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Abstract

In real-world scenarios, objects and their parts inher-

ently possess both coarse-grained differences and intricate

fine-grained structural relationships. These characteris-

tics can be formalized as knowledge, leveraged for fine-

grained part comprehension. However, existing part seg-

mentation models consistently fail to capture these complex

inter-part relationships, treating parts as independent enti-

ties and disregarding object-level distinctions. To address

these limitations, we propose a novel Knowledge-Guided

Part Segmentation (KPS) framework. Our approach au-

tomatically extracts structural relationships between parts

using a large language model (LLM) and integrates them

into a knowledge graph. Subsequently, a structural knowl-

edge guidance module employs a graph convolutional net-

work (GCN) to model these relationships. Furthermore,

a coarse-grained object guidance module captures object-

specific distinctions and integrates them as visual guid-

ance. The integrated insights from the part structure and

object differentiation guide the fine-grained part segmenta-

tion. Our KPS achieves notable improvements in segmen-

tation performance, with a 4.96% mIoU gain on PartIma-

geNet and a 3.73% gain on Pascal-Part. Moreover, in the

open-vocabulary setting on Pascal-Part-116, it improves

hIoU by 3.25%, highlighting the effectiveness of knowledge

guidance in enhancing fine-grained part segmentation.

1. Introduction

Fine-grained part semantic segmentation [20, 45, 52, 60]

aims to achieve pixel-level segmentation of fine-grained

object parts within a complete image by capturing distin-

guishing details of individual parts, such as the head of

a bird, the wheels of a car, or the ears of a dog. In

comparison, traditional semantic segmentation approaches
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Figure 1. Comparison of existing methods and our KPS frame-

work inspired by human cognition. (a) Existing methods treat

parts as independent, ignoring relationships. (b) Human cog-

nitive process: global recognition followed by part details. (c)

Our KPS framework combines structured knowledge and coarse-

grained object guidance inspired by cognitive processes to en-

hance part segmentation.

[1, 4, 21, 31, 40, 50, 63] primarily focus on coarse-grained

information, performing well on large object regions but of-

ten neglecting the fine details required for part-level seg-

mentation [8, 9, 58, 61]. To address these limitations, fine-

grained part segmentation has become essential for cap-

turing intricate details, especially in complex or detail-rich

scenes where precise recognition is critical. By focusing on

fine-grained features, these methods enhance feature repre-

sentations and sensitivity to subtle variations, thereby im-
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proving performance in applications such as image editing

and robotics.

To tackle the need for fine-grained segmentation, exist-

ing methods have adopted various strategies. For example,

He et al. [20] employ hierarchical feature representations to

iteratively cluster pixels into parts, achieving refined part

segmentation at the image level. In contrast, Pan et al.

[45] adopt a class-agnostic strategy, using post-processing

to remove independently predicted part masks that do not

connect with other parts. In summary, most of these meth-

ods rely on object-level segmentation strategies (as shown

in Figure 1(a)), treating each part as an independent cate-

gory. Despite their progress in fine-grained part segmenta-

tion, they often lack mechanisms to effectively capture and

utilize relationships between parts, resulting in the loss of

critical information and limiting segmentation accuracy.

In contrast to these methods, human perception in real-

world scenarios is characterized by a progression from

coarse to fine granularity [25], as shown in Figure 1(b).

Initially, humans perceive the overall category at the ob-

ject level, gradually analyzing the structural relationships

among parts, leveraging knowledge of object structures and

part distributions to achieve fine-grained perception. For in-

stance, when viewing an image of a bird, humans first per-

ceive it at a coarse level and then, leveraging prior knowl-

edge of bird anatomy, examine the spatial arrangement of its

parts to identify specific components, such as the wings and

tail. This aligns with cognitive psychologists’ argument that

human perception follows a layered and progressively de-

tailed process [22, 37], transitioning from the whole to the

details and from coarse-grained to fine-grained understand-

ing, thereby enabling clear and meaningful insights into the

structures of object parts, their roles within the whole, and

their interrelationships.

Based on this cognitive process analysis, we identify that

structural relationships among fine-grained parts and dis-

tinctions between coarse-grained objects can serve as guid-

ing knowledge to enhance fine-grained part segmentation.

