
Splat-LOAM: Gaussian Splatting LiDAR Odometry and Mapping

Emanuele Giacomini1 Luca Di Giammarino1 Lorenzo De Rebotti1 Giorgio Grisetti1

Martin R. Oswald2

1Sapienza University of Rome, 2University of Amsterdam, Netherlands

Abstract

LiDARs provide accurate geometric measurements, making

them valuable for ego-motion estimation and reconstruc-

tion tasks. Although its success, managing an accurate and

lightweight representation of the environment still poses

challenges. Both classic and NeRF-based solutions have

to trade off accuracy over memory and processing times.

In this work, we build on recent advancements in Gaussian

Splatting methods to develop a novel LiDAR odometry and

mapping pipeline that exclusively relies on Gaussian primi-

tives for its scene representation. Leveraging spherical pro-

jection, we drive the refinement of the primitives uniquely

from LiDAR measurements. Experiments show that our ap-

proach matches the current registration performance, while

achieving SOTA results for mapping tasks with minimal

GPU requirements. This efficiency makes it a strong candi-

date for further exploration and potential adoption in real-

time robotics estimation tasks.

1. Introduction

LiDAR sensors provide accurate spatial measurements of

the environment, making them valuable for ego-motion es-

timation and reconstruction tasks. Since the measurements

already capture the 3d structure, many LiDAR Simultane-

ous Localization And Mapping (SLAM) pipelines do not

explicitly refine the underlying point representation [2, 3,

7, 9, 12, 37]. Moreover, a global map can be obtained

by directly stacking the measurements together. However,

this typically leads to extremely large point clouds that can-

not be explicitly used for online applications. Several ap-

proaches attempted to use surfels [1, 31] and meshes [32].

Although these approaches manage to simultaneously es-

timate the sensor’s ego-motion while optimizing the map

representation, they result in a trade-off between accuracy,

memory usage, and runtime.

The recent advent of NeRF [26] sparked fresh interest

in Novel View Synthesis (NVS) tasks. Specifically, given

a set of input views and triangulated points (i.e. obtain-

able via COLMAP [35, 36]), NeRF learns a continuous

Figure 1. Performance overview of Splat-LOAM. F1 score to

Active Memory (MB) and Runtime (s). The plots provide a quan-

titative comparison between state-of-the-art mapping pipelines,

while PIN-SLAM and ours also perform online odometry.

volumetric scene function. Color and density information

is propagated throughout the radiance field by ray-casting

pixels from the view cameras and, through a Multi-Layer

Perceptron (MLP), the method learns a representation that

ensures multi-view consistency. Concurrently, NeRFs in-

spired the computer vision community to tackle the problem

of dense visual SLAM through implicit methods. The pio-

neering work in this context was iMAP [40], which stores

the global appearance and geometry of the scene through a

single MLP. Despite its success in driving a new research

direction, the method suffered from issues related to the

limited capacity of the model, leading to low reconstruc-

tion quality and catastrophic forgetting during the explo-

ration of larger areas. These issues were later handled by

shifting the paradigm and by moving some of the appear-

ance and geometric information over a hierarchical feature

grid [54] or neural point clouds [22, 33]. Similarly, these

techniques were employed on LiDAR measurements to pro-

vide more accurate and lighter explicit dense representa-

tions [8, 16, 30, 39, 52]. However, these methods still re-

quire tailored sampling techniques to estimate the underly-

ing Signed Distance Function (SDF) accurately. This bot-

tleneck still poses problems for online execution.

A recent, explicit alternative to NeRFs is 3D Gaus-

sian Splatting (3DGS) [20]. This approach leverages 3D

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27630

Gaussian-shaped primitives and a differentiable, tile-based

rasterizer to generate an appearance-accurate representa-

tion. Furthermore, having no need to model empty areas

and no neural components, 3DGS earned a remarkable re-

sult in accuracy and training speeds. Additionally, several

approaches further enhanced the reconstruction capabilities

of this representation [6, 13, 15]. Being fast and accu-

rate, this representation is now sparking interest in dense

visual SLAM. Recently, 3D Gaussians were employed in

several works, yielding superior results over implicit solu-

tions [24, 47, 53].

One issue with Gaussian Splatting relates to the prim-

itive initialization. In regions where few or no points are

provided by SFM, adaptive densification tends to fail, of-

ten yielding under-reconstructed regions. LiDAR priors are

particularly useful in solving this issue due to explicit spa-

tial measurements that can be used to initialize the local rep-

resentation [14, 46].

However, to our knowledge, no attempt has been made

to evaluate the this representation for LiDAR-only scenar-

ios. This technique could prove interesting for visual NVS

initialization and LiDAR mapping as it could produce a

lightweight, dense, and consistent representation. These in-

sights led us to the development of Splat-LOAM, the first

LiDAR Odometry and Mapping pipeline that only leverages

Gaussian primitives as its surface representation. Our sys-

tem demonstrates results on par with other SOTA pipelines

at a fraction of the computational demands, proving as an

additional research direction for real-time perception in au-

tonomous systems.

2. Related Work

Classic LiDAR Odometry and Mapping. Feature-based

methods that leverage specific points or groups of points

to perform incremental registration. For instance, [38, 49]

track feature points on sharp edges and planar surface

patches, enabling high-frequency odometry estimation. On

the other hand, Direct methods leverage the whole cloud

to perform registration. Specifically, these methods can be

categorized based on the subjects of the alignment. Scan-

to-Scan methods matches subsequent clouds, either explic-

itly [2, 3, 37] or through neural methods [21, 44], while

Scan-to-Model methods match clouds with either a local

or a global map. Typically, the map is represented us-

ing points [7, 12], surfels [1, 31], meshes [32]. Another

explored solution project the measurements onto a spheri-

cal projection plane to leverage visual techniques for ego-

motion estimation [9, 10, 28, 51].

