation of a Gaussian Mixture Model (GMM).
Loosely speaking, a DP-GMM is a GMM that entertains in-
finitely many cluster assignments. First for a fixed number
of superpixels (S), superpixel assignment at image index
i is denoted zi with zi ∈ 0,    , S − 1 and each label
has prior probabilities πsS−1

s=0 . Second, the pixel values
are sampled, xi ∼ p(xµapp

zi ,σ
2
app,µ

shape
zi ,Σshape

zi ), which is
written as,

p(xiµapp
zi ,σ

2
app,µ

shape
zi ,Σshape

zi )

= N (xi;µ
app
zi ,σ

2
appIF×F )N (xi;µ

shape
zi ,Σshape

zi ) (1)

The two Gaussian densities are centered at the mean ap-
pearance and shape terms, µapp

s ,µshape
s Ss=1. The covari-

ance of the appearance term is fixed and isotropic. This
controls the balance between regularly shaped superpixels
(larger σ2

app) versus deformably-shaped superpixels (smaller
σ2
app). The shape covariance matrix allows for ellipsoidal

regions. Later, we explore using the anisotropic covari-
ance term to enable better control over the superpixel shape
in our space-time method. We abbreviated the appear-
ance and shape parameters θapps =


µapp

s ,σ2
appIF×F


and
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Algorithm 1 Bayesian-Inspired Space-Time Superpixels
(BIST)

Require: Frame (x(t)), Flow (f (t−1)), Superpixels
(z(t−1)), Hyperparameters (φ)

1: z, z̃  Shift-and-Fill(z(t−1),f (t−1)) ▷ Sec. 3.1
2: N  4, 8, 12 based on z̃ ▷ Sec. 3.1
3: for i = 1 to N do
4: if i mod 4 = 1 then
5: z  Split(x(t), z, z̃,φ) ▷ Sec. 3.3
6: z  Boundary Updates(x(t), z,φ) ▷ Sec. 3.2
7: else if i mod 4 = 3 then
8: z  Relabel(x(t), z,φ) ▷ Sec. 3.4
9: z  Merge(x(t), z,φ) ▷ Sec. 3.4

10: z  Boundary Updates(x(t), z,φ)
11: else
12: z  Boundary Updates(x(t), z,φ)
13: end if
14: end for
15: return z,ϕ

Algorithm 2 Applying BIST to a Video

Require: Video (x(t)Tt=1), Flows (f (t)Tt=1), Hyperpa-
rameters (φ)

1: z(1)  BASS(x(1),φ) ▷ [32]
2: for t = 2 to T do
3: z(t)  BIST(x(t),f (t−1), z(t−1),φ) ▷ Alg. 1
4: end for
5: return z(t)Tt=1

θshapes =

µshape

s ,Σshape
s


. BASS also includes a Potts term

to encourage regularly shaped superpixels, which we use
and explain in Section 3.2.

BASS superpixel estimation consists of two main steps.
The first step is boundary updates, which iterates between
updating the boundary of the superpixel segmentation
and re-estimating superpixel parameters (θapps , θshapes )Ss=1.
Boundary updates reclassify superpixels that are adjacent
to two or more distinct superpixel labels, assigning them to
match the class of one of their neighbors. The segmenta-
tion update can be done in parallel on a GPU [7, 24]. Su-
perpixel parameters are updated with their maximum like-
lihood estimates. The exception is the spatial covariance
term, which uses the posterior mode computed using a prior
shape, λI2×2. The hyperparameter λ controls the size of the
superpixels.

3. Bayesian-Inspired Space-Time Superpixels
(BIST)

BIST is a method to estimate space-time superpixels, and
it is theoretically inspired by hill-climbing to the posterior
mode of a DP-GMM. The BIST method is presented in Al-
gorithm 1, and consists of three major parts. First in the
Shift-and-Fill step, superpixels are propagated from frame t
to frame t+1 according to the input optical flow. Propagat-
ing superpixels from the previous frame acts as a good ini-
tialization to encourage temporally coherent labels. Second,
these superpixels are refined via boundary updates, simi-
lar to recent works [7, 32]. We explored using informative
priors in this step and found a consistent but marginal im-
provement in superpixel quality. Third, superpixels can be
split, merged, and/or relabeled to control the total number
of supeprixels used to explain the image. Splits principally
explain disocclusion, merging removes unnecessary super-
pixels, and relabeling allows for correcting erroneous track-
ing and enables tracking objects through occlusion. BIST
is designed to be the space-time extension of BASS [32],
as both the boundary updates and split-merge steps of BIST
are based on BASS.

