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Abstract

We propose PRM, a novel photometric stereo based large
reconstruction model to reconstruct high-quality meshes
with fine-grained details. Previous large reconstruction
models typically prepare training images under fixed and
simple lighting, offering minimal photometric cues for pre-
cise reconstruction. Furthermore, images containing spec-
ular surfaces are treated as out-of-distribution samples, re-
sulting in degraded reconstruction quality. To handle these
challenges, PRM renders images by varying materials and
lighting, which not only improves the local details by pro-
viding rich photometric cues but also increases the model’s
robustness to variations in the appearance of input im-
ages. To offer enhanced flexibility, we incorporate a real-
time physically-based rendering (PBR) method and mesh
rasterization for ground-truth rendering. By using an ex-
plicit mesh as 3D representation, PRM ensures the applica-
tion of differentiable PBR for predicted rendering. This ap-
proach models specular color more accurately for images
with varying materials and illumination than previous neu-
ral rendering methods and supports multiple supervisions
for geometry optimization. Extensive experiments demon-
strate that PRM significantly outperforms other models.

1. Introduction
Recent advancements in generative models [12, 27, 38]
have spurred notable progress in 2D content creation, driven
by fast growth in data volumes. In contrast, the develop-
ment in 3D field remains encumbered due to limited 3D
assets, which are essential for diverse applications includ-
ing game modeling [8], computer animation [23, 32], and
virtual reality [35]. Traditional approaches to generating
3D assets have utilized optimization-based techniques from
multi-view posed images [42, 49, 50] or have harnessed
SDS-based distillation methods from 2D diffusion models
[25, 26, 34]. Despite their effectiveness, these methods of-
ten require increased computational costs, making them less
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suitable for rapid deployment in real world.
Feed-forward 3D generative models [13, 15, 51] have

been developed to address the limitations of per-scene op-
timization by training a generalizable model on large-scale
3D assets. Notably, the Large Reconstruction Model (LRM)
[13] has demonstrated promising results, exhibiting excep-
tional reconstruction speeds. The subsequent LRM series
[13, 39, 43, 46, 48] utilizes a Transformer-based architec-
ture to encode either single or multi-view images, and de-
coding them into 3D representations, such as triplanes [3],
Flexicubes [36] or 3D Gaussians [39]. These 3D represen-
tations enable differentiable neural rendering from arbitrary
viewpoints, which is crucial for calculating multi-view re-
construction loss for optimization.

While the LRM series effectively reconstructs globally
coherent 3D assets, it struggles with capturing fine-grained
details. This limitation stems from its reliance on images
rendered under fixed, simple lighting, which provide insuf-
ficient photometric information for detailed surface recon-
struction. Additionally, the LRM series is sensitive to vari-
ations in input image appearance, particularly with glossy
surfaces, as these are out-of-distribution samples that rarely
occur in the training data. Moreover, the use of neural ren-
dering for predicted rendering exacerbates this issue [41],
since the view-dependent effect is not considered.

To address the challenges, we introduce PRM, a photo-
metric stereo based large reconstruction model. This model
is adept at capturing fine-grained local details and ensures
robustness against the complex appearances of input im-
ages. We achieve these objectives by leveraging images
with varying materials and illumination [10]. Specifically,
we render ground-truth images by varying camera pose, ma-
terials (i.e., metallic and roughness), and lighting. However,
rendering these images is not trivial since there are infinite
possible combinations of camera pose, materials and light-
ing. In the recent LRM series, images are typically rendered
offline using Blender’s Cycles engine [11]. While this ap-
proach produces high-quality, noise-free images, it requires
numerous samples of lighting directions, significantly in-
creasing the time cost and making it expensive to maximize
the training sample distribution.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

25009



Input Image Generated NormalsGenerated Textured Mesh
Input Image Generated NormalsGenerated Textured Mesh

Figure 1. Top left: PRM is capable of reconstructing high-quality meshes with fine-grained local details even under complex image
appearances, such as specular highlights and dark appearances. Right: We demonstrate a scene comprising diverse 3D objects generated
by our models. Bottom left: A zoomed-in visualization of the scene highlights these details more clearly.