Implicit Methods. Concerning mapping only methods,

Zhong et al. [52] proposed the first method for LiDAR im-

plicit mapping that, given a set of point clouds and the cor-

responding sensor poses, used hierarchical feature grids to

estimate the SDF of the scene. Their results demonstrated

once again the advantages of such representation for sur-

face reconstruction in terms of accuracy and memory foot-

print. A similar approach from Song et al. [39] improves the

mapping accuracy by introducing SDF normal guided sam-

pling and a hierarchical, voxel-guided sampling strategy for

local optimization. Building on these advancements, sev-

eral LiDAR odometry and mapping techniques were pro-

posed. Deng et al. [8] presented the first implicit LiDAR

LOAM system using an octree-based feature representation

to encode the scene’s SDF, used both for tracking and map-

ping. Similarly, Isaacson et al. [16] proposes a hierarchi-

cal feature grid to store the SDF information while using

point-to-plane ICP to register new clouds. Pan et al. [30]

leverages a neural point cloud representation to ensure a

globally consistent estimate. The new clouds are regis-

tered using a correspondence-free point-to-implicit model

approach. These methods prove that implicit representation

can offer SOTA results in accuracy at the cost of potentially

high execution times or memory requirements. Although

targeting a different problem setting, related are also a se-

ries of visual neural SLAM methods with RGB or RGBD

input [19, 22, 23, 33, 34, 47, 48, 54], see [42] for a survey.

Gaussian Splatting. Few works tackle the use of LiDAR

within the context of Gaussian Splatting. Wu et al. [46] pro-

pose a multi-modal fusion system for SLAM. Specifically,

by knowing the LiDAR to camera rigid pose, the initial

pose estimate is obtained through point cloud registration

and further refined via photometric error minimization. In

this framework, the LiDAR points are leveraged to initial-

ize the new 3D Gaussians. In a related approach, Hong et

al. [14] proposes a LiDAR-Inertial-Visual SLAM system.

The initial estimate is computed through a LiDAR-Inertial

odometry. Points are partitioned using size-adaptive vox-

els to initialize 3D Gaussians using per-voxel covariances.

Both the primitives and the trajectory are further refined via

photometric error minimization. While these methods in-

troduce LiDAR measurement, 3D Gaussians are still inher-

ently processed by cameras. Recently, Chen et al.[5] applies

3D Gaussians for the task of LiDAR NVS for re-simulation.

The authors propose the use of Periodic Vibrating 3D Gaus-

sian primitives to account for dynamic objects present in

the scene. The primitives are initialized using a lightweight

MLP, and the rasterization is carried out in a spherical frame

by computing a per-primitive plane orthogonal to the ray

that connects the primitive’s mean to the LiDAR frame, thus

removing any distortion in the projection process. Focus-

ing on a different formulation, Jiang et al. [17] propose a

method of LiDAR NVS that leverages Periodic Vibrating

2D Gaussian primitives. The primitives are initialized by

randomly sampling points and, further optimized using the

losses described in [15], along with a Chamfer loss is intro-

duced to constrain the 3D structures of the synthesized point

27631

Figure 2. Splat-LOAM Overview. Given a LiDAR point cloud, we leverage the spherical projection to generate an image-like repre-

sentation. Moreover, using an ad-hoc differentiable rasterizer, we guide the optimization for structural parameters of 2D Gaussians. The

underlying representation is concurrently used to incrementally register new measurements.

clouds, and an additional ray-drop term to account for phe-

nomena like non-returning laser pulses. This term is further

refined through a U-Net that considers other factors, such

as the distance of the surface from the sensor. Compared to

this work, we provide a thorough methodology to render 2D

Gaussians on spherical frames while accounting for coordi-

nates singularity and a cloud registration technique to allow

for simultaneous odometry and mapping. To our knowl-

edge, Splat-LOAM is the first pure LiDAR Odometry and

Mapping pipeline that leverages Gaussian primitives both

for mapping and tracking. In sum, our contributions are

• A differentiable, tile-based rasterizer for 2D Gaussians

over spherical manifolds.

• A mapping pipeline that allows the integration of LiDAR

measurements in a 2D Gaussian representation.

• A tracking schema that leverages both 3D and 2D repre-

sentations to register new measurements and estimate the

sensor ego-motion.

3. Method

This section introduces our novel LiDAR odometry and

mapping method based on 2D Gaussian primitives. We de-

tail a mapping strategy for initializing, refining, and inte-

grating these primitives alongside a registration method that

leverages geometric and photometric cues from the contin-

uous local model for ego-motion estimation. Additional de-

tails can be found in the Supplementary material.

3.1. Spherical Projection Model

While original Gaussian Splatting leverages pinhole-

camera projection to render or refine 3D primitives, Li-

DAR input provides 360◦ panoramic input. To this end,

we employ spherical projection to encode LiDAR measure-

ments into an image-like representation that we use to guide

the Gaussians optimization. A projection is a mapping

φ : R3 → Γ ⊂ R
2 from a world point p = (x, y, z)T to im-

age coordinates u = (u, v)T . Knowing the range d = ∥p∥
of an image point u, we can calculate the inverse mapping

φ−1 : Γ × R → R
3, more explicitly p = φ−1(u, d). We

refer to this operation as back-projection. To ease the clar-

ity of this work, it is worth mentioning that, compared to the

classical pinhole camera, the optical reference frame is rear-

ranged; the x-axis points forward, y-axis points to the left,

and z-axis points upwards. Let K be a camera intrinsics

matrix that can be computed directly from the point cloud

(see Supplementary Material), with function ψ mapping a

3D point to azimuth and elevation. Thus, the spherical pro-

jection of a point is given by

φ(p) = Kψ(p), (1)

ψ(v) =







atan2(vy, vx)

atan2
(

vz,
√

v2x + v2y

)

1






. (2)

We used spherical projection to obtain a range map D̂ of the

LiDAR point cloud {qp}
Q
p=1 of size Q.

