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Abstract

Referring expression comprehension (REC) aims to localize
the target object described by a natural language expres-
sion. Recent advances in vision-language learning have
led to significant performance improvements in REC tasks.
However, localizing extremely small objects remains a con-
siderable challenge despite its importance in real-world ap-
plications such as autonomous driving. To address this
issue, we introduce a novel dataset and method for REC
targeting small objects. First, we present the small object
REC (SOREC) dataset, which consists of 100,000 pairs of
referring expressions and corresponding bounding boxes
for small objects in driving scenarios. Second, we pro-
pose the progressive-iterative zooming adapter (PIZA), an
adapter module for parameter-efficient fine-tuning that en-
ables models to progressively zoom in and localize small
objects. In a series of experiments, we apply PIZA to
GroundingDINO and demonstrate a significant improve-
ment in accuracy on the SOREC dataset. Our dataset, codes
and pre-trained models are publicly available on the project

page.

1. Introduction

Object localization in images has been a long-term re-
search topic in the field of computer vision. Early stud-
ies introduced image datasets such as Pascal VOC [14] and
COCO [39], which involve bounding box annotations for
predefined object categories, leading to the development
of object detection models including CNN-based mod-
els [15, 16, 19, 60] and Transformer-based models [1, 21,
29, 41, 50, 64, 82, 85, 92]. For more detailed and flexi-
ble object localization, referring expression comprehension
(REC) aims to localize a specific object referred to by a
natural language description. REC uses queries like “the
red car parked in front of the coffee shop” as input and re-
quires locating this unique object in an input image. Ref-
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Figure 1. The SOREC dataset consists of pairs of referring expres-
sions and bounding boxes for extremely small objects. (a) Exist-
ing approach fine-tunes a model F' to localize the target. (b) Our
approach fine-tunes F' to progressively zoom in and localize the
target in an autoregressive manner. (c) Example of prediction in
three zooming steps.

COCO, RefCOCO+ and RefCOCOg [53, 78] are the most
popular datasets for REC, providing referring expressions
for images in the COCO dataset along with Flickr30K enti-
ties [57]. Over the past decade, deep learning architectures
that bridge visual contents and natural language descrip-
tions have been investigated. Examples include one-stage
architectures [38, 48, 62, 75] and two-stage architectures
based on CNN-LSTM [24, 40, 49, 52, 54, 78, 79, 83] and
attention mechanism [8, 12, 25, 43, 48, 66, 80, 94].
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With advances in large-scale vision-language learning,
recent models have become capable of precisely under-
standing object attributes and relations described in natural
language [35, 42, 69, 70, 73, 84, 87]. As a result, these
models have achieved high accuracy in REC tasks, with ac-
curacy rates of over 90% on the RefCOCO test sets. How-
ever, localizing small objects remains a significant chal-
lenge. The lack of REC datasets targeting small objects
has impeded further progress in this area, despite its critical
role in real-world applications such as autonomous driving,
where the ability to localize small objects is essential for
ensuring safety and facilitating precise decision-making in
complex environments.

To address this issue, the present study makes two sig-
nificant contributions. First, we introduce the small object
REC (SOREC) dataset, a new dataset for REC targeting
small objects in autonomous driving scenarios. Second, we
propose the progressive-iterative zooming adapter (PIZA),
an adapter module for parameter-efficient fine-tuning that
enables models to progressively zoom in and localize small
objects. Below we highlight each contribution.

1) Dataset contribution. We propose the SOREC dataset,
which consists of 100,000 pairs of referring expressions and
corresponding bounding boxes for extremely small objects
in road, highway, rural-area, and off-road scenes. As shown
in Figure 1, the typical size of a bounding box is approxi-
mately 0.1% of the input image size, making it challenging
to localize these objects. To the best of our knowledge, this
is the first dataset for REC targeting small objects in au-
tonomous driving scenarios. The availability of this dataset
promotes further research advancements in the area.

2) Technical contribution. We propose PIZA, a
lightweight learnable module for parameter-efficient fine-
tuning. Through fine-tuning with PIZA, the model learns to
localize small objects in an autoregressive manner, where a
zoomed image is fed into the model iteratively, as shown in
Figure | (b-c). This approach significantly improves accu-
racy, as demonstrated in Table 3.