To handle this issue, we incorporate a real-time, physi-
cally based rendering technique known as split-sum approx-
imation [19], along with mesh rasterization for online ren-
dering. This approach offers greater flexibility compared to
traditional offline methods. We discuss two training strate-
gies in the Supplement. Images with varying materials and
illumination offer two distinct advantages. First, they pro-
vide additional photometric cues, thereby enhancing the ca-
pacity to recover fine-grained local details. Second, the
PRM model demonstrates remarkable robustness to varia-
tions in the appearances of inputs. For instance, it is capable
of accurately reconstructing the geometry of images with
glossy surfaces. Moreover, by utilizing mesh as 3D repre-
sentation, we can employ differentiable PBR for predicted
rendering, producing intermediate shading variables such as
albedo, specular and diffuse light maps, along with geomet-
ric cues like normals and depth. These variables provide
multiple supervisions, including photometric and geometric
supervision for high-quality reconstruction. Furthermore,
differentiable PBR can better disentangle the specular com-
ponent, making the geometry be correctly recovered when
the images are characterized with glossy surfaces.

To summarize, our contributions are listed as follows.
• We introduce PRM, a model that is capable of recon-

structing geometry with fine-grained local details and ro-
bust to variations in the appearance of input image by uti-
lizing images with varying materials and illumination.

• We employ differentiable PBR for predicted rendering by
utilizing mesh as the 3D representation. This approach is
advantageous for modeling reflective components and en-
ables the incorporation of multiple supervisions for high-
quality geometry reconstruction.

• Extensive experiments on multiple datasets demonstrate
the effectiveness of the proposed framework, which sig-
nificantly outperforms previous methods, particularly on
glossy objects.

2. Related Work
2.1. Feed-forward 3D Generative Models
Large-scale 3D assets [5] facilitate the training of gen-
eralizable reconstruction models. Recent works have fo-
cused on generating 3D objects using feed-forward models
[13, 14, 24, 39, 43, 47, 48, 51], demonstrating impressive
results in terms of speed and quality. Specifically, Clay
[51] utilizes occupancy for direct supervision. X-ray [15]
explores novel 3D representations by converting a 3D ob-
ject into a series of surface frames at different layers. The
LRM series [13, 24, 43, 46, 48] shows that a transformer
backbone can effectively map image tokens to 3D triplanes,
benefiting from multi-view supervision. Instant3D [24] em-
ploys multi-view images to provide additional 3D informa-
tion for triplane prediction, yielding promising outcomes.
CRM [43] and InstantMesh [46] opt for an explicit mesh
representation, supporting mesh rasterization and rendering
additional geometric cues for supervision. Despite these
achievements, the existing LRM series typically render low-
frequency images under fixed and simple lighting, which
compromises the model’s adaptability to complexity in the
appearance of input images and the model’s capability to
recover local details due to limited photometric cues. In
response, we render images with varying materials and il-
lumination that significantly enhance the photometric cues
necessary for the recovery of fine-grained local details.

2

25010

Tony Nguyen
Rectangle



2.2. Photometric Stereo

Photometric stereo (PS) is a technique for recovering sur-
face normals from the appearance of an object under vary-
ing lighting conditions. Traditional methods, inspired by
the seminal work [44], assume calibrated, directional light-
ing. Recently, uncalibrated photometric stereo methods
have emerged, which assume Lambertian integrable sur-
faces and aim to resolve the General Bas-Relief ambigu-
ity [9] between light and geometry. However, these methods
are still constrained to single directional lighting. More con-
temporary research [16, 17, 29] has shifted focus towards
natural lighting conditions. Despite the significant progress,
these approaches generally concentrate on single-view pho-
tometric stereo, relying solely on photometric cues and ne-
glecting multi-view information, which is crucial for accu-
rately reasoning geometric features. Some studies [10, 20–
22, 33, 53] leverage both photometric and geometric cues
for reconstruction. These cues are complementary: pho-
tometric stereo provides precise local details, while multi-
view information yields accurate global shapes [53]. For
example, UA-MVPS [20] utilizes complementary strengths
of PS and multi-view stereo for geometry reconstruction.
NeRF-MVPS [21] utilizes surface normal estimated from
images with varying materials and illumination to enhance
the reconstruction performance of NeRF. Our approach in-
tegrates the principles of photometric stereo into LRM, aim-
ing to harness the strengths of photometric cues for en-
hanced reconstruction accuracy.