3.2. 2D Gaussian Splatting

Our scene representation is based on 2D Gaussians due to

their affinity to surface reconstruction [6, 15]. A 2D Gaus-

sian is defined by its opacity o ∈ [0, 1], centroid µ ∈ R
3,

origin plane defined by two tangential vectors tα ∈ R
3 and

tβ ∈ R
3, and scaling vector s = (sα, sβ) ∈ R

2 that con-

trols the variance of the Gaussian kernel [15]. Points on the

splat’s plane can be described in world space using:

H =

(

sαtα sβtβ 0 µ

0 0 0 1

)

, (3)

27632

while the Gaussian kernel can be evaluated on a point (α, β)
in splat space using:

G(α, β) = exp

(

−
α2 + β2

2

)

. (4)

3.2.1. Rasterization

We render the Gaussians via α-blending as in [15, 20].

Specifically, for each pixel u, we integrate Gaussians from

front to back to obtain the range d, normal n, and opacity o
as follows:

d =
T
∑

i=1

oiGidi

i−1
∏

j=1

(1− ojGj) (5)

n =
T
∑

i=1

oiGitni

i−1
∏

j=1

(1− ojGj) (6)

o =
T
∑

i=1

oiGi

i−1
∏

j=1

(1− ojGj) (7)

Different from the pinhole model, the spherical projection

model described in Sec. 3.1 is non-affine, resulting in strong

distortion artifacts on Gaussians that cover a significant ex-

tent in the image plane, if rasterizing using the local affine

approximation method proposed in [20].

To this extent, as in [15], our rasterizer leverages exact

ray-splat intersections to render 2D Gaussians. This ap-

proach is particularly suited for our projection model as it

explicitly relies on per-pixel directions to evaluate the Gaus-

sian kernels, thus allowing us to account for the structure of

our projection manifold surface.

The ray-splat intersection is based on [45], and differ-

ently from [15], we reformulate the ray parametrization to

cover the whole azimuthal space around the sensor. Addi-

tionally, we propose a method to compute the image-space

extent of each Gaussian that is robust to the azimuthal co-

ordinate singularity, ensuring accurate rasterization for any

Gaussian configuration.

3.2.2. Ray­splat Intersection

Let v = φ−1
(

K−1u
)

be the normalized direction of pixel

u, parametrized as the intersection of two orthogonal planes

hx =
v × uz

∥v × uz∥
, hy = hx × v , (8)

where uz is the unit z-direction vector. This formulation

is valid when v ̸= uz which is a fair assumption in LiDAR

measurements. Moreover, the planes are described in splat’s

space as

hα = (Tc
wH)

T
hx , hβ = (Tc

wH)
T
hy , (9)

Figure 3. Bounding box computation for near-singularity

splats. (a) shows the 3D configuration of a splat that approxi-

mately lies behind the camera. (b) shows the corresponding spher-

ical image with the projected bounding box vertices. The distor-

tion is removed by shifting the vertices along the horizontal direc-

tion to align the projected center to the image center. (c) being far

from the coordinate singularity, we compute the maximum extent

of the splat. (d) We revert the shift and propagate to the corre-

sponding tiles via an offset from the central vertex, matching with

the tiles highlighted on (a).

where Tk
w ∈ SE(3) describes the world frame in the k-th

sensor reference frame. We express the intersection of the

two planes bundle as:

hα (α, β, 1, 1)
T
= hβ (α, β, 1, 1)

T
= 0 . (10)

The solution α and β is then computed by solving the ho-
mogeneous linear system:

α(us) =
h
2
αh

4
β − h

4
αh

2
β

h1
αh

2
β − h2

αh
1
β

, β(us) =
h
4
αh

1
β − h

1
αh

4
β

h1
αh

2
β − h2

αh
1
β

. (11)

3.2.3. Bounding Box Computation

To efficiently rasterize Gaussians, each tile is informed of

which Gaussians it should process. This is achieved by

computing the per-Gaussian image-space extent from its

projected central point and using it to inform each cov-

ered tile to rasterize the Gaussian. In our work, we com-

pute the per-Gaussian extent by projecting the vertices of

the 3σ splat-space bounding box on the spherical frame.

Due to the horizontal periodic nature of the spherical frame,

for Gaussians whose center is projected near the horizontal

image boundaries and has a significant image-space size,

one or more vertices of the bounding box may be projected

on the opposite side of the image. If not handled, this sit-

uation can degrade the rasterization since not all the cor-

responding tiles may be informed, thus skipping rendering

for some pixels and slowing the rendering process since the

computed extent might almost cover the whole image plane.

We solve this by computing the Gaussian extent and tile

propagation in a condition where the coordinate singularity

cannot be harmful. As shown in Fig. 3, for each Gaussian,

27633

we project its bounding box and shift its projected points

towards the center of the image plane while accounting for

coordinate singularity. Similarly, after computing the Gaus-

sian radius, the information is propagated to neighboring

tiles while accounting for periodicity, ensuring correct ras-

terization and reducing the number of selected tiles.

3.3. Odometry And Mapping

Following the modern literature of RGB-D SLAM [22, 34,

47, 53], we rely on keyframing to optimize local maps. We

choose this approach for the following advantages: first,

continuous integration over the same model can have ad-

verse effects on artifacts and, more importantly, on runtime.

Instead of decreasing the local density, we reset to a new lo-

cal model if certain conditions are met, while also restrict-

ing the number of frames joining the optimization stage to

allow effective online processing Based on this, we define

each local map as an individual Gaussian model Ps as

Ps = {G(µ,Σ, o)|i = 1, . . . , N} . (12)

3.3.1. Local model initialization

We initialize a new local model using the input LiDAR

point cloud whenever necessary, such as at system startup

or when visibility conditions require it. As a first step, we

generate a valid pixel mask via the indicator function ✶[·] as

Mv = ✶[D̂ > 0], (13)

and compute the range gradients ∇D to construct a weight

map over the range image. We use a weighted sampling of

nd points to prioritize complex regions. Splat positions are

computed by back-projecting the range image, while their

orientations are initialized by directing surface normals to-

ward the sensor center to enhance initial visibility.

