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Figure 1. Hierarchical image editing with Layered Diffusion Brushes: LDB is capable of creating and stacking a wide range of independent
edits, including object addition, removal, or replacement, colour and style changes/combining, and object attribute modification. Each edit
is performed independently, and users are able to switch between the edits seamlessly.

Abstract

Denoising diffusion models have emerged as powerful tools
for image manipulation, yet interactive, localized editing
workflows remain underdeveloped. We introduce Layered
Diffusion Brushes (LDB), a novel training-free framework
that enables interactive, layer-based editing using stan-
dard diffusion models. LDB defines each “layer” as a
self-contained set of parameters guiding the generative
process, enabling independent, non-destructive, and fine-
grained prompt-guided edits, even in overlapping regions.
LDB leverages a unique intermediate latent caching ap-
proach to reduce each edit to only a few denoising steps,
achieving 140 ms per edit on consumer GPUs. An editor
implementing LDB, incorporating familiar layer concepts,
was evaluated via user study and quantitative metrics. Re-
sults demonstrate LDB’s superior speed alongside compa-
rable or improved image quality, background preservation,
and edit fidelity relative to state-of-the-art methods across
various sequential image manipulation tasks. The findings
highlight LDB’s ability to significantly enhance creative

workflows by providing an intuitive and efficient approach
to diffusion-based image editing and its potential for expan-
sion into related subdomains, such as video editing.

1. Introduction
Image editing has undergone transformative advancements
with the rise of text-to-image (T2I) generative models, en-
abling unprecedented creative expression through textual
guidance. These models, including Generative Adversarial
Networks (GANs) [20], Variational Autoencoders (VAEs),
and Denoising Diffusion Models (DMs) [23], have rede-
fined image synthesis and manipulation. Among these,
DMs [56] have emerged as the state of the art due to
their training stability, high-fidelity outputs, and versatility
across tasks like inpainting [37], super-resolution [53], and
style transfer [22]. However, despite their capabilities, a
critical gap remains: enabling real-time, localized, and it-
erative edits that align with professional workflows, where
artists demand precise control over specific regions without
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disrupting the global composition.

Existing DM-based editing methods face several core
challenges. First, their stochastic nature often necessi-
tates numerous generations to achieve desired results [5].
Second, they lack intuitive mechanisms for layered, non-
destructive editing—a cornerstone of tools like Adobe Pho-
toshop [28]—where edits can be independently adjusted,
stacked, or removed. Third, while mask-guided approaches
enable regional control, they struggle with seamless blend-
ing, artifact-free transitions, and real-time feedback. These
limitations restrict their adoption in creative pipelines,
where rapid iteration and granular control are critical.

To address these challenges, we propose Layered Dif-
fusion Brushes (LDB), a novel framework based on Latent
Diffusion Models (LDM) [50] that integrates mask-guided
diffusion with a non-destructive layered editing paradigm.

At its core, LDB introduces new noise patterns into the
image latents during diffusion process, guided by both the
user-specified mask and the edit prompt. This preserves the
original context while seamlessly integrating localized ed-
its. We implement an intuitive user interface (UI) with a lay-
ering system to support consecutive edits (Fig. 1). Specifi-
cally, as key contributions, LDB introduces:

• Latent Caching for Real-Time Edits: By reusing in-
termediate denoising states from initial generation, edits
bypass redundant computations and achieve as low as 140
ms per edit on 512!512 images (53! faster than BrushNet
[31] using the same consumer GPUs).

• Non-destructive Layered Editing: LDB introduces an
order-agnostic layering mechanism by defining the con-
cept of layers for DMs, enabling:
– Region-targeted adjustments with background preser-

vation, using mask-prompt pairs,
– Stacking, toggling, or deleting layers without cross-

interference—even in overlapping regions,
– Post-hoc revision of edits while preserving underlying

content.
• Seed-Driven Exploration: Our UI provides familiar

“brush” and “scroll” gestures to enable instant explo-
ration of variations by modulating noise seeds, bridging
stochastic generation with deterministic refinement and
instant feedback.