To operationalize this insight, we present the Knowledge-

Guided Part Segmentation (KPS) framework (Figure 1(c)),

which encodes part relationships into a knowledge graph via

a structured knowledge acquisition process while incorpo-

rating a Coarse-grained Perception Module (CPM) to cap-

ture object-level distinctions. This dual approach collabora-

tively addresses structural relationships among fine-grained

parts and distinctions among coarse-grained objects. To ef-

fectively leverage this embedded knowledge, a Structural

Knowledge Guidance Module (SKGM) applies graph con-

volution to refine part relationships, generating text-based

guidance that captures structural connections. In parallel,

a Coarse-Grained Object Guidance Module (COGM) cap-

tures distinctive object-level features, providing comple-

mentary visual guidance. Together with these text-based

and visual modalities, a Fine-grained Perception Module

(FPM) enables precise segmentation of fine-grained parts.

In summary, our KPS framework integrates fine-grained

part relationships and coarse-grained object distinctions as

guiding knowledge to enhance textual and visual embed-

dings for part segmentation. KPS achieves mIoU scores of

72.69% on PartImageNet [19] and 62.42% on Pascal-Part

[10]. In the open-vocabulary setting on Pascal-Part-116

[56], it attains an hIoU of 33.92%, demonstrating notable

improvements in segmentation accuracy and interpretabil-

ity. The key contributions are summarized as follows:

• We propose a framework that encapsulates object-level

distinctions and part-level structural relationships, em-

bedding these elements as guiding knowledge to improve

fine-grained segmentation.

• The Structural Knowledge Guidance Module embeds the

knowledge graph, capturing structural relationships, into

text features using graph convolution to provide guidance.

• The Coarse-Grained Object Guidance Module embeds

object-level distinctions into visual features, offering

coarse-grained guidance to support part segmentation.

• Comprehensive closed-set and open-vocabulary experi-

ments on PartImageNet, Pascal-Part, and Pascal-Part-116

validate the effectiveness of our knowledge-guided KPS

framework in part segmentation tasks.

2. Related Works

2.1. Part Segmentation

Fine-grained part segmentation, which decomposes images

into detailed components for improved interpretability and

analysis, has gained significant attention in recent years

[20, 27, 44, 45, 55, 57, 60]. Advances in deep learning and

large-scale annotated datasets have shifted research from

coarse object-level tasks to more nuanced part-level seg-

mentation [3].Early approaches were constrained by limited

part-level annotations, relying on handcrafted features and

traditional image processing, which hindered performance

and scalability. The introduction of large-scale datasets

like PartImageNet [19] and Pascal-Part [10] has revitalized

research, driving significant progress. However, existing

methods [20, 45, 60] often treat parts as independent cate-

gories, following a coarse-grained paradigm that overlooks

structural and contextual relationships within objects, limit-

ing their effectiveness in fine-grained part understanding.

2.2. Knowledge Guidance

In machine learning [26], traditional data-driven models

often struggle to incorporate human knowledge, limiting

their performance. Integrating structured knowledge, such

as category relationships, has proven effective in enhanc-

ing deep neural networks for tasks like image classifi-

cation [23, 36], improving accuracy [14] and robustness
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Figure 2. Overview. The proposed KPS framework enables fine-grained part segmentation through knowledge-guided modules. It com-

prises a Structural Knowledge Guidance Module for encoding part relationships, a Coarse-grained Object Guidance Module for capturing

object-level distinctions, and two Perception Modules that respectively provide coarse-grained and fine-grained segmentation.

against adversarial attacks [18]. Knowledge graphs (KGs)

provide a powerful framework for embedding structured

knowledge, benefiting both visual and textual tasks [42].

They have been shown to enhance reasoning in language

models [2, 5, 34] and improve computer vision models

[24, 29, 30, 32, 33, 35, 46, 54]. For instance, [34] lever-

ages inter-class relationships within KGs to enhance vision-

language models, leading to more effective classification

in downstream tasks. By integrating visual and textual in-

formation, knowledge-guided approaches offer substantial

benefits, improving model accuracy, adaptability, and ro-

bustness in complex real-world scenarios.Overall, combin-

ing visual and textual information, knowledge-guided ap-

proaches offer substantial benefits, particularly in manag-

ing complex tasks and diverse scenarios. This guidance im-

proves model accuracy and adaptability, enabling models

to handle the nuanced demands of real-world applications

better.

3. Methodology

This section introduces our approach, starting with an archi-

tecture overview in Section 3.1, followed by module details

in Sections 3.2– 3.5 and learning objectives in Section 3.6.