3.3.2. Local Model Refinement

We perform a limited number of refinement iterations no

on the most recent keyframes. Unlike [47, 53], we em-

ploy a geometric distribution-based sampling scheme that

guarantees at least 40% probability of selecting the most re-

cent keyframe and progressively decreases the likelihood of

choosing the older ones. To filter out artifacts caused by

ray-drop phenomena in the LiDAR measurements, we only

consider valid pixels to refine the local model parameters

x. We start by applying a densification strategy similar to

the one described in Sec. 3.3.1, with two extra terms. The

first one, Mn = ✶[Oi ≤ λd,o], target newly discovered ar-

eas while the second, Me = ✶[|Di − D̂i| ≥ λd,e], target

under-reconstructed regions.

To optimize the geometric consistency of the local

model, we employ a loss term that minimizes the L1 error:

Ld =
∑

u∈Mv

ρd∥D(u,x)− D̂(u)∥, (14)

where ρd is a weight function dependent on the measure-

ment’s range. In addition, we employ a self-regularization

term to align the splat’s normals to the surface normals N

estimated by the gradients of the range map D [15]:

Ln =
∑

u∈Mv

1− nTN
(

D(u,x)
)

(15)

Furthermore, to promote the expansion of splats over uni-

form surfaces, we introduce an additional term that operates

on the opacity channel of the rasterized images. Specifi-

cally, we drive the splats to cover the areas of the image

containing valid measurements by correlating the opacity

image O with the valid mask Mv .

Lo =
∑

u∈Mv

− log
(

O(u,x)
)

. (16)

While Lo allows the splats to grow, it can also cause some
splats to become extremely large in unobserved areas. We
employ an additional regularization term on the scaling pa-
rameter of all primitives N to compensate for this effect.
We propose a novel regularization that allows the splat to
extend up to a certain value τs before penalizing its growth:

Ls =

{
τs −max (sα, sβ) if max (sα, sβ) > τs

0 otherwise
(17)

We found this term to be more effective rather than directly

minimizing the deviation from the average [24, 47, 53] as it

allows for anisotropic splats that are particularly useful for

mapping details and edges, and provides more control on

the density and structure of the model.

The final mapping objective function is defined as:

Lmap = Ld + λoLo + λnLn + λs

N
∑

i=1

Lsi , (18)

with λo, λn, λs ∈ R being loss weights. This update strat-

egy allows our method to maintain a geometrically accurate

scene representation, while selectively densifying under-

reconstructed regions that require more resolution, using a

limited number of iterations. To avoid catastrophic forget-

ting, we do not perform any opacity reset steps. Moreover,

we prune Gaussians that are either transparent or very small,

as they typically cannot be observed during rendering.

3.3.3. Frame­To­Model Registration

Each time a new keyframe is selected, we sample the lo-

cal model by back-projecting the rasterized range image D

onto a point cloud {pq}
W×H
q=1 at its estimated pose. We de-

sign an ad-hoc tracking schema to benefit from both geo-

metric and photometric consistencies provided by the Li-

DAR and the rendered local model. Hence, the total odom-

etry loss is composed of the sum of both residuals:

Lodom = Lgeo + Lphoto. (19)

27634

Geometric Registration. To associate geometric entities,

we employ a PCA-based kd-tree [12]. The kd-tree is built

on the back-projected rendered range map {pq}
W×H
q=1 and

segmented into tree leaves, corresponding to planar patches.

Each leaf corresponds to l = ⟨pl,nl⟩, that is, the mean

point pl ∈ R
3 and the surface normal nl ∈ R

3. The geo-

metric loss Lgeo represents the sum of the point-to-plane

distance between the mean leaf pl and the point of the

current measurement point cloud k with {qp}
Q
p=1, along

the normal nl expressed in the local reference frame Tk
w.

Specifically, we have:

Lgeo =
∑

p,q∈{a}

ρ
(

(Tk
wnlq)

T (Tk
wqp − pqi)

)

, (20)

where w is the global frame, k is the local frame, {a} is the

set of leaf associations with the point from the measurement

point cloud, and ρ is the Huber robust loss function.

Photometric Registration. Leveraging the rendered range
map D, we employ photometric registration for subpixel
refinement, minimizing the photometric distance between
the rendered and the spherical projected query point cloud

D̂. The photometric loss is formulated as:

Lphoto =
∑

u

∥
∥
∥ρ

(

D(u)− D̂
(
φ
(
T

k
wφ

−1(u, d̂)
))

︸ ︷︷ ︸

u
′

)∥
∥
∥

2

. (21)

The evaluation point u′ in the query image D̂ is computed

by first back-projecting the pixel u, applying the transform

Tk
w, and then projecting it back. Pose updates δ are param-

eterized as local updates in the Lie algebra se(3). There-

fore, the transformation Tw
k of the local reference frame,

expressed in the global reference frame, is updated as:

Tw
k ← Tw

k exp(δ). (22)

This update is carried out using a second-order Gauss-

Newton method. Local updates ensure that rotation updates

are well-defined [11].

4. Experiments

In this section, we report the results of our method on sev-

eral publicly available datasets. We evaluate our pipeline

on tracking and mapping. We recall that, to our knowledge,

this is the first Gaussian Splatting LiDAR Odometry and

Mapping pipeline, and no direct competitors are available.

We compared our approach with other well-known geomet-

ric and neural implicit methods. The experiments were ex-

ecuted on a PC with an Intel Core i9-14900K @ 3.20Ghz,

64GB of RAM, and an NVIDIA RTX 4090 GPU with 24

GB of VRAM.

For odometry evaluation, we include several baselines.