Inputs to BIST include a video x(t)Tt=1 and a dense
flow field f (t)Tt=1 where each frame has sizes HW × F
and HW × 2, respectively. The last input is the BIST
hyperparameters (φ = λ,σ2

app,β,α, γ, εre-id, εnew) which
include the initial superpixel size (λ), appearance vari-
ance (σ2

app), the strength of the Potts term (β), the merge
Hastings hyperparameter (α), the strength of the split-step
temporal coherence term (γ), and the parameters for re-
identification and new label creation (εre-id, εnew). Algo-
rithm 2 demonstrates how BIST is applied to a video; BASS
is used to estimate superpixels for frame 1, and subsequent
frames apply BIST.

3.1. Shift-and-Fill

The first step of the space-time superpixel method is propa-
gating the superpixels from frame t to frame t+ 1. Motion
between two frames of a video is commonly modeled as the
shifting of pixel values to new image coordinates [19]. Sim-
ilar to other space-time superpixel methods [3, 13], this pa-
per models motion as shifting superpixels rather than pixels.
Shifting creates regions without a superpixel label (holes),
which are iteratively filled with a watershed-like algorithm.
Shift Superpixels. Superpixels from one frame are prop-
agated to the next by shifting each superpixel as a single
unit according to an optimal flow estimate. Unlike the re-
lated works which estimate flow as part of their methods,
this paper uses a high-quality dense optical flow from a re-
cent deep neural network method [22, 31]. Finding a good
initial estimate is important since the subsequent steps will
make mostly local changes, but pixel-perfect refinement is
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Figure 1. Shift and Fill. The initialization of the propagated su-
perpixels is important for temporal consistency since later steps
only refine this initial estimate. Superpixel labels from frame t
are shifted to frame t+ 1 according to the average optical flow of
the superpixel. The result is depicted in the center image, which
shifts the segmentations across the image like puzzle pieces mov-
ing across a board. This leads to overlapping regions and holes.
For overlapping regions, the smallest superpixels are displayed on
top. The holes are iteratively filled to ensure the missing super-
pixel labels are initialized to contiguous regions.

not necessary since subsequent boundary updates will ad-
just the initial superpixel positions.

Figure 1 illustrates the shifting. First, a dense opti-
cal flow is estimated using any method, say RAFT or
SpyNet [22, 31]. These dense optical flows are then con-
verted into a single flow vector for each superpixel by aver-
aging the flow across all pixels within a superpixel. These
average flow fields shift the superpixel labels to the new lo-
cation.
Fill-ing in Missing Superpixels. Shifting superpixels can
yield overlapping superpixels and regions without a super-
pixel label, aka holes. Overlapping superpixels are han-
dled with a deterministic z-axis ordering. Similar to re-
cent work [4], the smallest superpixel is selected when
two or more superpixels overlap. Smaller superpixels are
more likely to be erroneously removed during the super-
pixel shift, so placing them in front gives smaller superpix-
els the chance to survive in the next frame. This can be done
efficiently using a customized atomic operator that records
the associated label while executing an atomic min.

Holes are imputed with a watershed-like algorithm [34]
that iteratively grows valid superpixel regions. Each miss-
ing point bordering at least one existing point is assigned to
the most similar superpixel label (using mean appearance).
In many cases, the proposed watershed algorithm produces
contiguous superpixels. Still, disconnected superpixels can
be created if one superpixel intersects another after shifting.
In these few cases, we simply split the superpixel, assigning
the original label to the largest chunk and new labels to the
smaller chunks.

As presented in Algorithm 1, the number of iterations
actually adapts to the motion of the underlying scene. If

Figure 2. Boundary Updates. Boundary updates reclassify super-
pixels that are adjacent to two or more distinct superpixel labels,
assigning them to match the class of one of their neighbors. This
is similar to running k-means clustering updates but restricted to
the subset of pixels that run along the edges of each superpixel.

more than 20% of the superpixels after the shift step are in-
valid, then BIST runs for 12 iterations. If less than 1% of
the superpixels are invalid, then BIST runs for 4 iterations.
Otherwise (the common case), BIST runs for 8 iterations.
On average, BIST runs for 8.113 iterations and we report
no sequence with an average of over 10 iterations. In com-
parison, the number of iterations BASS runs is equal to the
initial superpixels size, which we set to 20. In Section 4.2,
we show how this will decrease the wall-clock runtime of
BIST compared to BASS.