3.1. Overall architecture

The proposed Knowledge-Guided Part Segmentation (KPS)

model enhances fine-grained segmentation by embed-

ding structural knowledge and object-level distinctions as

auxiliary guidance throughout the segmentation pipeline.

To achieve this, it employs a hybrid data-driven and

knowledge-guided approach, as illustrated in Figure 2,

building on a cost aggregation architecture [12] and in-

corporating innovative knowledge guidance modules that

enhance segmentation accuracy and robustness. Specifi-

cally, the KPS architecture integrates part-level structural

knowledge and coarse-grained object-level distinctions via

two complementary modules, providing essential structural

and contextual guidance. The Structural Knowledge Guid-

ance Module (SKGM) embeds spatial relationships among

object parts into text features, serving as core structural

guidance. At the same time, the Coarse-grained Percep-

tion Module (CPM) captures object-level perceptual cues,

supplying essential context for object differentiation. The

Coarse-grained Object Guidance Module (COGM) then in-

corporates these distinctions into the visual modality, en-

hancing robustness and object-level differentiation. Finally,

the Fine-grained Perception Module (FPM) combines struc-

tural and contextual cues from text and visual modalities to

guide precise part segmentation. This hierarchical approach

progressively enhances segmentation accuracy by embed-

ding knowledge at different levels, producing precise and

interpretable results.

3.2. Structure Knowledge Guidance Module

Knowledge Acquisition. Structural relationships among

object parts are foundational to human cognition. Large

language models like GPT-4, through extensive training,

have similarly captured these spatial relationships. Build-

ing on this, our approach uses a knowledge-based Q&A

process with GPT-4 to extract these relationships, embed-

ding dataset categories into question templates to capture
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Figure 3. Knowledge graph based on PartImageNet dataset cat-

egories, constructed by aggregating adjacency relationships be-

tween parts extracted from a large language model through a

knowledge acquisition process.

latent spatial connections. For example, querying “Is the

bird’s head adjacent to the bird’s body?” yields a “Yes”

response, which we binarize to convert unstructured in-

sights into structured adjacency relationships, forming part-

to-part connections within a nearest-neighbor knowledge

graph. This Q&A process systematically translates re-

sponses into adjacency relationships among object parts,

which are then aggregated to construct a knowledge graph

G = {GPT-4(qj) | j = 1, 2, . . . , Nq}, where Nq is the total

number of questions. Figure 3 illustrates a sample knowl-

edge graph based on the PartImageNet dataset, with nodes

as object parts and edges as adjacency connections struc-

tured by graph theory. This stable adjacency structure is

auxiliary guidance, embedding structural context into part-

level text features.

Feature Acquisition. Given a set of candidate part-level

categories Dp = {dp[n]}
Np

n=1, where dp[n] denotes the

textual description of part n and Np represents the total

number of parts, we use the Contrastive Language-Image

Pre-training(CLIP[47]) text encoder, denoted as ΦT (·), to

obtain the corresponding part-level text features F t
p =

ΦT (Dp). The resulting features are represented as F t
p[n] ∈

R
Np×d, where n indexes each part and d denotes the dimen-

sionality of the text feature vector.

Structural Knowledge Embedding. To effectively embed

structural knowledge within the text semantic space, we de-

sign a graph convolutional network (GCN) [7] that utilizes

part-level text features F t
p[n] and the knowledge graph G as

inputs. In this GCN, text-based semantic features represent

nodes, while adjacency relationships from the knowledge

graph form the edges. By applying Ng layers of TAGConv

[15] graph convolution, the network captures the structural

relationships among nodes, embedding them into the text

features to enhance part-level segmentation. Formally, we

represent the output as:

F t
G[n] = GCN(F t

p[n], G), (1)

where the enriched text features now contain embedded

structural context for segmentation.

3.3. Coarse­grained Perception Module

Building upon established cost aggregation methods for

object-level perception [12], this module is designed to

capture object-level contextual cues, thereby enhancing the

model’s ability to differentiate between distinct coarse-

grained objects within an image. Specifically, given an

image I and a set of candidate object categories Do =
{do[m]}No

m=1, where do[m] denotes the text description of

object m, and No represents the total number of objects, we

employ CLIP’s image and text encoders to extract image

features F v
i = ΦV (I) ∈ R

(H×W )×d and object-level text

features F t
o = ΦT (Do) ∈ R

No×d, where ΦV (·) denotes the

CLIP image encoder. Here, each text feature F t
o [m] is in-

dexed by m, and d represents the dimensionality of the text

feature vectors. Next, we compute the cosine similarity [49]

between the image and text features to capture spatial asso-

ciations between image content and object-level categories:

Co(i,m) =
F v
i (i) · F

t
o(m)

∥F v
i (i)∥∥F

t
o(m)∥

, (2)

where i represents the 2D position in the image feature map,

and m indexes an object-level category in the text features.