2.3. Physically-based Rendering

Physically based rendering (PBR) is a computer graphics
approach that renders photo-realistic images. PBR offers a
physically plausible approach to modeling radiance by sim-
ulating the interaction between lighting and materials. PBR
has proven to be effective in improving the geometry for
multi-view reconstruction task. For example, incorporating
the principles of PBR into volume rendering significantly
improves the accuracy [7, 28, 41], especially for glossy sur-
faces. Since geometry and predicted radiance are closely
entangled, improving radiance modeling can also enhance
geometry reconstruction. Besides, PBR is also widely used
in inverse rendering task [1, 4, 31]. The task aims at decom-
posing image appearance into intrinsic properties. Unlike
previous LRM methods that predict radiance without ex-
plicitly considering the interactions between materials and
lighting, we leverage advancements from the multi-view re-
construction field and employ PBR for improved radiance
modeling and geometry reconstruction. To this end, we
predict albedo instead of color, which is more reasonable
as albedo is view-independent. The final color is derived
using the predicted albedo and the ground truth metallic,
roughness, and lighting.

3. Method
We begin with a succinct overview of large reconstruction
model, physically based rendering and photometric stereo
in Section 3.1. Then, we introduce how to prepare im-
ages with varying materials and illumination in Section 3.2.
Subsequently, we introduce PRM in Section 3.3, with our
proposed comprehensive objectives and applications. An
overview of our framework is provided in Figure 2.

3.1. Preliminaries
Large Reconstruction Model aims to reconstrcut 3D as-
sets given a single image. LRM first utilizes a pre-trained
visual transformer [2], to encode the images into image to-
kens. Subsequently, it employs an image-to-triplane trans-
former decoder that projects these 2D image tokens onto
a 3D triplane using cross-attention [13]. Following this,
images can be differentiable rendered from any viewpoint,
supporting photometric supervision and optimization.
Physically-based Rendering aims to produce 2D images
using specified geometry, materials, and lighting. Central
to this process is the rendering equation [18] formulated by

C(x,ωo) =

∫
Ω

f(x,ωo,ωi)Li(x,ωi)(ωi · n)dωi, (1)

where ωo is the viewing direction of the outgoing light, Li

is the incident light of direction ωi sampled from the upper
hemisphere Ω of the surface point x, and n is the surface
normal. f is the BRDF properties. The function f consists
of a diffused and a specular component

f(x,ωo,ωi) = (1−m)
a

π
+

DFG

4(ωi × n)(ωo × n)
, (2)

where m ∈ [0, 1] is the metallic, a ∈ [0, 1]3 is the albedo.
We detail the expression of D, F and G in the Supplement.
With Eq.(1) and Eq.(2), the outgoing radiance is given by

C(x,ωo) = Cd(x,ωo) +Cs(x,ωo), (3)

Cd(x,ωo) = (1−m)a

∫
Ω

Li(x,ωi)
(ωi · n)

π
dωi, (4)

Cs(x,ωo) =

∫
Ω

DFG

4(ωi × n)(ωo × n)
Li(x,ωi)(ωi·n)dωi,

(5)
Cs and Cd are specular and diffuse color, respectively.
Photometric Stereo aims to estimate the surface normals
by observing an object under varying lightings [44]. When
considering a Lambertian surface illuminated by a single
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Figure 2. Overview of our framework. During training, images with varying materials and illumination are rendered using PBR with
randomly varied materials, lighting, and camera poses, along with depth, normal, albedo, and lighting maps. Images are encoded as a mesh
through the network. All associated maps are used for supervision. During inference, an optional multi-view diffusion model outputs multi-
view images, which are then fed into the network for mesh prediction. Relighting and material editing functionalities are also supported.

point-like, distant light, the color is determined solely by
the diffuse term, which can be formulated by

C(x) = a(L · n), (6)

where L = L · ω, ω and L are the direction and the in-
tensity of the lighting, respectively. When we observe the
object under different lighting conditions Li, we have mul-
tiple such equations. We assume that both the direction and
intensity of the lighting are known, and the shading colors
C(x) is also observed. Under these conditions, determin-
ing the surface normals n and the albedo a is effectively
equivalent to solving a system of equations derived from
these observations. More lighting indicates more equations,
which effectively constrain the solution space.

3.2. images with varying materials and illumination
Previous methods typically prepared training data by ren-
dering multi-view images with fixed, simple lighting and
materials in Blender [11]. This approach resulted in im-
ages with low-frequency appearances, offering limited pho-
tometric cues. Consequently, these methods struggled to re-
construct geometry with precise local details. Additionally,
they often failed when processing images with glossy sur-
faces, as these are out-of-distribution samples for the model.