We validate LDB through extensive experiments and a
user study with graphic designers. Quantitatively, LDB out-
performs state-of-the-art methods in terms of speed and im-
age quality and is comparable in terms of edit fidelity. The
user study revealed superior usability and creativity support
in iterative design. Additionally, LDB is a plug-and-play,
training-free system adaptable to existing models and ap-
plications, and we demonstrate this by applying LDB to the
task of video editing.

2. Related Work
2.1. DM-based Image Editing
Image editing is the task of modifying existing images in
terms of appearance, structure, or composition, ranging
from subtle adjustments to major transformations. Unlike
GAN-based approaches [1, 35, 44], which are prone to
limitations in inversion stability [49] and localized control
[6], diffusion-based methods harness the power of control-
lable, high-quality DMs in various image-editing tasks, in-
cluding text and image-driven image manipulation studies
[14, 26, 34, 37].

Instruction-based text editing methods [9, 18, 19, 21, 64]
typically train DMs on instruction-image pairs. For exam-
ple, InstructPix2Pix [9] is trained using synthetic pairs from
Stable Diffusion [50] and Prompt-to-Prompt [22]. How-
ever, expressing nuanced edits solely through text instruc-
tions remains challenging, particularly for object-specific
style or color changes.

Mask-based methods [4, 5, 14, 63] sample within speci-
fied regions. While effective for localized edits, they can in-
troduce unintended global changes, especially problematic
in sequential editing, and may struggle with complex edits.
For instance, Blended Latent Diffusion’s lossy VAE latent
space hinders perfect reconstruction even before noise ad-
dition [5]. Though a background reconstruction strategy is
included, it increases computation and may still yield inco-
herent results for complex edits. Conversely, our method
directly modifies the original latent space, enhancing con-
text preservation and natural blending.

Attention-based editing manipulates cross-attention
maps to guide the image generation process toward the de-
sired modifications [22, 45]. These methods generally face
challenges in achieving fine-grained edits without unwanted
global modifications. Yang et al. [61] attribute unintended
changes to inaccurate attention maps and propose attention
focusing. Inversion-based methods like ILVR [12], Textual
Inversion [16], and DreamBooth [51] focus on context mod-
ification while preserving subjects. DDIM inversion con-
verts images to noisy latents, and sampling generates edited
results based on prompts. We employ Direct Inversion [30]
for efficient real image latent inversion.

Image inpainting involves replacing or restoring the
missing regions while maintaining global coherency [60].
Many inpainting works [39, 50, 62, 69] require using a fine-
tuned DM specifically designed for inpainting tasks, limit-
ing their applicability. Some, including SmartBrush, which
uses object-mask prediction guidance [59], offer more flex-
ibility. PowerPaint [69] introduces learnable task embed-
dings for improved control. While these models effec-
tively generate new content, they are generally unsuitable
for making small, targeted adjustments [4, 37, 52]. Inspired
by ControlNet [67], BrushNet [31] builds a decomposed

17369



plug-and-play dual-branch DM, but struggles with real-time
interaction due to its computational overhead. In Sec. 4.1
we compare LDB with several inpainting techniques.

2.2. Layered and Sequential Image editing
Layer-based image editing is fundamental in computer
graphics [46], and recent works integrate this concept into
AI methodologies [6, 54]. Layered representations enable
dynamic manipulation of image components, transforming
single images into multi-layered structures.

LayeringDiff [33] decomposes images into foreground
and background. ParallelEdits [27] uses attention for ef-
ficient multi-aspect text edits. MAG-Edit [40] employs a
two-layer process with attention injection to a single edit
from background. Joseph et al. [29] highlight error accu-
mulation in sequential editing, where artifacts compound
across edits. Collage Diffusion [54], built on modified
Blended Latent Diffusion [5], employs alpha masks to guide
cross-attention and generate harmonized images while re-
specting scene composition. However, it assumes pre-
layered inputs and synthesizes scenes from scratch. In con-
trast, LDB is training-free, operates directly on existing im-
ages, and supports fully independent layers—unlike meth-
ods such as [6] that require per-image training.