The first one is a basic point-to-plane ICP odometry, fol-

lowed by SLAMesh, that simultaneously estimates a mesh

representation of the scene via Gaussian Processes and per-

forms registration onto it [32]. Moreover, MAD-ICP lever-

ages a forest of PCA-based KD-Trees to perform accurate

registration. Furthermore, we include PIN-SLAM as SOTA

baseline for implicit LiDAR SLAM [30]. It relies on neu-

ral point primitives and interleaves an incremental learning

of the model’s SDF and a correspondence-free, point-to-

implicit registration schema.

For mapping evaluation, we include OpenVDB [27] and

VoxBlox [29] as “classic” baselines. OpenVDB provides

a robust volumetric data structure to handle 3D Points,

while VoxBlox combines adaptive weights and grouped ray-

casting for an efficient and accurate Truncated Signed Dis-

tance Function (TSDF) integration. Additionally, we in-

clude as neural-implicit approaches, N3-Mapping [39] and

PIN-SLAM [30]. N3-Mapping is a neural-implicit non-

projective SDF mapping approach that leverages normal

guidance to produce more accurate SDFs, leading to SOTA

results for offline LiDAR mapping. Moreover, PIN-SLAM

is included as meshes can be extracted directly from the im-

plicit representation via marching cubes. Below, we report

the datasets and the evaluation metrics employed. We do

not include SLAMesh [32] since it could not be run with

ground-truth poses.

4.1. Datasets

We used the following four publicly available datasets:

• Newer College Dataset (NC) [50]: Collected with a

handheld Ouster OS0-128 LiDAR in structured and veg-

etated areas. Ground truth was generated using the Le-

ica BLK360 scanner, achieving centimeter-level accuracy

over poses and points in the map.

• A Vision Benchmark in Rome (VBR) [4]: Recorded in

Rome using OS1-64 (car-mounted) and OS0-128 (hand-

held) LiDARs, capturing large-scale urban scenarios with

narrow streets and dynamic objects. Ground truth trajec-

tories were obtained by fusing LiDAR, IMU, and RTK

0 1 2 3 4 5 6 7 8

RPE [%]

0

2

4

6

8

#
su
cc
es
sf
u
l
se
qu
en
ce
s

Ours MAD-ICP PIN-SLAM

Point-to-Plane SLAMesh

Ours MAD-ICP PIN-SLAM

Point-to-Plane SLAMesh

Figure 4. RPE evaluation. Number of successful sequences

across RPE thresholds. It includes the sequences of Newer Col-

lege [49], VBR [4], Oxford Spires [41] and Mai City [43].

27635

Dataset
Newer College[50] Oxford Spires[41] Mai-City[43]

quad-easy math-easy keble-02 bodleian-02 observatory-01 mai-01 mai-02

Approach C-l1↓ F-score↑ C-l1↓ F-score↑ C-l1↓ F-score↑ C-l1↓ F-score↑ C-l1↓ F-score↑ C-l1↓ F-score↑ C-l1↓ F-score↑

OpenVDB[27] 7.92 88.85 11.69 84.51 7.19 91.74 7.51 89.68 9.59 86.16 3.33 97.29 3.26 97.37

VoxBlox[29] 16.5 64.63 11.93 80.51 15.03 71.63 15.24 58.77 15.12 70.45 7.04 93.81 5.80 95.51

N
3-Mapping[39] 8.04 94.54 fail fail 7.01 93.47 7.89 90.36 9.35 87.94 2.64 99.06 2.76 99.04

PIN-SLAM[30] 12.89 88.05 14.69 73.82 11.83 79.65 10.74 82.71 14.49 72.31 4.91 93.84 4.82 94.11

Ours 5.37 96.74 9.15 90.02 7.43 94.41 7.60 90.09 10.56 83.04 3.64 97.27 5.05 95.31

Table 1. Reconstruction evaluation. The pipelines were run with ground-truth poses. Voxel size is 20 cm and F-score is computed with

20 cm threshold. Splat-LOAM yield competitive mapping performance on both the Newer College[50] and Oxford Spires[41] dataset.

GNSS data, ensuring centimeter-level accuracy over the

poses. This dataset is not used for mapping evaluation as

no ground-truth maps are provided.

• Oxford Spires [41]: Recorded with a hand-held Hesai

QT64 LiDAR featuring a 360◦ horizontal FoV, 104◦ ver-

tical FoV, 64 vertical channels, and 60 meters of range

detection. Similar to [49], each sequence includes a prior

map obtained via a survey-grade 3D imaging laser scan-

ner, used for ground-truth trajectory estimation and map-

ping evaluation. Specifically, we choose the Keble Col-

lege, Bodleian Library, and Radcliffe Observatory se-

quences to include both indoor and outdoor scenarios

with different levels of detail.

• Mai City [43]: A synthetic dataset captured using a car-

like simulated LiDAR with 120 meters of range detection.

The measurements are generated via ray-casting on an un-

derlying mesh, providing error-free, motion-undistorted

data. We select the 01 and 02 sequences, which capture

similar scenarios with different vertical resolutions.

4.2. Evaluation

We use Relative Pose Error (RPE) computed with progres-

sively increasing delta steps to evaluate the odometry ac-

curacy. Specifically, we adapt the deltas to the trajectory

length to provide a more meaningful result [4].

Differently, to evaluate mapping quality, we use several

metrics [25]: Accuracy (Acc) measures the mean distance

of points on the estimated mesh with their nearest neighbors

on the reference cloud. Completeness (Comp) measures

the opposite distance, and Chamfer-l1 (C-l1) describes the

mean of the two. Additionally, we use the F-score com-

puted with 20 cm error threshold. Table 1 reports compact

results for C-l1 and F1-score, additional tables are available

in the Supplementary Material.

4.3. Ablation Study

Our approach employs Gaussian primitives for LiDAR

odometry estimation and mapping, yielding results com-

parable to state-of-the-art methods while significantly

enhancing computational efficiency. In this section, we

evaluate some key aspects of our pipeline and evaluate their

contributions.