2. Related work
2.1. Tasks and datasets

Referring expression comprehension. Considerable ef-
forts have been dedicated to constructing datasets of refer-
ring expressions on images over the past decade. Refer-
ItGame [30] was a pioneering large-scale dataset for
REC, consisting of 130k expressions for 20k images col-
lected from ImageCLEF and SAIAPR. RefCOCO, Ref-
COCO+ [78] and RefCOCOg [53] provided expressions for
images in COCO [39], and are the most popular benchmark-
ing datasets. CLEVR-Ref [45] is a diagnostic dataset fo-
cusing on compositional language understanding using syn-
thetic images. Refer360 [71] is a dataset for referring ex-

pression recognition in 360-degree images. REVERIE [58]
offers a dataset for remote embodied visual referring ex-
pressions in real indoor environments. RefEgo [33] focuses
on egocentric REC in first-person videos.

Small object detection. The importance of small object
detection has been recognized in various object detection
scenarios. Examples of datasets involving small objects in-
clude WiderFace [74] for face detection, TinyPerson [81]
for person detection, TT100K [93] for traffic sign detection,
VisDrone [91] for drone-based detection, and DOTA [11]
for remote sensing detection. SODA [5] is the latest large-
scale dataset for small object detection in automatic driv-
ing scenarios. Compared with normal-sized object detec-
tion datasets such as Pascal VOC [14] and COCO [39], cre-
ating datasets for small object detection is generally more
expensive as annotating small objects is more challenging.

Other related tasks. Visual grounding (VG) also aims to
localize objects given natural language descriptions. In VG,
each image may contain multiple target objects, typically
described with shorter phrases than those used in REC. Ex-
ample VG datasets include SK-VG [4] and GigaGround-
ing [51]. Open-vocabulary object detection aims to detect
objects that are not seen in the training dataset. For training
open-vocabulary detection models, large object detection
datasets are recently used such as 0365 [63], GoldG [29],
GRIT [56] and V3Det [68].

2.2. Models

REC models have evolved significantly over the years,
transitioning from traditional CNN-LSTM architectures to
attention and transformer-based architectures. One-stage
REC models [38, 48, 62, 75] integrated object detection and
language grounding into a unified architecture, allowing for
end-to-end training. Two-stage approaches [24, 40, 49, 52,
54, 78, 79, 83] utilized region proposals generated by ob-
ject detectors and applied LSTM to encode the referring ex-
pressions. Attention mechanisms were later incorporated to
improve the alignment between image regions and referring
expressions [8, 12, 25, 43, 48, 66, 80, 94].

To cover multiple vision tasks recent studies have
demonstrated the effectiveness of large-scale vision-
language pre-training [7, 36, 42, 69, 70, 73, 84, 87]. For
example, open-set detection models such as GLIPv2 [84]
and Grounding DINO [42] can handle both object detection
and REC. We chose GroundingDINO as the baseline model
because it is pre-trained on a union of datasets, including
those for relatively small object detection and REC.

2.3. Parameter efficient fine-tuning

Prompt-based fine-tuning. Inspired by prompt tuning
methods for natural language processing tasks [27, 44, 65],
prompt-based fine-tuning methods have been proposed for
computer vision tasks. Context optimization (CoOp) [89]
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Figure 2. Dataset comparison. (a) RefCOCO is a representative REC dataset consisting of expressions and bounding boxes for normal-
sized objects. (d) SOREC is our dataset, consisting of relatively longer expressions compared to RefCOCO, to identify small objects. (c-e)
Comparison of word count, image size, and relative bounding box size distributions on test sets.

and visual prompt tuning (VPT) [26] are two representa-
tive methods. CoOp incorporated learnable embeddings
into the text encoder of CLIP [59]. CoCoOp [88] intro-
duced prompts conditioned by image features. VPT in-
corporated learnable embeddings into the vision transform-
ers [13]. Further extension includes distribution learning,
multi-modal learning and various techniques to leverage
pre-trained knowledge [6, 9, 31, 32, 47, 76, 77, 86, 90].
LoRA-based fine-tuning. LoRA [23] introduces low-rank
adaptations to the weight matrices of a pre-trained model.
LoRA reduces the number of trainable parameters by de-
composing the weight updates into low-rank matrices. For
further improving parameter efficiency, quantization tech-
niques are also introduced [10, 72].