We provide some examples in the Supplement.
In contrast, we prepare images with varying materials

and illumination by varying materials and lighting. A naive
solution is to prepare these images offline, as with previous
methods, but this approach poses significant challenges due
to the infinite number of potential combinations of materi-
als and lighting. Moreover, rendering high-quality images
requires large sample counts, making traditional data prepa-
ration methods infeasible. To overcome these issues, we in-
corporate a real-time rendering method known as split-sum
approximation [19] along with mesh rasterization, which fa-
cilitates rapid rendering. This method enables online data
preparation and significantly enhances flexibility.
Split-sum approximation. High-quality estimation of
physically based rendering typically requires Monte Carlo
sampling to approximate the integral in Eq.(1). How-
ever, this process demands large sample counts, making it
time-consuming. Instead, we employ a real-time rendering
method known as the split-sum approximation [19]. Ac-
cording to the split-sum approximation, the specular com-
ponent in Eq.(5) can be rewritten as:

Cs(x,ωo) ≈
∫
Ω

DFG

4(ωo · n)
dωi

∫
Ω

L(x,ωi)D(d̂, ρ)dωi,

(7)
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The first term is the integral of the BRDF, which is approx-
imated by specular albedo as = ((1 − m) ∗ 0.04 + m ∗
a) ∗ F1 + F2, where F1 and F2 are pre-computed scalars
and stored in a 2D lookup texture related to ρ,n and ωo.
The second term is the integral of lights on the normal dis-
tribution function D(d̂, ρ), which can also be pre-computed
and stored as mipmaps Ms. d̂ = 2(−ωo · n)n+ ωo is the
reflective direction. Then the Eq.(7) is modified as

Cs(x,ωo) = as(a,m,n,ωo)Lspec(x,n,ωo, ρ,Ms), (8)

where Lspec = Tex Sample(x, d̂, ρ,Ms), Tex Sample in-
dicates texture sampling based on different levels of rough-
ness ρ in pre-computed lighting map Ms. A low-resolution
map Md is also created to represent low-frequency diffuse
lighting and the diffuse part in Eq.(4) is simplified as

Cd(x,ωo) = ad(a,m)Ldiff(x,n,Md), (9)

where ad = (1 − m)a indicates the diffuse albedo and
Ldiff = Tex Sample(x,n,Md). We show some rendered
examples in the Supplement.
Discussion. We render images with varying materials
and illumination using varied camera poses, materials, and
lighting conditions rather than solely changing the lighting.
Please refer to the Supplement for more details. This ap-
proach offers two distinct advantages. Firstly, multi-view
images provide more geometric cues than single-view im-
ages, which are crucial for reconstructing globally reason-
able geometry [20–22]. Secondly, by varying materials,
we can create images with glossy appearances, particularly
when the metallic component is high and roughness is low.
These varied images serve as inputs, enhancing the model’s
robustness to variations in appearance. Furthermore, the
core principles of photometric stereo remain applicable. In
equations Eq.(8) and Eq.(9), the observation direction ωo,
metallic value m, roughness ρ, and mipmaps Md and Ms
are all known. Predicting the surface normals n and the
albedo a still equates to solving these equations. Moreover,
compared to merely changing lighting, altering the metal-
lic and roughness values allows for diverse shading color
rendering, which produces a richer set of equations.
Mesh Rasterization Rendering. Given an object with ex-
plicit mesh O, rasterization is utilized to determine surface
points x, along with corresponding depth d, surface nor-
mals n, and mask m. After obtaining the surface points
x and their surface normals n along with selected camera
pose, materials and lighting, we leverage split-sum approx-
imation to estimate the specular and diffuse color as Eq.(8)
and Eq.(9), respectively. During the process, besides the
shading color, we can also render albedo, specular light, and
diffuse light maps. The entire process can be formulated as

{C,n,d,m,a,Lspec,Ldiff} = PBR(Rasterization(O)),
(10)

where C, n, d, m, a, Lspec, and Ldiff are the rendered
color, normal, depth, mask, albedo, specular light, and dif-
fuse light maps, respectively.