Memory and Runtime Analysis. In Fig. 5, we report how

the increment of active primitives affects the active GPU

memory requirements and the per-iteration mapping fre-

quency. It shows an experiment run over the large-scale

campus sequence [4] where we set a maximum of 100
keyframes per local map and sample, at most, 50% of points

for the incoming point cloud. It’s possible to notice that the

mapping FPS remains stable between 200k and 300k prim-

itives. This is most likely related to the saturation of the

rasterizer.

100k 200k 300k

No. of Primitives

10

20

30

G
P
U

M
em

or
y
(M

B
)

100

200

300

M
ap

p
in
g
F
P
S

Figure 5. Memory and Runtime Analysis. The plot relates the

used GPU Memory and the mapping iteration frequency with the

number of active primitives. The measurements were obtained

over the longest sequence we reported: campus [4].

Odometry. Fig. 7 shows the results for different tracking

methods over our scene representation. Using both geomet-

ric and photometric components, we achieve a better result

than using point-to-point or point-to-plane. The last three

bars show an ablation of geometric and photometric loss

components. The results are best for the joint use of both

terms which support our design choice.

Mesh generation. We can sample the Gaussian scene

to produce a mesh representation. Similar to [13], the

meshing process involves sampling nm points from each

keyframe rendered range and normal maps, and running

Poisson reconstruction [18]. As shown in Tab. 2, we found

27636

Figure 6. Comparison of Mesh Reconstruction. The figure shows reconstruction results for quad-easy sequence from the newer college

dataset. Our method recovers a geometry with much higher data fidelity. PIN-SLAM lacks many details and exhibits a large level of noise.

N3-Mapping performs more similar to ours, but oversmoothes fine geometric details.

Figure 7. Ablation on registration methods. The plot reports the

RPE (%) of several tested registration methods on the quad-easy

sequence [50]. Enabling both geometric and photometric factors

in sequence, provides a more robust estimate.

that this method produces consistently better results than

directly running TSDF integration and marching cubes over

the rendered frames, or by running Poisson reconstruction

directly on the Gaussian centers. Specifically, these method

produces worse results in the regions that overlap multiple

local models.

5. Conclusion

We present the first LiDAR Odometry and Mapping

pipeline that leverages 2D Gaussian primitives as the sole

scene representation. Through an ad-hoc tile-based Gaus-

sian rasterizer for spherical images, we leverage LiDAR

Extraction Method Acc↓ Com↓ C-l1↓ F-score↑

Marching Cubes [27] 16.76 5.53 11.14 76.76

Poisson (centers) 10.15 6.70 8.43 92.33

Ours 6.64 4.09 5.37 96.74

Table 2. Ablation on Meshing Methods. We report map-

ping results with varying meshing methods on the quad-easy se-

quence [50].

measurements to optimize the local model. Furthermore,

we demonstrate the effectiveness of combining a geometric

and photometric tracker to register new LiDAR point clouds

over the Gaussian local model. The experiments show that

our pipeline obtains tracking and mapping scores that are on

par with the current SOTA at a fraction of the computational

demands.

Future Work. We plan on improving Splat-LOAM by si-

multaneously estimating the sensor pose and velocity to

compensate the rolling-shutter distortions caused by mo-

tion while acquisition, typical of the LiDAR measurements.

Moreover, we plan on including Loop Closure (LC) to im-

prove the pose estimates, along with the mapping accuracy.

Acknowledgments

This work has been supported by PNRR MUR project

PE0000013-FAIR.

27637

References

[1] Jens Behley and Cyrill Stachniss. Efficient Surfel-Based

SLAM using 3D Laser Range Data in Urban Environments.

In Proc. of Robotics: Science and Systems (RSS). Robotics:

Science and Systems Foundation, 2018. 1, 2

[2] P.J. Besl and Neil D. McKay. A method for registration of

3-D shapes. IEEE TPAMI, 14(2):239–256, 1992. 1, 2

[3] Dorit Borrmann, Jan Elseberg, Kai Lingemann, Andreas

Nüchter, and Joachim Hertzberg. Globally consistent 3D

mapping with scan matching. Journal on Robotics and Au-

tonomous Systems (RAS), 56(2):130–142, 2008. 1, 2

[4] Leonardo Brizi, Emanuele Giacomini, Luca Di Giammarino,

Simone Ferrari, Omar Salem, Lorenzo De Rebotti, and Gior-

gio Grisetti. VBR: A Vision Benchmark in Rome. In Proc. of

the IEEE Intl. Conf. on Robotics & Automation (ICRA),

pages 15868–15874, 2024. 6, 7

[5] Qifeng Chen, Sheng Yang, Sicong Du, Tao Tang, Peng

Chen, and Yuchi Huo. LiDAR-GS:Real-time LiDAR Re-

Simulation using Gaussian Splatting, 2024. 2

[6] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu,

Huamin Wang, and Weiwei Xu. High-quality Surface Re-

construction using Gaussian Surfels. In ACM SIGGRAPH

2024 Conference Papers, pages 1–11, New York, NY, USA,

2024. Association for Computing Machinery. 2, 3

[7] Pierre Dellenbach, Jean-Emmanuel Deschaud, Bastien

Jacquet, and François Goulette. CT-ICP: Real-time Elastic

LiDAR Odometry with Loop Closure. In Proc. of the IEEE

Intl. Conf. on Robotics & Automation (ICRA), pages 5580–

5586, 2022. 1, 2

[8] Junyuan Deng, Qi Wu, Xieyuanli Chen, Songpengcheng Xia,

Zhen Sun, Guoqing Liu, Wenxian Yu, and Ling Pei. NeRF-

LOAM: Neural Implicit Representation for Large-Scale In-

cremental LiDAR Odometry and Mapping. In ICCV, pages

8184–8193, 2023. 1, 2

[9] Luca Di Giammarino, Leonardo Brizi, Tiziano Guadagnino,

Cyrill Stachniss, and Giorgio Grisetti. MD-SLAM: Multi-

cue Direct SLAM. In Proc. of the IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), pages 11047–11054,