Adapter-based fine-tuning. Adapters are lightweight
learnable modules incorporated into a frozen pretrained
model. The first adapter architecture [22] was proposed
for Transformers, which inserts adapters into the attention
module and the feed forward network module in each en-
coder layer. There have been substantial efforts in architec-
tural adapter design for various neural networks for com-
puter vision tasks [2, 3, 17, 18, 28, 67]. Adapter+ [67] is a
well-designed adapter architecture for vision transformers,
which we employ in our experiments.

3. SOREC Dataset

The SOREC dataset consists of 100,000 pairs of referring
expressions and corresponding bounding boxes for small
objects in road, highway, rural, and off-road images. As
shown in Figure 2 (b), referring expressions describe both
the characteristics of the target object and its spatial rela-
tionships with surrounding objects, in order to locate tar-
get objects. Each bounding box typically occupies approxi-
mately 0.05% of the entire image area. Compared to exist-

ing datasets such as RefCOCO [78] in Figure 2 (a), SOREC
presents a particularly challenging task due to the extremely
small bounding boxes. This challenge is critical for advanc-
ing real-world applications including autonomous driving
and surveillance, where detecting small objects is essential.

3.1. Dataset Construction

The SOREC dataset is semi-automatically created in the
following five steps.

1) Source selection. We selected the SODA-D dataset [5]
as our source dataset. It consists of 24,828 high-quality im-
ages for small object detection, collected primarily from the
Mapillary Vistas dataset [55]. The average resolution of
these images is 3407 x 2470 pixels.

2) Segmentation. To extract small object regions, we ap-
plied Semantic-SAM [34] to image patches of size 800 x
800 pixels in a sliding window manner, with the granularity
prompt level set to 3. Bounding boxes of object region were
also computed. We excluded object regions whose bound-
ing boxes occupied more than 2% of the image.

3) Filtering. Through manual inspection of the extracted
object regions, we found many instances of trees and win-
dows that are not suitable for REC. We filtered them out by
computing CLIP scores of each bound box region using a
prompt of “tree, forest, window.” Subsequently, we sorted
the object regions based on the score Sexp(—|a — 1|)p,
where S is the bounding box size, a is the aspect ratio and
p is the stability score obtained from Semantic-SAM. From
the top 200,000 results, we excluded any remaining mean-
ingless objects and selected the top 150,000 results through
crowdsourcing.

4) Referring expression generation. For each object re-
gion, we cropped an image centered on its bounding box,
with a random height between 2.5 and 3.5 times the height
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Figure 3. Word clouds for RefCOCO (left) and SOREC (right).

of the bounding box, and a width between 1.5 and 3 times
its height. We drew a red bounding box on the image with a
line thickness of 2 pixels. We input these images into GPT-
4o to generate initial referring expressions using the prompt
“Write a sentence that refers to the object in the red frame
by mentioning its details, colors, relative relationship to sur-
rounding objects.” We excluded cases where the generated
descriptions did not include references to surrounding ob-
jects by counting nouns.

5) Quality control. Finally, using crowdsourcing again, we
excluded object regions that could not be uniquely identi-
fied by the corresponding expression. This step was a bi-
nary decision on whether the object could be identified by
the expression, allowing for minor errors in descriptions of
surrounding objects, and chose 100,000 high-quality pairs
of bounding boxes and expressions. For test sets, we fur-
ther asked annotators to revise expressions if they involve
errors. As a result, 18.45% of sentences were found to con-
tain minor errors related to color, spatial relations, and sim-
ilar attributes.

3.2. Dataset statistics

Description length. Figure 2 (c) shows the distribution
of the number of words per expression. As shown, the
average number of words is 25.5, which is approximately
seven times longer than the 3.52 words in RefCOCO. This
is due to the need for more detailed information to identify
small objects, which is a key characteristic of this dataset.
Figure 3 compares word distributions by word clouds. As
shown, SOREC dataset contains words related to position-
ing, such as ’positioned’ and ’situated’.

Bounding box size. Figure 2 (d) shows the distribution of
bounding box sizes relative to the image sizes. As indicated,
all the target bounding boxes occupy less than 1% of the
image area, presenting a challenging REC task. Since pre-
training is often performed on datasets that feature normal
sized objects, fine-tuning is necessary to bridge this gap for
localizing small target object.