3.2. Boundary Updates

Boundary updates are what give superpixels their distinc-
tive deformable shapes, and this step can be updated in par-
allel on a GPU [32]. For each pixel at the border of two or
more superpixels (aka the boundary), the superpixel label
is re-classified to one of its neighbors. These updates are
similar to cluster assignments in k-means [18], following
an Expectation-Maximization (EM)-like algorithm where
parameters are estimated based on label assignments, fol-
lowed by reassigning labels using these updated parameters.

While the label re-classification and parameter estimates
are two distinct steps, this paper combines them for a suc-
cinct presentation. Specifically, we say the boundary up-
date step starts with updating the model parameters, which
is a straight-forward reduction operation on a GPU. The pa-
rameter update step is nothing special, so we regulate these
details to Supplemental Section 8.1.

Once the parameters are computed, the classification
step re-assigns each pixel on the boundary to their most
likely neighboring cluster. The conditional probability over
superpixel labels for a single point is given as,
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Figure 3. Split via Deferred Sampling. Split steps allow the num-
ber of superpixels to be adapted to the current image. The split step
in BASS uses a method called deferred sampling, which is moti-
vated by posterior sampling from a DP-GMM. First, superpixels
are split through their center (horizontally or vertically). Second,
the superpixel segmentation is updated via boundary updates. This
procedure yields theoretically correct samples.

p(zixi, li, θzi , z ̸i) ∝ πziN (xi; θ
zi
app)N (li; θ

zi
shape)p(ziz ̸i)

(2)

where θapp, θshape are parameters of the Gaussians de-
scribed in Section 2.1. The right-most density is the Potts
term, and acts like an indicator function to only permit con-
tiguous labeling and favoring cohesive shapes. The density
is written as,

p(ziz ̸i) = 1valid(z) exp


−β



i∼i′

1zi ̸=zi′ (z)


(3)

The likelihood of the pixel is computed for each neigh-
boring superpixel, and the label is updated to the most likely
class. While there are a few technical details associated with
the parallel updates, the result is a fast method to update su-
perpixel boundaries. By only updating a particular subset of
points (called simple points) in parallel, boundary updates
are guaranteed to form contiguous regions [7]. We choose
β = 10 since it produces visually appealing results.

3.3. A Temporally Coherent Split Step
Many superpixel methods adaptively control the number of
superpixels according to the image content [3, 9, 32]. In-
creasing the number of superpixels is done by splitting ex-
isting superpixels and decreasing the number of superpixels
is done by merging two neighboring superpixels together.
In the single-image case and/or when superpixels are new
to a frame, split-merge steps are used as compliments in
the optimization process, but in the space-time setting the
two steps are conceptually distinct. Split steps assign super-
pixels to explain disoccluded regions in an adjacent frame,
while merge steps merely reduce the total number of super-
pixels with no physical meaning. In other words, adapting
the number of superpixels to an individual frame must be

Figure 4. Classifying the Split. The split step requires classifying
each superpixel as not-split, split horizontally, or split vertically.
Determining which half of the split superpixel is propagated (pur-
ple) or new (green) yields five classes. BIST introduces a temporal
term to BASS’s classifier.

balanced with propagating superpixels across time. This
subsection presents details on the more complicated and
conceptually relevant split step.
Deferred Sampling. At a high-level, split steps are compli-
cated because identifying a likely split is identical to fixed-
K superpixel estimation, which gives a recursive flavor to
the problem. TSP [3]’s solution is to run k-means within
each superpixel, but this requires a significant computa-
tional overhead. BASS [32] uses a less expensive method
inspired by deferred sampling within the sampler of a DP-
GMM [2]. The idea is to vertically or horizontally split a
superpixel if a function of its parameters (the Hastings ratio)
exceeds some threshold. Once split, the entire segmentation
is updated for a few iterations without further splits/merges.
This procedure is theoretically justified to produce correct
samples [2]. Figure 3 illustrates three superpixels split ver-
tically and one superpixel split horizontally. Clearly, the
initial segmentation is qualitatively bad. However, via de-
ferred sampling, one can continue executing boundary up-
dates across the entire image to ensure the resulting seg-
mentation is a likely sample.
Rapid Cycling. Naı̈vely using the DP-GMM Hastings ra-
tio yields several hundred splits and merges (rapid cycling)
during superpixel estimation, which is problematic for tem-
poral coherence. Rapid cycling replaces superpixels of one
label with superpixels of a different label, yet both labels
cover an almost identical region. This rapid cycling can
be slow, and in the space-time case, it can be detrimental
to temporal coherence. Therefore, a new classification cri-
terion should be used to balance adaptation to the current
image and temporal coherence across the video.
The Split Step. To reduce the number of unnecessary splits
and encourage temporal coherence, BIST introduces a new
term in the Hastings ratio of the split step. The term consists
of a hyperparameter (γ) to control its strength and the prop-
agated label density of each superpixel, ρsSs=1. This den-
sity is the percent of valid labels within each superpixel af-
ter the Shift-and-Fill step. Essentially, the new term makes
splitting more difficult for propagated superpixels.