3.3. PRM
Mesh as 3D Representation. The previous LRM series
typically integrate triplane as 3D representation. In con-
trast, we opt for an explicit representation using mesh as
our 3D format, which enables the use of differentiable PBR
method for better radiance modeling. As a result, specu-
lar and diffuse lighting maps are also renderable, providing
extra photometric cues that are only related to surface nor-
mals. Moreover, PBR can effectively model the specular
component, leading to improved geometry reconstruction
results [7, 41]. Specifically, we leverage differentiable iso-
surface extraction module, namely FlexiCubes [36].
Two Stage Optimization. Inspired by InstantMesh [46],
we have similarly designed a two-stage optimization frame-
work. The first stage mirrors Instantmesh, using triplane
and volume rendering for optimization with offline rendered
data. In the second stage, FlexiCubes is used as the 3D rep-
resentation. To reuse the knowledge in the first stage, we
load the pretrained model as in InstantMesh [46]. The orig-
inal color MLP is repurposed as an albedo MLP to incorpo-
rate color priors. Since our focus is on reconstruction, we
directly utilize the ground-truth metallic and roughness dur-
ing training. Given that an explicit mesh serves as our 3D
representation, novel views can be rendered as described in
Eq.(10). The difference is that the mesh Ô is extracted using
the dual marching cubes algorithm [30], which utilizes pre-
dicted SDF values, deformation, and weights derived from
the triplane formulated by

{Ĉ, n̂, d̂, m̂, â, L̂spec, L̂diff} = PBR(Rasterization(Ô)).
(11)

Optimization. During the training process, our total loss
function is

L = LMSE(C, Ĉ) + λLPIPSLLPIPS(C, Ĉ)

+LMSE(a, â) + λLPIPSLLPIPS(a, â)

+LMSE(l*, l̂*) + λLPIPSLLPIPS(l*, l̂*)

+λnormalm̂⊗ (1− n · n̂) + λregLreg

+λdepthm̂⊗ ∥d− d̂∥1 + λmaskLMSE(m, m̂),

(12)

where LMSE and LLPIPS indicates the mean squaree error
loss and LPISP loss [52], respectively. ∗ ∈ {spec, diff}
denotes specular light and diffuse light maps, respectively.
Lreg is the regularization terms used in FlexiCubes [36].
During training, we set λLPIPS = 2.0, λnormal = 0.2,
λdepth = 0.5, λmask = 1.0 and λreg = 0.01.

For both the specular Lspec and the diffuse lighting map
Ldiff, which are directly influenced by surface normals, ef-
fectively optimizing these light maps significantly enhances
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Figure 3. Qualitative comparisons with state-of-the art methods and ground truth for single-view reconstruction task. PRM reconstructs
the highest quality 3D mesh and provides a more accurate texture prediction from input photographs compared to the others.

the surface normals, thereby refining the precision of local
details. This process is analogous to photometric stereo.
The key difference is that these maps are exclusively related
to surface normals without considering albedo, as demon-
strated in Eq.(8) and Eq.(9), in contrast to shading color.
Applications. PRM achieves high-quality geometry recon-
struction with predicted albedo. This capability enables us
to render the object under novel lighting conditions and also
to modify its material properties. Examples of these appli-
cations are provided in the Supplement.

4. Experiments

4.1. Datasets and Evaluation Protocol

Datasets. For training, we used Objaverse [5], a dataset
comprised of synthetic 3D assets, that allows us to con-
trol the lighting, geometry, and material properties. We
first filter Objaverse to get a high-quality subset for train-
ing. The filtering process aims to exclude objects lacking
texture maps or those of inferior quality, such as those with
low-poly properties. Texture maps are essential as they pro-
vide detailed albedo maps; in their absence, vertex colors
are used as a substitute for albedo. Moreover, low-poly

meshes result in uneven surface lighting. During rendering,
we maintained the original albedo unchanged and randomly
selected a material combination from a total of 121 pos-
sibilities, which were derived by varying the metallic and
roughness properties from 0 to 1 in increments of 0.1. For
lighting, we utilized environment maps sampled from a col-
lection of 679 maps available on Polyhaven.com, thereby
ensuring a diverse range of lighting conditions.

For evaluation, We performed quantitative comparisons
using two public datasets, including Google Scanned Ob-
jects (GSO) [6] and OmniObject3D (Omni3D) [45]. We
randomly picked out 300 objects as the evaluation set both
datasets, respectively. To show the robust capabilities of
our model on appearance variations, we rendered the input
view of each object with a randomly sampled combination
of materials and lighting. We also report extra comparison
results, following previous methods that utilized fixed light-
ing and did not change materials.