Image size. Figure 2 (e) shows the distribution of image
sizes. As shown, the SOREC dataset consists of high-
resolution images that are sufficient for performing REC
targeting small objects.

Data split. We created training, validation, test splits as
summarized in Table 1. The train-L set is the full training

Split Images Expressions
eC: t Train-S | 1446 10,000
on wearing " Train-L 13,494 61,369
1; ebdd Validation | 2,382 10,712
h Test-A 4,107 10,815
I gl SN Test-B 5,153 17,104

Table 1. Dataset split

set, and the train-S set is a small subset consisting of 10,000
expressions. The validation set consists of 10,712 expres-
sions, with no overlap in images with the training sets. The
test-A and -B sets contain expressions for traffic objects and
the other objects.

4. Method

This section describes PIZA, a lightweight adapter module
for parameter-efficient fine-tuning that enables models to
localize target small objects by progressively and iteratively
zooming into them.

4.1. Preliminary

Problem settings. Let x € RW>*H*C be an input image,
where W is the width, H is the height, and C is the num-
ber of channels. We denote by b = (¢, v, 71,%1) € R* a
bounding box, where (x¢, yo) is the coordinate of the top-
left corner, and (1, y1 ) is the coordinate of the bottom-right
corner of the box. Given a natural language expression ¢,
the goal of REC is to localize the object corresponding to ¢
in the image. As such, the model F' takes as input (x, t) and
learns to predict a bounding box as b = F(z, t), so that the
predicted bounding box b matches the ground truth bound-
ing box b*. This work focuses on the setting where the size
of b* is significantly smaller than the image size, i.e., we
assume that |b*| < W H, where |b| = (x1 — z0)(y1 — yo)
indicates the size of b.

Vision-language pre-training. We assume that a pre-
trained model F' is given and explore parameter-efficient
fine-tuning methods by which the model quickly adapts to
localize small objects.

Difficulty. The main difficulty lies in the gap between pre-
training and fine-tuning regarding the bounding box sizes
and expression lengths. Recent object localization models,
such as GroundingDINO [42], are capable of both REC and
open-set object detection because they are pre-trained on a
large union set of REC and object detection datasets. How-
ever, a challenge arises when dealing with a combination
of long sentences and extremely small objects. We aim to
address this challenge in parameter-efficient fine-tuning.
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Figure 4. Fine-tuning with PIZA. Given a pre-trained model F’,
PIZA produces a model F; that zooms in to localize small objects
in an autoregressive manner through fine-tuning. In the inference
phase, bounding boxes bo, b1, - - - , br indicating zooming steps
are predicted to localize the target at the end.

4.2. Progressive-integrative zooming adapter

Overview. Zooming in to localize a small target object
can be understood as a search problem over an image. We
model a search process P as a sequence of bounding boxes:

P:(b07b17"' 7bT)7 (1)

where by = (0,0, W, H) indicates the bounding box cover-
ing the entire image, by is the final small bounding box for
localizing the target, 7" is the number of zooming steps, and
b; covers b; if i < j, as shown in Figure 1 (c).

Through fine-tuning, models learn to predict search pro-
cesses so that the final bounding box matches the ground
truth, i.e., by ~ b*. To this end, PIZA extends the pre-
trained model F' to a model F; that predicts a search process
in an autoregressive manner as

bit1 = Fe(i, t, bo.i), (2)
where x; is the cropped image region corresponding to b;, t
is an input expression, bg.; = (b, - - - , b;) is a subsequence
of bounding boxes and ® indicates that PIZA is applied. A
visualization of this procedure is shown in Figure 4. Since
F' is a function that accepts two inputs, ® and ¢, F; is built
up by incorporating a module that can take by.; as an addi-
tional input into F'. Below we describe the module archi-
tecture.
PIZA module. Inspired by time-step embeddings in diffu-
sion models [20, 61] that represent stages of the diffusion
process, the PIZA module learns zooming-step embeddings
that represent progress of the search process. Specifically,
the zooming-step embedding h € R? is extracted from
the input sequence of bounding boxes by.; € R**(i+1) jp
two steps. First, a sequence of low-level features ly.; =
(Lo, 11, -+ ,1;) is extracted. Each feature l; is a 6 dimen-
sional vector, and its elements are listed in Table 2. Sec-
ond, h is extracted by feeding lj.; into a small learnable

Feature ‘ Definition

55 = 1b;1/bol

ro =1, r; = [b;|/[bj 1]

w; = (a7 = ag))/W

hy = (= b))/ H

z; = (zy) + 7)) (2W)

g = (w5 +vi”)/(2H)
Table 2. Low-level features extracted from the sequence of bound-

ing boxes b; = (mgﬂ,m(lj),yéj),ygj)). W and H denotes the

width and height of the input image.