To manage the high-dimensional complexity of similar-

ity maps, we apply a convolutional layer, processing each

similarity slice Co(:,m) ∈ R
(H×W )×1 independently. This

operation produces an initial object-level similarity feature

representation Fo ∈ R
(H×W×No×dF ), where dF denotes

the dimensionality of each similarity feature.

Building on these similarity features, we employ three

key components: a Swin Transformer module [39] for vi-

sual perception, a text transformer module [53] for text-

based perception, and an upsampling decoder [12]. Lever-

aging the global comprehension abilities of the fine-tuned

CLIP model, CPM iteratively alternates between the vi-

sual and text perception modules Nt times, followed by a

final decoder for coarse-grained perception and segmenta-

tion. Specifically, spatial aggregation is performed using

the Swin Transformer’s visual perception module, operat-

ing on both the input visual guidance features g0 and the

object-level similarity features Fo(:, n), as follows:

F ′
o(:, n) = ΦV

CA([Fo(:, n); g0]), (3)

where Fo(:, n) ∈ R
(H×W )×dF and dF represents the chan-

nel dimension for each token. Here, ΦV
CA

(·) denotes a pair

of two consecutive Swin Transformer blocks performing

spatial aggregation. The first block applies self-attention

within a local window, while the second operates with a

shifted window to enhance context capture across the spa-

tial domain. Notably, visual features g0 = P v(F v
i ), derived

through a linear projection layer P v , serve as guidance for
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mapping, with F v
i ∈ R

(H×W )×d and d representing the fea-

ture dimension. Then, the aggregated spatial features, with

object-level text features as auxiliary information, are input

into a Transformer layer to capture relationships among dif-

ferent object categories. This process can be expressed as:

F ′′
o (i, :) = ΦT

CA([F
′
o(i, :); gt]), (4)

where F ′
o(i, :) ∈ R

No×dF and ΦT
CA

(·) represents the Trans-

former block used for textual perception. Unlike the vi-

sual perception pathway, this layer employs a linear Trans-

former, followed by a linear projection layer after the multi-

head attention mechanism. Such a architecture facilitates

flexible adjustments within the feature space, thereby sup-

porting the integration of auxiliary information. Addition-

ally, the text features gt = P t(F t
o), obtained through the

linear projection layer P t, guide the mapping of query and

key features, where F t
o ∈ R

No×d and d denotes the dimen-

sionality of the feature vector.

Finally, the text perception block output undergoes bilin-

ear upsampling and combines corresponding feature maps

extracted from CLIP. This merged feature set is then pro-

cessed through a 3 × 3 convolutional layer. The sequence

is repeated twice to generate a coarse-grained, object-level

segmentation output, which is then passed to the prediction

head for final inference:

M(i) = Do(F
′′
o (i, :)), (5)

where Do denotes the decoder and the segmentation head,

and M(i) denotes the class probability maps obtained from

coarse-grained perception, which corresponds to coarse-

grained information. The detailed structure of this module

is presented in Appendix A.1.

3.4. Coarse­grained Object Guidance Module

We use the differences between different coarse-grained ob-

jects to guide the visual semantic space. Specifically, we

compute the similarity between visual features and text fea-

tures enriched with structural knowledge as follows:

CV
p (i, n) =

F v
i (i) · F

t
G(n)

∥F v
i (i)∥∥F

t
G(n)∥

, (6)

where n represents the index of an object-level class.

To effectively leverage coarse-grained object informa-

tion, we design a mask encoder that extracts multi-scale

features through convolutional layers. This architecture

progressively captures hierarchical representations, enhanc-

ing model expressiveness through nonlinear activations and

downsampling operations. The resulting features are then

refined to generate the final coarse-grained representation:

g3(i) = ΦE(M(i)), (7)

where ΦE(·) denotes the mask encoder. The detailed struc-

ture of this module is presented in Appendix A.2.