2.3. Accelerated Generation using Caching
Caching and reusing intermediate features has proven effec-
tive for accelerating DM inference through reducing redun-
dant computations. Several works have utilized caching in
diffusion transformers (DiTs) for video generation. Deep-
Cache [38] reuses high-level U-Net features in video gen-
eration, while AdaCache [32] dynamically adjusts cached
residuals based on temporal content. Cache Me If You Can
[57] employs block caching by reusing outputs from layer
blocks of previous steps during inference. For image gener-
ation, Approximate Caching [2] reuses intermediate latents
created during prior image generation processes for similar
prompts. We employ a similar strategy through caching key
latent representations and adapt it specifically for interac-
tive image editing, enabling the real-time feedback that is
crucial for creative workflows.

3. Method
We use an LDM-based variant of image generative models
and make intermediate adjustments to the latent space, sim-
ilar to [5, 37]. Therefore, LDB requires no additional train-
ing or fine-tuning of the underlying LDM; all modifications
are applied during the reverse diffusion process.

We adopt the standard LDM formulation, where im-
age generation begins with a sample from a Gaussian dis-
tribution, Z0 → N (0,ω2

max
I) and is iteratively denoised

through a sequence of steps N , resulting in a series of la-

tents Zi corresponding to decreasing noise levels ωi, where
ω0 = ωmax > ω1 > · · · > ωN ↑ 0.

As demonstrated in Fig. 2, the overall LDB pipeline
comprises three key stages: initial image generation (or
inversion), latent caching, and iterative layered editing.

For DM-generated images, we first initialize the sample
Z0 = ε0 and noise level ω0 (i = 0). For real images, the
initial noise latent is obtained using inversion. We use Di-
rect Inversion [30] for its high speed and comparable per-
formance to other inversion methods, including Null-Text
Inversion [43] and Negative-Prompt Inversion [42]. The
noisy sample then undergoes the diffusion process, caching
certain intermediate latents to facilitate editing.

3.1. Latent Caching
To enable rapid, interactive editing with instant exploration
and feedback, we employ latent caching to reuse intermedi-
ate representations in subsequent steps, minimizing redun-
dant computations. We store two key intermediate latents:
• Regeneration Latent Zr: At diffusion step r = N ↓ n,

where N is the total number of diffusion steps for initial
image generation and n is the number of editing steps, we
cache the latent Zr, which serves as the starting point for
all subsequent edits. By reusing Zr, we avoid recomput-
ing the initial denoising steps for each new edit, signifi-
cantly speeding up the editing process (from N denoising
steps to n). Effectively, Zr represents a partially denoised
latent state that retains the global image structure but is
still malleable enough to accommodate localized edits.

• Blending Latent Zb: We cache the latent at diffusion
step b which is specifically used for the layer merging
process (Algorithm 1, line 7). We set b = N ↓2 for max-
imum background preservation (as discussed in Sec. 4.3).
Zb represents a more denoised latent compared to Zr,
capturing more refined image details while still allowing
for seamless blending of new edits into the existing im-
age context. Utilizing this cached blending latent ensures
smoother integration of edits and reduces visual artifacts
at layer boundaries during the merging process.

3.2. Layered Diffusion Brushes Editing
To initiate an edit, the algorithm begins by generating a new
noise pattern Z →

0 = ε→
k
, sampled from N (0,ω2I) using a

different seed S→, and scaling it to match the variance of the
cached latent Zr. This ensures that the additive noise stays
in a reasonable range from the latent for editing, preventing
visual artifacts. Z →

0 is then added to the regeneration latent
Zr, controlled by the mask m and strength ϑ.