A split step starts by temporarily cutting each superpixel,
and the Hastings ratio determines if this cut is kept using a
ratio of marginal likelihood terms. For the sake of presen-
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tation, lets assume a superpixel is cut into a left and right
half. Concretely, this means half of a superpixel’s labels are
temporarily assigned to a new value and summary statistics
are computed by simply executing a reduction on a GPU.
Let f(xs), f(xsl), and f(xsr ) denote the marginal likeli-
hoods associated with the whole superpixel s and each split
half. While the theoretically the marginal likelihood should
include both the appearance and shape terms, BASS found
using appearance parameters gave nice results and we report
a similar finding. Since the appearance parameters follow
a Normal-Inverse Gamma distribution, the marginal likeli-
hood is a simple function of the pixel values.

Let’s denote the prior as NIG(µapp
s ,σ2 app

s ;ms,κs, as, bs)
where the parameters are fixed as follows: ms = 0, κs = 0,
as = 104 and bs =

σ2 app(·104 − 1) = 2σapp · 104. While
the first equality for bs is theoretically correct, the heuristic
change improves results. And while κs = 0 is improper,
the corresponding terms in the marginal likelihood are sim-
ply dropped. Let (ns, vs,a

′
s,a

′′
s ) =


i:zi=s(1, z̃i ≥

0,ai,ai ⊙ai) be summary statistics of superpixel s, where
⊙ refers to element-wise multiplication and ρs = vs

ns
is the

density of valid superpixel labels after the shift step. We
refer the reader a reference for a complete derivation of the
marginal likelihood (see Eq 55) [20], and write down the
solution below,

f(xs) =



Ω



i∈{j:zj=s}
p(xiθapp)p(θapp) dθapp

=
κ+ ns

1
2 baΓ(a+ ns2)

κ
1
2 b̂(a+ns/2)Γ(a)π

ns
2 2ns

(4)

where b̂ = bs + 1
2


a

′′
s − (a

′
s)

2ns


. The red strike-

through indicated heuristically dropped terms. Notice that
although the appearance variance is a fixed hyperparame-
ter, it is treated as an unknown quantity when deriving the
marginal likelihood. The Hastings ratio is a ratio of these
marginal likelihoods as follows,


αΓ(nsl)Γ(nsr )

Γ(ns)

f(xsr )f(xsr )

f(xs)
> e−2eγρs (5)

where the red strike-through indicates heuristically re-
moved/included in BASS and the blue quantity is the novel
temporal coherence term in BIST. Since γ ≥ 0 is a hyper-
parameter, this new term makes splitting less likely if the
superpixel labels are propagated (ρs ≈ 1), since the thresh-
old to accept a split increases. This term “turns-off” if the
superpixel labels are missing after the shift step (ρs ≈ 0),
and resolves back to the criteria used in the single-image
case. Once a split is accepted, the half with fewer miss-
ing labels is given the propagated label. The strength (γ) of

Figure 5. Qualitatively Comparing Space-time Superpixels.
Similar to BASS, BIST superpixels fit oddly shaped regions and
adaptively estimate the number of superpixels. On average, BIST
and TSP have similar temporal coherence.

the temporal coherence term can be modified to reduce the
number of new superpixels without significantly degrading
benchmark quality.

3.4. Merges and Relabeling
Merges. When merging, at most one superpixel can be
propagated from a previous frame. This is justified by our
model that superpixels shift to different pixel locations, so
merging two conditioned superpixels has no physical mean-
ing. Otherwise, this step exactly matches the BASS up-
date [32] and is detailed in Supplemental Section 8.3.
Relabeling. BIST uses a standard two-step relabeling ap-
proach similar to previous work [3, 13]: re-identification to
handle occlusions by connecting active superpixels to previ-
ously seen inactive ones, and new label creation to maintain
appearance consistency by creating new labels when sub-
stantial changes to the appearance and shape means occur.
This mechanism is particularly effective for handling opti-
cal flow inaccuracies, as improperly propagated superpixels
appropriately relabeled as new superpixels. The full details
of this step is provided in the Supplemental Section 8.4.