Next, we compute the similarity between the mask fea-

tures and the structural knowledge-embedded text features:

CM
p (i, n) =

g3(i) · F
t
G(n)

∥g3(i)∥∥F
t
G(n)∥

, (8)

and integrate this into the original similarity information:

Cp(i, n) = CV
p (i, n) + CM

p (i, n). (9)

This approach enhances coarse-grained guidance by captur-

ing fine-grained local details and minimizing background

interference, thus providing a more precise foundation

for fine-grained segmentation. To address the complex-

ity inherent in high-dimensional feature spaces, we input

the combined similarity map Cp(i, n) into a convolutional

layer. This layer outputs the initial part-level similarity fea-

ture Fp ∈ R
(H×W×Np×dF ), where H and W represent the

spatial dimensions of the feature map, Np denotes the num-

ber of part categories, and dF indicates the dimensionality

of the similarity feature vector.

3.5. Fine­grained Perception Module

The fine-grained perception module extends the coarse-

grained perception by embedding structural relationships

among parts and integrating coarse-grained object distinc-

tions as guiding knowledge. The detailed structure of this

module is described in Appendix A.3. We enhance the

visual perception path by stacking three consecutive Swin

Transformer blocks to achieve fine-grained feature capture.

Specifically, the first block applies self-attention within a

local window, guided by coarse-grained information; the

second introduces shifted window self-attention; and the

third returns to local window self-attention with additional

coarse-grained guidance. This architecture focuses on fore-

ground elements, minimizes background noise, and refines

understanding of parts relationships. In this enhanced mod-

ule, we substitute the original CLIP guidance feature g0

with coarse-grained information g3 to focus more precisely

on object-specific details:

F ′
p(:, n) = ΦV

FA([Fp(:, n); g3;M]), (10)

where F ′
p(:, n) ∈ R

(H×W )×dF represents the refined part-

level features in the visual perception pathway. Addition-

ally, to replace the original textual guidance, we incorporate

part structure knowledge graph information within the text

features, gG, in place of gt:

F ′′
p (i, :) = ΦT

FA([F
′
p(i, :); gG]). (11)
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3.6. Objective Function

We use cross-entropy loss functions to optimize segmenta-

tion at both the object and part levels. The final loss func-

tion combines the object-level and part-level losses with

weighted terms to balance the optimization process:

L = λoLobject + λpLpart, (12)

where λo and λp are coefficients that control the relative

contributions of the object and part losses, ensuring bal-

anced optimization across segmentation levels.

4. Experiments

4.1. Datasets and Evaluation Metrics

To comprehensively evaluate the effectiveness of hierar-

chical perception and knowledge guidance in our method,

we conduct experiments in both closed-set and open-

vocabulary settings, utilizing three widely adopted datasets

for a thorough assessment in each setting.

PartImageNet [19] is a large-scale dataset for part-level

segmentation with COCO-comparable annotations. It cov-

ers 158 ImageNet categories (24,080 images), organized

into 11 superclasses and 40 part categories, supporting fine-

grained part segmentation.

Pascal-Part [10] augments Pascal VOC with part-level an-

notations for 10,103 images over 20 object classes. We

use 16 classes with part annotations, merging similar labels

(e.g., left-wing/right-wing → wing).

Pascal-Part-116 [56] is a benchmark for open-vocabulary

part segmentation, with 8,431 training and 850 test images.

It refines Pascal-Part by merging classes and removing di-

rectional indicators, resulting in 116 part categories across

20 object classes.

Evaluation Metrics. For closed-set evaluation, we use

mean Intersection over Union (mIoU) and mean Pixel Ac-

curacy (mACC). For open-vocabulary evaluation, we report

mIoU on seen and unseen classes, and use harmonic IoU

(hIoU) for balanced performance across both.