2022. 1, 2

[10] Luca Di Giammarino, Emanuele Giacomini, Leonardo Brizi,

Omar Salem, and Giorgio Grisetti. Photometric LiDAR and

RGB-D Bundle Adjustment. IEEE Robotics and Automation

Letters (RA-L), 8(7):4362–4369, 2023. 2

[11] Chris Engels, Henrik Stewénius, and David Nistér. Bundle

Adjustment Rules. Photogrammetric computer vision, 2(32),

2006. 6

[12] Simone Ferrari, Luca Di Giammarino, Leonardo Brizi, and

Giorgio Grisetti. MAD-ICP: It is All About Matching Data –

Robust and Informed LiDAR Odometry. IEEE Robotics and

Automation Letters (RA-L), 9(11):9175–9182, 2024. 1, 2, 6

[13] Antoine Guédon and Vincent Lepetit. SuGaR: Surface-

Aligned Gaussian Splatting for Efficient 3D Mesh Recon-

struction and High-Quality Mesh Rendering. In CVPR,

pages 5354–5363, 2024. 2, 7

[14] Sheng Hong, Junjie He, Xinhu Zheng, and Chunran Zheng.

LIV-GaussMap: LiDAR-Inertial-Visual Fusion for Real-

Time 3D Radiance Field Map Rendering. IEEE Robotics

and Automation Letters (RA-L), 9(11):9765–9772, 2024. 2

[15] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and

Shenghua Gao. 2D Gaussian Splatting for Geometrically Ac-

curate Radiance Fields. In ACM SIGGRAPH 2024 Confer-

ence Papers, pages 1–11, New York, NY, USA, 2024. Asso-

ciation for Computing Machinery. 2, 3, 4, 5

[16] Seth Isaacson, Pou-Chun Kung, Mani Ramanagopal, Ram

Vasudevan, and Katherine A. Skinner. LONER: LiDAR

Only Neural Representations for Real-Time SLAM. IEEE

Robotics and Automation Letters (RA-L), 8(12):8042–8049,

2023. 1, 2

[17] Junzhe Jiang, Chun Gu, Yurui Chen, and Li Zhang. GS-

LiDAR: Generating Realistic LiDAR Point Clouds with

Panoramic Gaussian Splatting. In ICLR, 2025. 2

[18] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.

Poisson surface reconstruction. In Proceedings of the Fourth

Eurographics Symposium on Geometry Processing, pages

61–70, Goslar, DEU, 2006. Eurographics Association. 7

[19] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula,

Gengshan Yang, Sebastian Scherer, Deva Ramanan, and

Jonathon Luiten. Splatam: Splat, track and map 3d gaussians

for dense rgb-d slam. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2024.

2

[20] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,

and George Drettakis. 3D Gaussian Splatting for Real-Time

Radiance Field Rendering. ACM TOG, 42(4):139:1–139:14,

2023. 1, 4

[21] Qing Li, Shaoyang Chen, Cheng Wang, Xin Li, Chenglu

Wen, Ming Cheng, and Jonathan Li. LO-Net: Deep Real-

Time Lidar Odometry. In CVPR, pages 8465–8474, 2019.

2

[22] Lorenzo Liso, Erik Sandström, Vladimir Yugay, Luc

Van Gool, and Martin R. Oswald. Loopy-SLAM: Dense

Neural SLAM with Loop Closures. In CVPR, pages 20363–

20373, 2024. 1, 2, 5

[23] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and An-

drew J Davison. Gaussian splatting slam. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 18039–18048, 2024. 2

[24] Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and An-

drew J. Davison. Gaussian Splatting SLAM. In CVPR, pages

18039–18048, 2024. 2, 5

[25] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In CVPR,

2019. 7

[26] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing Scenes as Neural Radiance Fields for View

Synthesis. In ECCV, pages 405–421, Cham, 2020. Springer

International Publishing. 1

[27] Ken Museth. VDB: High-resolution sparse volumes with dy-

namic topology. ACM TOG, 32(3):27:1–27:22, 2013. 6, 7,

8

[28] Austin Nicolai, Ryan Skeele, Christopher Eriksen, and Geof-

frey A. Hollinger. Deep Learning for Laser Based Odometry

27638

Estimation. In RSS workshop Limits and Potentials of Deep

Learning in Robotics, page 1, 2016. 2

[29] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland

Siegwart, and Juan Nieto. Voxblox: Incremental 3D Eu-

clidean Signed Distance Fields for on-board MAV planning.

In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS), pages 1366–1373, 2017. 6, 7

[30] Yue Pan, Xingguang Zhong, Louis Wiesmann, Thorbjörn

Posewsky, Jens Behley, and Cyrill Stachniss. PIN-SLAM:

LiDAR SLAM Using a Point-Based Implicit Neural Rep-

resentation for Achieving Global Map Consistency. IEEE

Trans. on Robotics, 40:4045–4064, 2024. 1, 2, 6, 7

[31] Jan Quenzel and Sven Behnke. Real-time Multi-Adaptive-

Resolution-Surfel 6D LiDAR Odometry using Continuous-

time Trajectory Optimization. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), pages

5499–5506, 2021. 1, 2

[32] Jianyuan Ruan, Bo Li, Yibo Wang, and Yuxiang Sun.

SLAMesh: Real-time LiDAR Simultaneous Localization

and Meshing. In Proc. of the IEEE Intl. Conf. on Robotics &

Automation (ICRA), pages 3546–3552, 2023. 1, 2, 6, 4

[33] Erik Sandström, Yue Li, Luc Van Gool, and Martin R.