Evaluation Protocol. We evaluated both the 2D visual
quality and the 3D geometric quality. For the 2D visual
evaluation, we rendered novel views from the reconstructed
3D mesh and compared them with the ground truth views,
using PSNR, SSIM, and LPIPS. Since other methods do not

25014



Table 1. Quantitative comparison with methods on the GSO and Omni3D datasets, showcasing 3D reconstruction and 2D rendering metrics.

Dataset GSO OmniObject3D
Metric CD↓ FS@0.1↑ PSNR↑ SSIM↑ LPIPS↓ CD↓ FS@0.1↑ PSNR↑ SSIM↑ LPIPS↓

TripoSR 0.109 0.872 15.247 0.859 0.197 0.083 0.940 15.237 0.865 0.176
CRM 0.202 0.707 17.293 0.854 0.142 0.088 0.907 18.293 0.894 0.112
LGM 0.144 0.800 17.643 0.869 0.158 0.138 0.823 17.893 0.884 0.139

InstantMesh 0.076 0.931 19.988 0.901 0.096 0.096 0.892 18.608 0.903 0.096
PRM 0.050 0.981 25.125 0.929 0.061 0.053 0.979 25.063 0.932 0.063

predict albedo, we compared their shading color in novel
views. For our method, we rendered the shading color based
on the predicted mesh and albedo, then performed the met-
ric calculations. For the 3D geometric evaluation, we first
aligned the coordinate systems of the reconstructed meshes
with those of the ground truth meshes. Subsequently, we
repositioned and rescaled all meshes into a cube of size
[−1, 1]3. We reported the Chamfer Distance (CD) and F-
Score (FS) at a threshold of 0.1, which were computed by
uniformly sampling 16K points from the mesh surfaces.

4.2. Implementation Details
Our model was developed based on InstantMesh [46]. The
architecture of the Transformer encoder, triplane trans-
former, and the FlexiCubes decoder mirrors that of In-
stantMesh. Our model underwent training for 7 days and 3
days on 32 NVIDIA RTX A800 GPUs for the first stage and
second stage, respectively. During inference, we used a sin-
gle RGB image to generate six fixed views by Zero123++
[37] as the input of PRM. For more details, please see our
Supplement.

4.3. Comparison with State-of-the-Art Methods
We compared the proposed PRM with four baselines. These
include TripoSR [40], an open-source LRM implementa-
tion renowned for its superior single-view reconstruction
performance; CRM [43], a UNet-based Convolutional Re-
construction Model that reconstructs 3D meshes from gen-
erated multi-view images and canonical coordinate maps
(CCMs); LGM [39], a unet-based Large Gaussian Model

Table 2. Comparison on GSO dataset. “Random m&r” indicates
whether materials and lighting were randomly changed.

Method Random m&r CD↓ FS@0.1↑ PSNR↑
InstantMesh ✓ 0.061 0.934 21.115
InstantMesh × 0.048 0.972 23.644

PRM ✓ 0.053 0.982 24.602
PRM × 0.043 0.991 26.377

Table 3. Quantitative results of the ablation study.
Metric CD↓ FS@0.1↑ PSNR↑

Only albedo supervision 0.099 0.887 17.532
w/o PBR 0.089 0.909 19.143

w/o lighting supervision 0.073 0.919 20.114
w/o change materials 0.089 0.894 19.662

Full model 0.066 0.948 20.992

that reconstructs Gaussians from generated multi-view im-
ages; and InstantMesh [46], a transformer-based LRM that
employs a two-stage training strategy for direct 3D mesh re-
construction. We reported both quantitative and qualitative
comparative results for a complete comparison analysis.
Quantitative Results. We reported quantitative results with
randomly selected lighting and materials in two different
datasets in Table 1. We also report quantitative results with-
out changing materials and using fixed lighting as previous
methods compared with cutting-edge method Instantmesh
on GSO in Table 2, where ground-truth rendered multi-view
images were used as input.

For 3D reconstruction metrics, PRM achieves signifi-
cant improvements over all state-of-the-art methods on both
datasets, as shown in Table 1. The qualitative comparison
with other methods is presented in Figure 3. We attribute
these improvements to our use of images with varying ma-
terials and illumination for both input and supervision. This
approach not only enables the model to learn fine-grained
geometric details by providing photometric cues but also
enhances the model’s robustness to variations in image ap-
pearance. Further validation of these results in the test set-
ting without material changes and using fixed lighting is
shown in Table 2.