4. Experiments

4.1. Space-Time Superpixel Quality
Setup. To quantitatively evaluate the superpixels, this pa-
per uses LIBSVX [36, 37] and the Lib-Stutz [30]. The
single-image superpixel methods for comparison include
BASS [32], ERS [17], ETPS [39], SEEDS [33], and
SLIC [1]. The space-time superpixel methods for com-
parison include TSP [3] and Steaming-GBH [38]. One se-
lected dataset is the SegTrackv2 [15], which is a collection
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Figure 6. Quantitative Superpixel Comparison on SegTrackv2. This figure quantitatively compares BIST against existing superpixel
methods on standard benchmarks. BIST demonstrates exceptional results on the superpixel metrics but suffers from a shorter temporal
extend (TEX) than TSP, meaning the superpixels stay alive for fewer frames. This is partially due to the small lifespan of smaller superpixels
(see Section 7). As BIST and BASS adaptively estimate the number of superpixels to each scene, their default results are marked with a x.

of about 1000 frames from 14 sequence categories with res-
olution about 320×480. Another dataset is the DAVIS 2017
validation dataset [21], which consists of 30 sequences with
about 50 - 85 frames per sequence with resolution about
480× 960.

Quantitative Benchmarks. Following related works, we
assess superpixel quality on standard superpixel bench-
marks: Segmentation Accuracy (SA2D/SA3D), Underseg-
mentation Error (UE2D/UE3D), and Expected Variance
(EV). The first two metrics assess the adherence of the su-
perpixels to a groundtruth segmentation label. SA (also
known as Achieve Segmentation Accuracy) reports the best
possible segmentation computed using the estimated super-
pixels. UE quantifies the leakage of superpixels across
ground-truth segmentation. EV reports the variation of
pixel values explained by superpixel assignments. This is
related to also the superpixel pooling quality, which com-
pares the superpixel means with the original image [8, 10].
Quantitative space-time benchmarks include temporal ex-
tent (TEX) and size variation (SZV). TEX reports the av-
erage lifetime of a superpixel and SZV reports the variance
of the superpixel’s size across time. We direct the reader
to the following references for a detailed catalog of these
metrics [30, 36].

Results. Figures 5 qualitatively compares BIST with
TSP [3]. The graphic illustrates that BIST superpixels are
qualitatively similar to BASS and can have a similar tempo-
ral extent to TSP when objects are moving. Figure 6 quanti-
tatively compares the superpixels on standard benchmarks.
BIST superpixels report excellent single-image and space-
time superpixel benchmarks. The tabular representation of
this information for BIST, BASS, and TSP is presented in
Table 5 (Sec 10). BIST exhibits a slightly shorter temporal

Figure 7. Comparing Superpixel Runtimes. This graphic com-
pares the per-frame runtime of space and space-time superpix-
els on the SegTrackv2 [15] dataset with image resolution about
320 × 480 and DAVIS [21] dataset with image resolution about
480 × 960. The wall-clock runtime is reported in seconds.
Steaming-GBH [38] is not plotted because the method is too slow.
The numbers on top of the DAVIS bars is the median runtime.

extent than TSP, and this related to BIST’s irregular super-
pixel shapes. This limitation is further discussed in Supple-
mental Section 7.

Both BIST and BASS automatically determine the num-
ber of superpixels, so fixing a target number of superpixels
for each method presents a challenge. In this paper, we de-
signed a small subroutine to ensures that both methods are
within 5% of the indicated number of superpixels. See Sup-
plemental Section 8.5 for more details.