In the editing stage, at step b, a new noisy sample is
merged with the cached blending latent using the strength
control and the mask, resulting in Z →

b
. Subsequently, the

new latent is progressively denoised from steps b through N
and processed through the VAE to output edited image I →.
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Figure 2. Overview of the Proposed Method: The top box shows standard DM-based image generation from noisy latent Z0 and prompt
P . The middle section depicts the latent caching module, storing and retrieving intermediate latents for different layers. The bottom box
illustrates the editing process: a new noise sample S→ merges with the original latent at step r using mask m and strength control ω.
Diffusion continues until step b, where modified and cached latents blend to generate the final edited image.

Algorithm 1 presents the pseudocode for the editing process
for a single layer (for simplicity):

Algorithm 1: LDB editing process (single layer)
Input : Edit prompt P →, Mask m ↔ [0, 1]H↑W ,

Random seed S→, Strength ϑ, Number of
edit steps n, Regeneration latent Zr,
Blending latent Zb

Output: Edited latent Z →
N

1 Z →
0 ↗ ε→

nk
→ N (0,ω2I) // sampled using seed S

→

2 Z →
0 ↗

√
V ar(Zr) · Z →

0 // scale new sample

3 Z →
0 ↗ Zr + ϑ · (Z →

0 ↘m) // noise injection

4 for i = 0, 1, . . . , n do
5 Z →

i+1 ↗ DM(Z →
i
,P →, i, S→)

6 if i == b then
7 Z →

b
↗ Z →

b
↘m+Zb ↘ (1↓m) // blending

8 end
9 Return Z →

N

3.3. Layer Formulation
Unlike prior works that rely on transparent decomposable
layers [66] or explicit object segmentation [54], we redefine
a layer as a self-contained set of reproducible parameters
that govern localized edits. For layer Lk, we formalize this
as a generalized version of parameters in Algorithm 1:

L(k) =
(
S→(k),m(k),v(k),Z(k)

r ,Z(k)
b

,ϑ(k), n(k),P →(k), j
)

(1)

• S→(k) ↔ Z+: Seed space for stochastic variations
• m(k) ↔ [0, 1]H↑W : Edit mask
• v(k) ↔ {0, 1}: Visibility state
• Z(k)

r ,Z(k)
b

↔ RC↑H↑W : Regeneration/blending latents
• ϑ(k) ↔ [0, 1]: Layer strength value
• n(k) ↔ [0, N ] Number of denoising steps
• P →(k): Edit prompt
• j ↔ Z+: Index of last layer index.

Notably, within a given layer Lk with previous layer Lj ,
the cached latents Z(j)

r and Z(j)
b

inherently incorporate the
cumulative edits from all preceding layers. This is because
edits to layer Lk, are applied to the already edited output
of layer Lj which serves as the input to the diffusion pro-
cess and the algorithm always keeps the last layer updated.
Therefore, any modification in a previous layer automati-
cally propagates through the subsequent layers. By defining
! as a single-layer latent generation and caching step as:

(Z(k)
r

, Z(k)
b

) = !(L(k),L(j)) (2)

in essence, if a given layer L(i) (where i < k) is removed
or its visibility v(i) is toggled, the operator ! will be recur-
sively invoked to recreate all latents for layers from L(i) to
L(k). This recomputation, accelerated by latent caching, is
automatically triggered and typically completes within mil-
liseconds to a few seconds, depending on the number of
layers. This design allows edits to remain independent yet
seamlessly integrated into the final composition.
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3.3.1. Overlapping Regions
A key advantage of layered editing in LDB is the ability to
create overlapping edits, where one layer can partially or
fully modify areas affected by earlier layers. This requires
careful handling of each layer’s regeneration latent, Zr, to
ensure that changes in visibility or content from higher lay-
ers are accurately reflected in subsequent layers, even in
overlapping regions.