Oswald. Point-SLAM: Dense Neural Point Cloud-based

SLAM. In ICCV, pages 18387–18398, 2023. 1, 2

[34] Erik Sandström, Keisuke Tateno, Michael Oechsle, Michael

Niemeyer, Luc Van Gool, Martin R. Oswald, and Fed-

erico Tombari. Splat-SLAM: Globally Optimized RGB-only

SLAM with 3D Gaussians, 2024. 2, 5

[35] Johannes L. Schönberger and Jan-Michael Frahm. Structure-

from-Motion Revisited. In CVPR, pages 4104–4113, 2016.

1

[36] Johannes L. Schönberger, Enliang Zheng, Jan-Michael

Frahm, and Marc Pollefeys. Pixelwise View Selection for

Unstructured Multi-View Stereo. In ECCV, pages 501–518,

Cham, 2016. Springer International Publishing. 1

[37] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In

Proc. of Robotics: Science and Systems (RSS). Robotics:

Science and Systems Foundation, 2009. 1, 2

[38] Tixiao Shan and Brendan Englot. LeGO-LOAM:

Lightweight and Ground-Optimized Lidar Odometry and

Mapping on Variable Terrain. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), pages

4758–4765, 2018. 2

[39] Shuangfu Song, Junqiao Zhao, Kai Huang, Jiaye Lin, Chen

Ye, and Tiantian Feng. N3-Mapping: Normal Guided Neural

Non-Projective Signed Distance Fields for Large-Scale 3D

Mapping. IEEE Robotics and Automation Letters (RA-L), 9

(6):5935–5942, 2024. 1, 2, 6, 7

[40] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davi-

son. iMAP: Implicit Mapping and Positioning in Real-Time.

In ICCV, pages 6209–6218, 2021. 1

[41] Yifu Tao, Miguel Ángel Muñoz-Bañón, Lintong Zhang, Ji-

ahao Wang, Lanke Frank Tarimo Fu, and Maurice Fal-

lon. The Oxford Spires Dataset: Benchmarking Large-Scale

LiDAR-Visual Localisation, Reconstruction and Radiance

Field Methods, 2024. 6, 7, 3, 4, 5

[42] Fabio Tosi, Youmin Zhang, Ziren Gong, Erik Sandström,

Stefano Mattoccia, Martin R. Oswald, and Matteo Poggi.

How nerfs and 3d gaussian splatting are reshaping slam: a

survey, 2024. 2

[43] Ignacio Vizzo, Xieyuanli Chen, Nived Chebrolu, Jens

Behley, and Cyrill Stachniss. Poisson Surface Reconstruc-

tion for LiDAR Odometry and Mapping. In Proc. of the

IEEE Intl. Conf. on Robotics & Automation (ICRA), pages

5624–5630, 2021. 6, 7, 3

[44] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang.

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds

Using Hierarchical Embedding Mask Optimization. In

CVPR, pages 15905–15914, 2021. 2

[45] Tim Weyrich, Simon Heinzle, Timo Aila, Daniel B. Fas-

nacht, Stephan Oetiker, Mario Botsch, Cyril Flaig, Simon

Mall, Kaspar Rohrer, Norbert Felber, Hubert Kaeslin, and

Markus Gross. A hardware architecture for surface splatting.

ACM TOG, 26(3):90–es, 2007. 4

[46] Chenyang Wu, Yifan Duan, Xinran Zhang, Yu Sheng, Jian-

min Ji, and Yanyong Zhang. MM-Gaussian: 3D Gaussian-

based Multi-modal Fusion for Localization and Reconstruc-

tion in Unbounded Scenes. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), pages

12287–12293, 2024. 2

[47] Vladimir Yugay, Yue Li, Theo Gevers, and Martin R. Os-

wald. Gaussian-SLAM: Photo-realistic Dense SLAM with

Gaussian Splatting, 2024. 2, 5

[48] Ganlin Zhang, Erik Sandström, Youmin Zhang, Manthan Pa-

tel, Luc Van Gool, and Martin R Oswald. Glorie-slam: Glob-

ally optimized rgb-only implicit encoding point cloud slam.

arXiv preprint arXiv:2403.19549, 2024. 2

[49] Ji Zhang and Sanjiv Singh. LOAM: Lidar Odometry and

Mapping in Real-time. In Proc. of Robotics: Science and

Systems (RSS). Robotics: Science and Systems Foundation,

2014. 2, 6, 7

[50] Lintong Zhang, Marco Camurri, David Wisth, and Mau-

rice Fallon. Multi-Camera LiDAR Inertial Extension to the

Newer College Dataset, 2021. 6, 7, 8, 3

[51] Xin Zheng and Jianke Zhu. Efficient LiDAR Odometry for

Autonomous Driving. IEEE Robotics and Automation Let-

ters (RA-L), 6(4):8458–8465, 2021. 2

[52] Xingguang Zhong, Yue Pan, Jens Behley, and Cyrill Stach-

niss. SHINE-Mapping: Large-Scale 3D Mapping Using

Sparse Hierarchical Implicit Neural Representations. In

Proc. of the IEEE Intl. Conf. on Robotics & Automation

(ICRA), pages 8371–8377, 2023. 1, 2

[53] Liyuan Zhu, Yue Li, Erik Sandström, Shengyu Huang, Kon-

rad Schindler, and Iro Armeni. LoopSplat: Loop Closure by

Registering 3D Gaussian Splats. In Proc. of the International

Conference on 3D Vision (3DV), 2025. 2, 5

[54] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-

jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-

feys. NICE-SLAM: Neural Implicit Scalable Encoding for

SLAM. In CVPR, pages 12776–12786, 2022. 1, 2

27639

	Introduction
	Related Work
	Method
	Spherical Projection Model
	2D Gaussian Splatting
	Rasterization
	Ray-splat Intersection
	Bounding Box Computation

	Odometry And Mapping
	Local model initialization
	Local Model Refinement
	Frame-To-Model Registration

	Experiments
	Datasets
	Evaluation
	Ablation Study
	Conclusion
	Camera Matrix

	Bounding Box
	On color features
	Rasterizer Details
	Forward Process
	Gradient Computation
	Additional Experiment Results