Normalized size
Relative size

Normalized width
Normalized height
Center position (x-axis)
Center position (y-axis)

module. Figure 5 shows the architecture consisting of a
sequence of learnable Fourier embeddings [37], a trans-
former encoder and an average pooling layer. The em-
beddings are trained with two heads: an EOS head and
a progress head. The EOS head predicts a binary label
¥i41 € {[CONT], [EOS]} indicating either “continue to
search (CONT)” or “end of search (EOS)”. The progress
head predicts progress of search 2,1 € [0, 1] expressed as
a real value, where 0.0 indicates the start and 1.0 indicates
the end of the search process. The binary cross-entropy
loss and mean squared error loss are applied to these heads,
respectively, on the extended training dataset described in
Section 4.4. In the inference phase, search is stopped when
the EOS label is predicted. The number of parameters of
this module is 0.27M and the feature dimension is set to
16. The detailed architectural hyperparameters are provided
with our code.

4.3. Parameter-efficient fine-tuning with PIZA

To perform fine-tuning with the PIZA module, we incorpo-
rate the embeddings h into parameter-efficient fine-tuning
methods. Here, we propose prompt-based, LoRA-based
and adapter-based fine-tuning with PIZA. Their architec-
tures are shown in Figure 6.

PIZA-CoOp. CoOp [89] is a prompt-based fine-tuning
method, which prepends learnable embeddings to the in-
put text prompts as G(z,t) = F(z,|e,t]), where e =
(eo,e1,--- ,er) is a sequence of learnable embeddings.
PIZA-CoOp inserts h as Gg(x,t) = F(x,[e, H(h),t]),
where H is a learnable linear layer as shown in Figure 6 (a).
PIZA-LoRA. LoRA [23] is a low-rank adaptation method
that injects trainable low-rank matrices into linear projec-
tions as Wx + BAx, where x is an input, W is a frozen
weight matrix and A, B are learnable low-rank matri-
ces. PIZA-LoRA integrates the embeddings h into the bot-
tleneck of LoRA as shown in Figure 6 (b), resulting in
Wax + BAx + BCh, where C is a newly added learnable
matrix. We set the rank to 16.

PIZA-Adapter+. Adapter+ [67] utilizes the post-adapter
architecture, channel-wise scaling and Houlsby initializa-
tion [22]. PIZA-Adapter+ adds the embeddings h to the
output of the channel-wise scaling layer as shown in Fig-
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ure 6 (c). We set the bottleneck dimension to 256.

4.4. Training

Given a training dataset D consisting of images, expressions
and ground truth bounding boxes, we construct an extended
dataset £ that involves ground truth search processes for
training with PIZA.

Overview. Each ground truth search process P* represents
zooming steps to localize the target object. Specifically, it is
given by P* = (b{, b}, -+, bi..), where b = (0,0, W, H)
indicates the entire image and b7.. = b* is the ground truth
bounding box. To facilitate efficient fine-tuning, we gen-
erate P* so that the distribution of inverse zoom factors
(z5)~" = [b3]/|bj_| match to the distribution of bound-
ing box area ratios p(r) in pre-training.

Distribution p(r). Along with a pre-trained model, the
distribution p(r) is pre-estimated by applying kernel den-
sity estimation to the pre-training dataset (we use the union
of 0365 and GoldG in our experiments). We randomly
sample 100,000 bounding boxes to compute area ratios
r = |b*|/(W H) and apply a Gaussian kernel.