By default, all layers use the initial image’s latent (Zr)
as their regeneration latent. However, this approach fails to
account for overlapping edits from preceding layers. To ad-
dress this, when processing a layer k, we compute its regen-
eration latent by inverting the output image of the previous
layer (I →(k)) as shown using the feedback arrow on Fig. 2.
This inversion yields Z(k)

0 , which is then sent through the
generation stage in LDB. Both Z(k)

r and Z(k)
b

are cached
for efficient processing ( as shown in Fig. 3).

This mechanism enables precise control and seamless in-
tegration of edits across overlapping regions. Changes to
any layer propagate correctly without introducing artifacts,
offering flexibility and fine-grained control.

3.4. User-Interface and Interaction Design
To develop a practical tool for artists and designers, we de-
signed an custom UI that balances control and simplicity.
The UI allows users to generate, upload, and edit images,
manage layers, and adjust parameters seamlessly. Two in-
teraction modes streamline edits (Fig. 4):

Box Mode: Users can click or drag on the image to move
a resizable square mask around. This option enables a quick
and interactive exploration of how various parts of the im-
age will change in response to a given set of editing settings
(prompt and strength), simply by moving the cursor.

Custom Mask Mode: Users can draw free-form masks
over the desired around and navigate between new genera-
tion samples by scrolling the mouse up or down while hov-
ering over the image, allowing them to rapidly explore vari-
ations on their edit.

We propose a workflow where users first position edits
spatially using Box Mode, then refine mask geometry and
appearance details via Custom Mask Mode.

Layering capabilities include stacking, visibility tog-
gling, and deletion. Each layer is independently modifiable.
Detailed information on the UI design user interactions and
a demo video can be found in supplementary material.

4. Experiments
4.1. User Study
We conducted a user study in order to evaluate the effec-
tiveness of LDB for providing targeted image fine-tuning,
using two other well-known existing image editing tools,

InstructPix2Pix (IP2P) [9] and Stable Diffusion Inpainting
(SDI) [50] as baselines for comparison.

We recruited a cohort of seven expert participants with
extensive experience in using image editing software. As
part of our selection criteria, we ensured that all had at least
a basic level of familiarity with AI image generation tech-
niques [3, 41] and were regular users of editing software,
such as Adobe Photoshop [28] for creating visual art.

4.1.1. Study Procedure and Task Description
Each user engaged in two types of tasks: free-form tasks
where users generated an image for editing using a fixed
prompt and seed (type 1), and pre-determined tasks where
the user worked with existing real images from the Mag-
icBrush dataset [65] (type 2).

For the type 1 tasks, we selected specific types of edits
that showcase various functionalities and capabilities of the
system, including:
1. Stack layers and create sequential edits (draw with LDB)
2. Modify attributes and features of objects
3. Correct image imperfections and errors
4. Enhance discernibility of similar objects
5. Target specific regions for style transfer, refine aesthetics
Type 2 tasks were more structured, with the mask, edit
prompt, and input images provided by the dataset. The
dataset provides manually annotated masks and instructions
for each edit. We selected a subset of 35 input images,
each containing up to three layers of edits. Users refined
masks/parameters if necessary and completed editing tasks.

Figure 5, second row, shows example edits generated by
the participants. Additional examples are provided in the
supplementary material. As shown, LDB produces targeted
edits that integrate seamlessly with the images.

4.1.2. Evaluation Survey Results
The participants completed a three stage evaluation survey
following the image editing tasks. The first part included
a System Usability Scale (SUS) form to rate the usabil-
ity, ease of use, design, and performance of each method.
SUS is a standard usability evaluation survey widely used
in user-experience literature [8]. Overall, participants in-
dicated that they are more likely to use LDB compared to
IP2P and SDI, and that they find it the easiest tool to use.
LDB obtained a SUS score of 80.35%, while IP2P and SDI
achieved a SUS of 38.21% and 37.5% respectively.