4.2. Implementation Details

For all experiments, we set the feature dimensionality dF =

128. In the model architecture, Nm= 4 defines the number

of convolutional layers in the mask encoder, Nt= 2 speci-

fies the number of iterations for alternating visual and text

perception modules within the perception module, and Ng=

2 denotes the number of graph convolutional layers in the

GCN for structural knowledge embedding. Our framework

is implemented in PyTorch and trained on a setup with 4

NVIDIA RTX 3090 GPUs. The CLIP ViT-B/16 text and

vision encoders are fine-tuned and initialized with weights

from the official pre-trained CLIP model, while the remain-

ing model weights are initialized randomly. Input images

Method Venue Backbone mIOU(%) mACC(%)

SemanticFPN [28] CVPR’19 ResNeXt 56.76 -

Deeplab v3+ [9] ECCV’18 ResNet-50 60.57 71.07

MaskFormer [11] NeurIPS’21 ResNet-50 60.34 72.75

MaskFormer-Dual NeurIPS’21 ResNet-50 58.02 70.42

Compositor [20] CVPR’23 ResNet-50 61.44 73.41

SegFormer [61] NeurIPS’21 MiT-B2 61.97 73.77

MaskFormer [11] NeurIPS’21 Swin-T 63.96 77.37

MaskFormer-Dual NeurIPS’21 Swin-T 61.69 75.64

Compositor [20] CVPR’23 Swin-T 64.64 78.31

MaskFormer [11] NeurIPS’21 Swin-B 65.24 78.84

UniLSeg-20 [38] CVPR’24 Swin-B 62.46 -

UniLSeg-100 [38] CVPR’24 Swin-B 63.87 -

CAT-Seg [12] CVPR’24 ViT-B/16 67.73 79.52

72.69 82.46
KPS (ours) This Work ViT-B/16

(+4.96) (+2.94)

Table 1. Comparison of KPS and classical segmentation models

on PartImageNet and existing methods for part segmentation.
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Figure 4. A radar chart comparing the performance of CAT-Seg

[12] and KPS (ours) across various part categories, illustrating the

effectiveness of KPS in fine-grained segmentation tasks.

are resized to 512×512 without any data augmentation ap-

plied. We use the AdamW optimizer with a cosine learning

rate schedule. The learning rates are set to 0.003 for Par-

tImageNet, 0.002 for Pascal-Part, and 0.001 for the Pascal-

Part-116 dataset, with a scaling factor of 0.01 applied to the

CLIP encoders to ensure stable fine-tuning. The batch size

for training is set to 8, with a weight decay of 0.0001. Mod-

els are trained for a total of 50,000 iterations.

4.3. Main Results

In a closed-set setting, we compare KPS with classical seg-

mentation frameworks [9, 11, 61], the current state-of-the-

art part segmentation methods [20, 38], and the baseline

CAT-Seg [12]. As shown in Tables 1 and 2, KPS outper-

forms the baseline on multiple metrics.

Part Segmentation on PartImageNet and Pascal-Part.

As shown in Table 1 and Table 2, our model outperforms all

existing methods on both datasets. Compared to classical

segmentation methods like MaskFormer[11] and part seg-

mentation approaches such as Compositor[20], KPS consis-

tently achieves superior performance. Furthermore, to ac-

count for differences in model backbone, we compare with

the recent CAT-Seg [12] model, which serves as our base-
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Method Venue Backbone mIOU(%) mACC(%)

MaskFormer [11] NeurIPS’21 ResNet-50 47.61 58.59

MaskFormer-Dual NeurIPS’21 ResNet-50 46.60 57.96

Compositor [20] CVPR’23 ResNet-50 48.01 58.83

MaskFormer [11] NeurIPS’21 Swin-T 55.42 67.21

MaskFormer-Dual NeurIPS’21 Swin-T 54.21 66.42

Compositor [20] CVPR’23 Swin-T 55.92 67.63

MaskFormer [11] NeurIPS’21 Swin-B 56.83 68.46

CAT-Seg [12] CVPR’24 ViT-B/16 58.69 69.85

62.42 72.13
KPS (ours) This Work ViT-B/16

(+3.73) (+2.28)

Table 2. Comparison of KPS and classical segmentation models

on Pascal-Part and existing state-of-the-art methods.

line and also incorporates CLIP, but lacks knowledge guid-

ance. The results show that KPS achieves 72.69% mIoU

and 82.46% mACC on PartImageNet, outperforming CAT-

Seg by 4.96% and 2.94%, respectively. On the Pascal-Part

dataset, KPS achieves 62.42% mIoU and 72.13% mACC,

outperforming CAT-Seg [12] by 3.73% and 2.28%, respec-

tively. These improvements highlight that the performance

gain is not due to a stronger backbone but rather to the

knowledge guidance, which leverages part-level structure

and coarse-grained knowledge to guide fine-grained seg-

mentation. This allows KPS to better capture the complex

structural relationships between parts, thereby enhancing

part segmentation performance. These comparisons ulti-

mately validate the effectiveness of knowledge guidance in

part segmentation tasks.