Width and height for b7 . The width and height for each
bounding box in P* are randomly sampled in three steps.
First, ratios rj are randomly sampled from p(r) for k =
1,2, -, Thax, Where T1,,« is a sufficiently large constant.
Second, the number of zooming steps 7™ is determined such
that the cumulative product of 7y, is closest the area ratio r*
of the ground truth bounding box:

L1 o]
T = arg;nin (70* kli[lrk — 1) , = WH’ 3)

where b* is a bounding box sampled from D, and W, H
are the width and height of the corresponding image. Then,
the zoom factors =7 and the size of bounding boxes 57 are
determined as follow:

1

1 T* i T T —j
* w —1 * *

zi= FHrkk T, Si= zre—k | [b*], (@)
k=1 k=1

D : Frozen modules and original inputs D : Learnable modules and embeddings D : Modules and embeddings for PIZA

Figure 6. Parameter efficient fine-tuning with PIZA.

where w;, = )\16”‘2’“/2:;1 Ae 22k are weights de-
rived from an exponential distribution. This weighting en-
sures that z7 ~ r;l with smaller j, encouraging more
precise bounding box predictions at the initial zooming
step. Finally, the width and height of b} are determined by
wk = a; \/ST* , h} =a;"/57 where a; is an interpreted
aspect ratio

LW (W WS
i~ H \H WH — S,

Centers. The center of each bounding box is aligned with
the center coordinates of the target object. If the region ex-
tends beyond the image boundaries, the bounding box is
minimally shifted to remain entirely within the image.
Labels. Finally, for the generated search process P*, the se-
quence of binary labels y* = (y3,y;, - , ¥ ) and zoom-
ing step labels z = (=3, 27, -+ , 2z}, ) are attached. Each
label is given by

y;:{[com] O0<i<T)  ._J

[EOS] (j=T%) T

Loss function. The loss for fine-tuning is computed in three
steps. First, a mini-batch of quadruplets (x, ¢, P*, y*) is
drawn from £. Second, for each quadruplet, index i €
{1,2,---,T* — 1} is randomly drawn to compute the for-
ward process Bi+1 = Fy(x,t,bp.,;). Finally, the loss de-
pending on the pre-trained model is applied. In the ex-
periments, we implement PIZA over the GroundingDINO

model; thus the loss consists of the contrastive loss and the
localization loss [42].

5. Experiments

5.1. Experimental settings

Dataset and metrics. The SOREC dataset is used for train-
ing and evaluation. We report the mean accuracy (mAcc)
over IoU thresholds from 0.50 to 0.95 in increments of 0.05,
as well as the accuracy at IoU of 0.50 (Accsg) and 0.75
(Accrs).
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Train-S Train-L

Method #Params Val Test-A Test-B Val Test-A Test-B

mAcc Accso Accrs|mAcce Accso Accrs|mAcce Accso Accrs|mAcc Accso Accrs|mAcc Accso Accrs|mAcc Accso Accrs
Zero-shot 0 02 06 0003 10 01]00 02 00]02 06 00]03 1.0 01]00 02 0.0
Full fine-tuning 173.0M|29.5 51.7 30.2|35.9 58.6 38.8|23.0 43.6 21.9 |37.4 63.7 39.243.8 69.6 48.0(30.5 55.6 29.8
CoOp 0.IM |20.2 36.1 20.4({24.2 40.1 25.8|15.5 29.6 14.6 |22.6 41.6 22.0|27.5 46.5 28.7|17.5 34.8 159
PIZA-CoOp (Ours) 0.9M |26.3 39.1 29.7(29.4 41.2 342|219 33.8 24.3 |29.8 44.1 33.5|33.4 46.8 38.7|24.4 37.6 26.9
LoRA 1.3M |21.6 385 21.8(26.2 43.1 28.1[17.0 32.5 15.9|25.2 44.5 25.3|30.7 50.2 33.0|19.7 37.3 18.8
PIZA-LoRA (Ours) 1.5M (309 44.7 34.9(33.8 46.6 39.2|25.8 38.7 28.9 |34.5 49.9 39.1|39.3 54.0 45.5|29.0 43.4 324
Adapter+ 3.3M |26.0 48.1 24.8(32.0 55.0 33.3(20.3 40.4 17.9 |34.6 59.5 35.7|40.7 65.9 44.4|27.6 51.3 26.6
PIZA-Adapter+ (Ours)| 3.5M |36.8 53.5 41.8|43.1 59.6 50.1{30.4 45.9 34.1 |39.0 60.6 42.9(45.1 66.2 51.7|31.7 52.2 33.6

Table 3. Parameter-efficient fine-tuning results. #Params indicates the number of fine-tuned parameters. Best results are underlined.