The SUS survey was followed by a Creativity Support
Index [11] survey to evaluate the system’s degree of cre-
ative work support. Participants expressed positivity to-
wards LDB, indicating that it enhanced their enjoyment, ex-
ploration, expressiveness, and immersion, while also deem-
ing the results worth their effort. Lastly, the survey was
followed by a semi-structured interview where participants
appreciated the intuitiveness, ease of use and versatility of
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Figure 3. Overlapping edit regions in LDB: overlapping edits enable complex, inter-
acting modifications. For example, one layer can adjust color while another changes
shape, with the final result combining both.

(a) Box option with
moving cursor

(b) Custom mask op-
tion with mouse scroll

Figure 4. Box and Custom Mask Options:
In box mode, users click the target re-
gion’s center to generate edits within the
specified area and can drag the box to ex-
plore variations instantly. In custom mask
mode, users draw a mask over the de-
sired region and adjust the seed using the
mouse wheel or scrolling gestures to gen-
erate new variations.

Layer 1: “wax statue”

PIE-Bench N/A

Layer 1: boat Layer 2: “turtle”

Magicbrush

Input image IP2P SDI BLD HDP BN LDB (ours) GT

Figure 5. Qualitative editing results on PIE-Bench (top) and MagicBrush (bottom) benchmarks using different methods. Edit prompts are
presented on top of each row. More examples available in supplementary material.

LDB. Further details about the study, interview, results, and
discussion can be found in supplemental material.

4.2. Quantitative Analysis
To quantitatively evaluate the performance of LDB, we em-
ployed a comprehensive suite of metrics, aligning with es-
tablished practices in image editing evaluation.

Specifically, for text-image alignment, we used CLIP
Score (CS) [47] for global alignment, CS-L for masked-
region alignment, and CS-D [17] for consistency between
image and caption changes in CLIP space.

We adopted Learned Perceptual Image Patch Similarity
(LPIPS) [68] and Peak Signal-to-Noise Ratio (PSNR) [24]
for evaluating content preservation and pixel-level fidelity
in unmasked regions. Furthermore, to gauge overall im-
age quality and aesthetic appeal, we incorporated Aesthetic
Score (AS) [55], Image Reward (IR), and Human Prefer-
ence Score V2 (HPS) [58], the latter two reflecting human-
aligned preferences.

We compared LDB against a diverse set of state-of-

the-art editing and inpainting methods, including Instruct-
Pix2Pix (IP2P) [9], Stable Diffusion Inpainting (SDI) [50],
HD-Painter (HDP) [39], BrushNet (BN) [31], and Blended
Latent Diffusion (BLD) [5], on two benchmarks: Mag-
icBrush [65] and PIE-Bench [30]. For MagicBrush, we also
report results on the provided ground truth (GT) images.

Quantitative results are summarized in Tab. 1. All meth-
ods were evaluated using their default editing settings, ex-
cept for LDB, IP2P, and SDI on the MagicBrush bench-
mark, where we used user-edited images from our user
study for consecutive edits. Inference times denote aver-
age per-edit durations, measured on a single NVIDIA RTX
4090 GPU with N = 25 diffusion steps for baseline meth-
ods and n = 8 for LDB.

4.3. Ablation Study
We perform three ablation studies for two main components
of the LDB caching mechanism, i.e. the caching timesteps
for the regeneration latent (r), and the blending latent (b).
We also ablate and discuss the effect of strength control ϑ
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Benchmark Method Image Quality Masked Region Preservation Text Alignment Time (s)
IR ↑10 → HPS ↑102 → AS → PSNR → LPIPS ↑102 ↑ CS → CS-L → CS-D ↑102 → (per edit) ↑

MagicBrush

IP2P -62.83 21.16 5.29 7.28 15.07 29.39 22.01 6.64 1.72
SDI -39.21 20.88 5.48 12.20 8.70 30.08 22.15 4.11 1.84
HDP -20.69 23.27 5.44 12.05 6.13 31.01 22.06 9.89 12.85
BN -0.04 22.57 5.73 11.55 8.75 31.16 22.17 12.92 7.49