4.2. Computation
Figure 7 compares the wall-clock runtime of competing su-
perpixel methods. BIST can be more than 30 times faster
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# Spix Type TEX (%) SZV Pool (dB) SA-2D SA-3D UE-2D UE-3D
1300 γρs 30.6 ± 3.0 111.4 ± 7.4 27.91 ± 0.38 0.919 ± 0.017 0.854 ± 0.021 4.75 ± 0.41 8.05 ± 0.74

α 28.8 ± 2.8 122.8 ± 8.0 27.99 ± 0.38 0.919 ± 0.017 0.853 ± 0.021 4.83 ± 0.42 8.16 ± 0.76

1180 γρs 30.7 ± 3.0 124.9 ± 8.5 27.79 ± 0.38 0.917 ± 0.017 0.851 ± 0.020 4.98 ± 0.44 8.40 ± 0.78
α 29.2 ± 2.8 139.5 ± 8.6 27.80 ± 0.38 0.915 ± 0.018 0.848 ± 0.022 5.13 ± 0.45 8.65 ± 0.79

1065 γρs 31.9 ± 3.2 136.4 ± 9.2 27.58 ± 0.38 0.912 ± 0.019 0.843 ± 0.021 5.18 ± 0.45 8.74 ± 0.79
α 28.9 ± 2.8 161.4 ± 9.1 27.50 ± 0.38 0.909 ± 0.018 0.842 ± 0.021 5.51 ± 0.48 9.31 ± 0.82

Table 2. Quantitative Impact of the Temporally Coherent Split Step. This table compares the benchmark results of BIST superpixel
where the number of superpixels was controlled using either the temporally coherent split step (γρs) or adjusting the single-image Hastings
merge-step hyperparameter (α). The proposed split step term yields higher-quality results. The scale for UE-2D and UE-3D is 10−3.
Results are reported with standard errors divided by

√
30 videos.

Figure 8. BIST Requires Fewer Iterations than BASS. This im-
age depicts the superpixel-pooled image when stopping BIST and
BASS at the indicated iteration. The visualization shows that BIST
requires fewer iterations than BASS. For BIST, the sunglasses ap-
pear at iteration 8, while they appear only at iteration 20 in BASS.

than the next fastest space-time superpixel method with
open-source code (TSP [3]) and it can be more than twice as
fast as BASS. In fact, BIST is the fastest superpixel method
we ran. However, we note that the single-image methods
were executed from within a docker which does introduce a
slight overhead. The improved runtime from TSP to BIST
is due to the efficient, novel split step in this paper and the
efficient boundary updates from related works [7]. The im-
proved runtime of BIST over BASS [32] is due to the fact
that fewer iterates are necessary in the space-time case. The
number of iterations BIST runs adapts changes depending
on the video motion, while the number of iterations BASS
runs is equal to the initial superpixels size, which we set to
20. To highlight the importance of running BASS for the
full 20 iterations, Figure 8 compares the superpixel-pooled
images from BASS and BIST when run for 4, 12, and 20 it-
erations. The sunglasses appear earlier for BIST compared
to BASS, indicating BIST requires fewer iterations.

4.3. Temporally Coherent Split Step
A major novelty of BIST is the temporally coherent split
step term. The term restricts the creation of new superpix-

els in regions that have been propagated from a previous
frame. Logically, this is appealing because the space-time
split step resolves back to the singe-image split step in re-
gions that are not propagated across frames. That is, the
new term “turns-off” in regions are do not requires space-
time consistency. However, the average number of super-
pixels per frame could conceivably be controlled using the
merge step α hyperparameter. Conceptually, this is unde-
sirable because the α term is given two simultaneous roles;
enforcing space-time consistency and single-image adapta-
tion. So as a practical matter, we investigate the experimen-
tal value of using the proposed γρs term versus using only
the single-image α term.

Table 2 compares the results of these two approaches
across three different average superpixel counts. Since
BIST automatically estimates the appropriate number of
superpixels, comparisons based solely on hyperparameter
choices would be misleading. Instead, we match results
based on the average number of superpixels to ensure a fair
comparison. This explains the atypical spacing between the
number of superpixels in Table 2. For this experiment, we
executed a grid of BIST methods with various hyperparam-
eters and matched comparable configurations. All matched
results are within 2% of the reported superpixel counts. Ta-
ble 6 in the Supplemental Section 10 reports the hyperpa-
rameters for each result. Our findings demonstrate that the
proposed temporally coherent split term yields significantly
higher-quality superpixels than using the space-only merge
hyperparameter.

5. Conclusion

BIST is a Bayesian-inspired space-time superpixel method
that is faster and higher-quality than previous methods.
BIST is designed by making heuristic modifications of a
DP-GMM sampler, rather than derived from energy func-
tions. The core novelty is a temporally coherent split step
term to encourage temporal coherence. The real-time wall-
clock runtime of BIST makes it feasible to use temporally
coherent superpixels within deep neural network pipelines.
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