Pre-trained model. We selected GroundingDINO [42] us-
ing Swin-T [46] as a baseline model, and used the improved
version provided as MM-GroundingDINO in the mmdetec-
tion library [87]. This model is pre-trained on the union
of the following four datasets: 0365 [63], GoldG [29],
GRIT [56] and V3Det [68].

Baselines. We implemented three baselines for parameter-
efficient fine-tuning: CoOp [89], LoRA [23] and Adapter+
[67]. PIZA is applied to each method as described in Sec-
tion 4.3. Zero-shot baseline results are also reported.
Implementation details. The AdamW optimizer is used
for 5 epochs with a learning rate of 2 x 10~%, which is
decayed by a factor of 0.5 at epoch 3. The hyperparame-
ters for AdamW are set to their default values in PyTorch.
The batch size is set to 16. LoRA is applied to each self-
attention and cross-attention module. Adapter+ modules
are inserted after each self-attention and feed-forward net-
work module. Further details are provided in Appendix.

5.2. Experimental results

Main results. Table 3 summarizes the parameter-efficient
fine-tuning results. As shown, PIZA significantly improved
the performance for all methods. PIZA-Adapter+ achieved
the best performance in terms of mAcc, surpassing the full
fine-tuning baseline while reducing the number of learnable
parameters from 173.0M to 3.5M. Prompt-tuning methods
(CoOp and PIZA-CoOP) were more efficient but less ef-
fective than Adapter+ and LoRA methods. This is likely
due to the low performance of the zero-shot baseline, which
suggests that prompt-tuning alone may struggle to bridge
the gap between the vision-language pre-training task and
the REC task for small objects. When comparing Test-A
and Test-B, all models exhibited higher accuracy on Test-
A, which consists of traffic objects. This result is under-
standable, as objects such as traffic lights and road signs are
designed with colors and shapes that make them easily to
detect. When comparing training dataset sizes, the larger
dataset (Train-L) consistently demonstrated higher perfor-
mance, suggesting that further increasing the dataset size

Method #Prm.|  Val Test-A Test-B

PIZA-Adapter+ | 3.5M [36.8/53.5/41.8/43.1/59.6/50.1(30.4/45.9/34.1
w/oemb.insertion| 3.5M |36.7/53.2/41.7|42.8/59.2/49.9|30.3/45.8/34.0
w/oPIZAmodule | 3.3M [26.0/48.1/24.8(32.0/55.0/33.3(20.3/40.4/17.9
d = 256 3.5M [36.8/53.5/41.8/43.1/59.6/50.1|30.4/45.9/34.1
d =128 2.4M [36.4/52.8/41.6[41.8/57.9/48.5[30.3/45.5/34.2
d =64 1.9M [36.6/52.9/41.8142.2/58.1/49.0129.9/45.1/33.6
d=32 1.6M |35.1/51.0/40.1}40.8/56.3/47.4[29.0/43.7/32.5

Table 4. Ablation and hyperparameter studies for PIZA-Adapter+.
“w/o embedding insertion” omits the connection colored in red in
Figure 6 (c).dis the bottleneck dimension of the adapter. Each triplet
of values indicates mAcc/Accso/Accys. Train-S is used for training.

could be beneficial.

Ablation and hyperparameter studies. Tables 4 and 5
show the results of ablation and hyperparameter studies for
PIZA-Adapter+, PIZA-LoRA, and PIZA-CoOp. As shown,
autoregressive prediction with the PIZA module is essential,
and incorporating the zooming-step embedding further im-
proved the performance. For PIZA-Adapter+, performance
improves as the bottleneck dimensions increase.

Necessity of pre-training. Table 6 compares training from
scratch and full fine-tuning. Although the zero-shot base-
line performance was low, the results confirmed that pre-
training is necessary.

Zooming steps. Table 7 presents the tradeoff between the
number of zooming steps and performance by comparing
our best results, which resulted in 2.11 steps on average,
with those obtained by enforcing the number of steps 1™
to 1, 2 and 3 when creating the extended training dataset.
As shown, our method performed the best among the tested
configurations. Some qualitative examples are shown in
Figure 7. As shown, for the SOREC dataset, 2 or 3 zooming
steps were sufficient in most cases.