BLD -24.10 22.80 5.48 12.64 6.94 30.64 21.99 10.05 1.41
GT -1.93 22.62 5.36 17.64 2.30 30.75 22.14 9.78 NA

Ours 7.74 22.65 5.74 12.85 7.05 31.04 22.07 9.54 0.26

PIE-Bench

IP2P -40.73 23.12 5.76 172.18 15.47 30.00 22.79 14.27 1.83
SDI 43.46 25.77 6.00 181.58 3.89 31.24 22.71 14.83 3.36
HDP 39.02 25.92 6.01 178.84 4.62 31.08 22.73 16.20 13.44
BN 72.77 26.66 6.17 177.07 8.67 31.50 22.80 16.88 7.51

BLD 50.68 26.36 6.11 180.85 4.19 31.35 22.78 17.22 1.47
Ours 86.02 26.60 6.51 184.57 1.91 31.66 22.76 16.74 0.25

Table 1. Quantitative results on MagicBrush and PIE-Bench. Metrics are grouped into Image Quality, Masked Region Preservation, and
Text Alignment. → indicates higher is better; ↑ indicates lower is better. The best and second-best scores are highlighted.

and its relationship with n in supplementary material.

4.3.1. Ablation on Regeneration Latent Step
The timestep r for caching the regeneration latent is criti-
cal, as it dictates the extent of possible modifications during
the regeneration process. We performed an ablation study
by varying r while holding the total diffusion steps N con-
stant. This variation in r implicitly changes the number of
regeneration steps (n) and necessitates adjustments to the
strength parameter accordingly. Qualitatively, as shown in
Fig. 6, excessively small r values lead to incoherent edits
and noticeable artifacts due to insufficient blending with the
original image. Conversely, large r values limit the model’s
ability to modify the masked region, resulting in minimal
changes and preserving the original content.

Quantitatively, we observe that smaller r steps (e.g. r =
2) yield higher LPIPS (0.04) and low PSNR (27.03), indi-
cating poor image quality and fidelity. Edit fidelity scores
such as CS-L also confirm that larger r steps result in
lower scores (22.98), suggesting ineffective edits within the
masked region. The HPS index demonstrates a higher score
for mid-range steps (0.33, r = 12) compared to both ends
of the spectrum (0.29, r = 23), highlighting a performance
sweet spot for intermediate r values. Detailed metric graphs
are available in the supplemental material.

4.3.2. Ablation on Blending Latent Step
The blending latent step, controlled by the parameter b, de-
termines when the cached regeneration latent is blended
back into the diffusion process and is crucial for seamless
integration of the edited region with the original image and
preserving background. We conduct an ablation study by
varying b while keeping r and N fixed. Fig. 7 qualitatively
demonstrates the effect of different b values.

When b is small, the blending process starts prematurely,
causing the edit to bleed into the background and distorting
the original image context. Conversely, larger b values, rep-
resenting late blending, effectively preserve the background
integrity while still allowing for meaningful edits within the
masked region.

Quantitatively, smaller b values (b = n) lead to higher
LPIPS (0.17) and lower PSNR (11.61), indicating worse
background preservation. Edit fidelity scores (CS-L) within
the masked remained stable across the spectrum while CS-
D improves at larger b (0.32 at b = N↓1), reflecting better
edit alignment. These findings indicate that later blending is
preferable, leading us to select b = N ↓ 2 in the LDB algo-
rithm to prioritize background preservation while maintain-
ing effective localized editing. Further details and metric
plots are available in the supplementary material.

5. Discussion
Our experiments demonstrate that LDB establishes new
benchmarks for speed and workflow adaptability in
diffusion-based image editing. Key findings include:

Enhanced Control via Layering: LDB’s layered design
enables creating non-destructive refinements as well as iter-
ative complex compositions. Participants highlighted how
this mirrors professional editing tools like Photoshop [28].