For 2D visual metrics, our approach effectively mitigates
the impact of lighting variations to accurately restore the
original colors of objects, as shown in Table 1. We surpass
all current methods across all metrics.

Ground Truth

Only albedo supervision w/o PRB

w/o lighting supervision Full model

Figure 4. Visualization of our ablation study to validate the effec-
tiveness of each component in our framework.
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Figure 5. Shading color offers significant photometric cues for
perceiving geometry, whereas albedo lacks this information.

Qualitative Results. For the qualitative comparison, we
randomly selected four images from the GSO dataset to
serve as inputs for 3D model reconstruction. For each re-
constructed mesh, we visualized both the albedo (ours) and
the shading color (others), as well as the pure geometry.

As shown in Figure 3, the results reconstructed by PRM
exhibit more accurate geometry and appearance. Our model
can reconstruct precise geometry and accurately predict
albedo from images with specular highlights, whereas other
methods fail. For instance, InstantMesh often predicts un-
even geometric surfaces and tends to reconstruct incorrect
geometry. Similarly, both CRM and LGM struggle to pro-
duce satisfactory results, falling short in both geometry ac-
curacy and texture prediction. This underscores the robust-
ness and superior performance of our PRM method in han-
dling complex lighting conditions and intricate surface de-
tails, making it a more reliable choice for high-quality 3D
model reconstruction.

4.4. Ablation Study
We conducted the ablation study to validate the effective-
ness of each component in our framework. We reported
quantitative results of our ablation study in Table 3. For ab-
lations, we reduce the training set from 120K to 30K for
faster experiments due to the heavy cost.
The effectiveness of PBR. PBR plays a crucial role in im-
proving geometry, especially for glossy surfaces. To vali-
date the effectiveness of PBR, we conducted experiments by
directly predicting shading colors using an MLP, rather than
deriving results with PBR. However, direct prediction of
shading color, without accounting for view-dependent ap-
pearances, struggles to model such effects and thus fails to
accurately reconstruct geometry. We presented these results
as “w/o PBR” in Table 3 and Figure 4.
Albedo supervision. To avoid the interference caused by
specular color on the surface, an intuitive approach is to
directly use albedo instead of shading color for supervi-
sion. However, this method proves ineffective in practice,
as albedo contains few photometric cues, thereby hindering
geometry reconstruction. For example, a concave surface

Full model w/o change materialsInput image

Figure 6. Ablation study of the effect of changing materials.

with uniform albedo may appear planar without the pres-
ence of cast shadows, while shading color provides signifi-
cant photometric cues critical for accurately perceiving ge-
ometry, as illustrated in Figure 5. We conducted an ablation
study within our framework by excluding shading color and
light maps from supervision. The qualitative comparison is
shown in and Table 3 and Figure 4 denoted as “Only albedo
supervision”. The results demonstrate that photometric cues
are crucial for accurate geometry reconstruction.
Lighting maps supervision. We conducted the ablation
study within our framework by excluding the lighting maps
loss. The results, denoted as “w/o lighting supervision”, are
displayed in Table 3 and Figure 4 . Since lighting maps are
exclusively related to surface normals and do not include
albedo, optimizing these maps proves particularly beneficial
for enhancing the optimization of fine-grained local details.
Variations in materials. We conducted an ablation study to
illustrate the effectiveness of varying materials during train-
ing. The results are shown in Table 3 and Figure 6. Without
changing the materials, some details are lost. Moreover, the
model has lost the capability to reconstruct glossy surfaces.

5. Conclusion and Limitation
Limitation. Despite the high-quality results achieved in
this work, there remain several limitations for future re-
search to explore: 1) Firstly, the reconstructed 3D model
is sensitive to the quality of multi-view images. 2) Sec-
ondly, the accuracy of the estimated albedo appears to be
somewhat entangled with the lighting conditions.
Conclusion. In this work, we introduce PRM, a novel feed-
forward framework designed to reconstructed high-quality
3D assets with fine-grained local details, even amidst com-
plex image appearances. To achieve this goal, we utilize im-
ages with varying materials and illumination as both input
and supervision, providing sufficient photometric cues for
fine-grained geometry recovery and enhancing the model’s
robustness to variations in image appearance. Using a mesh
as our 3D representation, we employ differentiable PBR for
predicted rendering, underpinning the utilization of multi-
ple supervisions for optimization. Experiments on public
datasets validate that PRM surpasses other methods.
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