Comparison with greedy approaches. To validate the
necessity of the multi-step inference, we compare PIZA
with sliding window and grid-like separation approaches.
Figure 8 (a) compares our method with the eight fully
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The white sign with a red circle and a black arrow, indicating a prohibition, is positioned above a | The person wearing a gray suit is standing near a pole and a recycling bin with a blue sign on it, with

rectangular sign and on a pole.

: Predicted bounding boxes

another person dressed in black and white stands to the right.

: Ground truth bounding boxes

Figure 7. Qualitative examples.

Method #Prm|  Val | TestA | Test-B
PIZA-LoRA 1.5M |30.9/44.7/34.9|33.8/46.6/39.2|25.8/38.7/28.9
w/oemb. insertion| 1.5M (30.2/43.9/34.0|33.5/46.4/38.6|25.3/38.1/28.3

w/oPIZA module| 1.3m

21.6/38.5/21.8

26.2/43.1/28.1

17.0/32.5/15.9

PIZA-CoOp 0.9m
w/oemb. insertion| 0.3M
w/oPIZA module| 0.1M

26.3/39.1/29.7

29.4/41.2/34.2

21.9/33.8/24.3

26.1/38.7/29.0
20.2/36.1/20.4

29.3/40.9/33.7
24.2/40.1/25.8

21.6/33.2/23.9
15.5/29.6/14.6

Table 5. Ablation study for PIZA-LoRA and PIZA-CoOp (Train-
S). Each triplet of values indicates mAcc/Accso/Accrs.

Method |#Prm.|  Val | TestA |  Test-B
Scratch 173M [0.00/0.00/0.00 | 0.00/0.01/0.00 |0.00/0.00/0.00
Full fine-tuning | 173M | 29.5/51.7/30.2 | 35.9/58.6/38.8 | 23.0/43.6/21.9

Table 6. Comparison with training from scratch (Train-S).

Method ‘ Steps ‘ Val ‘ Test-A ‘ Test-B

wi/ step enforcing| 1.0 |25.8/47.5/25.5|31.7/54.2/33.3|20.0/39.3/18.1
w/ step enforcing| 2.0 |36.1/53.1/40.8 |41.7/57.8/48.6|29.6/45.6/32.9
wi/ step enforcing| 3.0 |34.3/50.3/39.0|39.8/55.3/46.3|27.1/41.8/30.1

Table 7. Zooming step analysis (Train-S).

fine-tuned sliding window baselines using combinations of
four window sizes W € {500, 750, 1000, 2000} and two
strides S € {W, W/2}. Apparently, the sliding window ap-
proach can improve the performance. However, all of these
baselines indeed yield significantly lower performance and
higher computational cost than our method. Although
smaller windows and smaller strides capture finer details,
they exponentially increase computational cost and often
lead to false positive detections. Our method addresses
these limitations, being 7.3 faster and using 49.4x fewer
learnable parameters than the best sliding window baseline.
Figure 8 (b) shows comparison with the tile-grid baselines.
Our method outperformed them for the same reason dis-
cussed for the sliding window approach, suggesting that
our method with average zooming step of 2.11 is reason-

9 s Ours (a) Sliding window e Ours (b) Tile grid
5 350 w=2000
1)
I
£ 2x2
3x3
S 30 r 4x4
© 1x1
=y
©
> 1 50 100 150 1 4 9 16

Relative inference cost Relative inference cost

Fig. 8.Comparison with sliding window and tile-grid baselines.

able compared to these greedy grid-like separation counter-
parts. The typical window size used in the first step of our
method was around 500 x 500, while that for the tile grid
approach on a typical high-resolution image in our dataset
was 3407x%2470, resulting in a 36-fold increase in inference
cost for the greedy tile grid approach.

6. Conclusion

We introduced the SOREC dataset, a new dataset for re-
ferring expression comprehension targeting small objects.
Furthermore, we proposed PIZA tuning, a novel parameter-
efficient fine-tuning approach that allows models to pro-
gressively zoom in and localize small objects based on nat-
ural language expressions.

Future work and limitations. This work focused on local-
izing small objects in autonomous driving scenarios since
detecting such objects is critical for ensuring safety and
improves the overall reliability. Extending the proposed
dataset to include more diverse environments and object
types would remain an interesting future research direction.
In addition, extending this work to video data and apply-
ing PIZA tuning to architectures for video processing would
also be a promising next step. We believe that this work
contributed to the computer vision community from both
dataset and technical perspectives.
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