Speed and Efficiency: LDB achieves remarkable speed,
53≃ faster than BrushNet (evaluated on the same hard-
ware), crucial for interactive editing. We observe that re-
ducing diffusion steps to as few as n = 4 maintains reason-
able quality (HPS: 0.34, CS-D: 0.35), yielding a latency of
140ms per edit. User studies confirm instant feedback as
a key advantage, enabling rapid iteration (tens of variations
per minute vs. 1-2 for baselines). This speed results from
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Figure 6. Ablation study on regeneration latent step r (increasing left to right). Small r results in strong prompt adherence (“cat”) but
introduces artifacts. Large r (near N ) leads to insufficient modification, retaining the original “dog”. An intermediate r achieves the best
balance of edit fidelity and background preservation.

Figure 7. Ablation study on blending latent step b (increasing left to right). The prompt “steak” is applied to an image of “sushi plate”
while increasing b from left to right. At b = n (left), the edit disrupts the original structure, affecting unmasked regions. As b approaches
N (right), background preservation improves, and edits blend more seamlessly.

efficient latent caching (Sec. 3.1), minimizing computation
and memory overhead (→1.25 MB for 10 layers).

Quantitative Performance: LDB demonstrates a supe-
rior combination of speed, image quality, and edit fidelity
across both benchmarks. On the PIE-Bench dataset, LDB
achieves the best performance in six key metrics, excelling
in human preference (HPS = 86.02), background preser-
vation (LPIPS = 1.91), and text alignment (CS = 31.66),
while also being the fastest method by a significant margin.
This highlights its ability to generalize across a diverse set
of editing tasks while maintaining high speed. Similarly,
on the MagicBrush benchmark, LDB delivers strong per-
formance with highest score in crucial metrics such as IR,
AS, and PSNR. While BrushNet shows a slight advantage
in some text alignment metrics, its practical usability is hin-
dered by substantially slower runtime.

5.1. Limitations and Future Work

Brush strength (ϑ) and diffusion step count (n) coupling
(Fig. 12) still requires minor user tuning across scenarios.
Although preset profiles partially address this, future work
could explore adaptive parameter tuning mechanisms to fur-
ther improve usability. Moreover, semantically implausible
edits (e.g. placing a boat in the sky) remain challenging due
to inherent biases within diffusion models. Integrating tech-
niques like semantic guidance could expand plausible edit
ranges. Finally, responsible deployment necessitates robust
watermarking [15] and provenance tracking to mitigate mis-
use and ensure transparency.

5.2. Broader Applications

LDB’s training-free design only requires a standard iterative
denoising process, which allows seamless integration into
diverse diffusion models and applications requiring rapid
editing. We validated this by integrating LDB to other com-
monly used methods, including DiT-based text-to-image
(e.g., PixArt-ϑ [10]) and video generation models [7] with-
out any model-specific tuning.

Traditional diffusion-based video editing typically prop-
agates edits from the first frame using additional supervi-
sion (e.g. optical flow [36]), risking temporal inconsisten-
cies. LDB’s high fidelity background preservation and effi-
ciency naturally address these issues.

We demonstrate preliminary success integrating LDB
with Stable Video Diffusion (SVD) [7], editing the first
frame and applying LDB’s latent caching across frames for
fast consecutive edits (see supplementary material, Fig. 15).
This approach opens avenues for accelerated video manipu-
lation, 3D asset editing, and collaborative design platforms.

5.3. Conclusion

LDB reimagines diffusion-based editing through latent
caching and non-destructive layering, achieving unmatched
speed and control. Quantitative results and user study show
superior performance in image preference, edit fidelity,
time, and usability. By bridging interactive editing with
high-fidelity generative models, LDB can empower artists
to iterate fluidly while maintaining artistic intent.
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