To thoroughly validate the effectiveness of knowledge-

guided and hierarchical perception, we evaluate KPS

in an open-vocabulary setting, comparing it with open-

vocabulary semantic segmentation [12, 41, 62] and open-

vocabulary part segmentation methods [13, 52, 56].

Part Segmentation on Pascal-Part-116. As shown in Ta-

ble 3, KPS outperforms existing open-vocabulary segmen-

tation methods, achieving a 3.25% improvement in hIoU.

Compared to the best-performing approach [13], KPS im-

proves hIoU by 3.25%, with mIoU gains of 8.32% and

1.55% on seen and unseen categories, respectively, vali-

dating the effectiveness of knowledge guidance and hier-

archical perception. It also surpasses the baseline CAT-Seg

[12] by 7.2% in hIoU. Notably, KPS achieves substantial

gains on seen categories, highlighting its ability to leverage

part-level structural knowledge while maintaining competi-

tive performance on unseen ones. These results confirm that

knowledge guidance enhances both segmentation accuracy

and generalization in open-vocabulary part segmentation.

4.4. Visual Analysis and Ablation Study

We conduct visualization analysis on PartImageNet and per-

form ablation experiments on Pascal-Part to verify the ef-

fectiveness of each module.

Visual Analysis. Conventional part segmentation methods

Method Venue Backbone Seen Unseen Harmonic

ZSSeg+ [62] ECCV’22 ResNet-50 38.05 3.38 6.20

VLPart [52] ICCV’23 ResNet-50 35.21 9.04 14.39

CLIPSeg [41, 56] CVPR’22 NeurIPS’23 ViT-B/16 27.79 13.27 17.96

CAT-Seg [12, 56] CVPR’24 NeurIPS’23 ViT-B/16 28.17 25.42 26.72

PartCLIPSeg [13] NeurIPS’24 ViT-B/16 43.91 23.56 30.67

52.23 25.11 33.92
KPS (ours) This Work ViT-B/16

(+8.32) (+1.55) (+3.25)

Table 3. Comparison of KPS with classical open-vocabulary and

state-of-the-art part segmentation models on Pascal-Part-116.

EXP Baseline FPM COGM SKGM mIOU(%) mACC(%)

(I) ✓ 58.69 69.85

(II) ✓ ✓ 59.10 69.96

(III) ✓ ✓ ✓ 60.24 70.11

(IV) ✓ ✓ ✓ ✓ 62.42 72.13

Table 4. Impact of Different Modules in Our KPS on Pascal-Part,

showing the effect of integrating various modules into the baseline.

treat each category as an independent entity, typically label-

ing parts in an “object-part” format (e.g., “Bird head”). This

approach results in clustering identical parts across differ-

ent objects while dispersing parts within the same object,

as visualized on the PartImageNet dataset in Figure 6(a),

thereby overlooking stable structural relationships. We in-

troduce the SKGM to address this issue, which captures part

connections using a graph convolutional structure. By em-

bedding these complex structural relationships directly into

the text features F t
G, as shown in Figure 6(b), SKGM en-

hances feature representation and strengthens the model’s

capability for precise, fine-grained part segmentation.

Effectiveness of our modules. Table 4 presents the abla-

tion study results on the Pascal-Part dataset, selected for its

diverse part categories and fine-grained annotations, effec-

tively highlighting the contribution of each module within

the KPS framework. The baseline model (I) is built upon

the cost aggregation model [12], performing part segmen-

tation independently through the perceptual module with-

out knowledge guidance. In setting (II), we incorporate the

FPM to refine structural details within the fine-grained per-

ceptual module. Setting (III) further introduces the COGM,

providing object-level visual guidance as coarse-grained

knowledge to enhance object distinction. Setting (IV) inte-

grates the SKGM, embedding part-level structural relation-

ships into textual features to improve the model’s percep-

tion of fine-grained part structures. Together, these mod-

ules constitute the KPS framework, designed for accurate

fine-grained part segmentation.

Effectiveness of Knowledge Graph Design. As shown in

Table 5, results on the Pascal-Part dataset demonstrate that

the LLM-based knowledge graph, which captures authentic

structural relationships, consistently achieves the best per-

formance across all configurations. Specifically, fully con-

necting all parts prevents the model from distinguishing hi-

erarchical relationships, making it difficult to differentiate
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Figure 5. Visualizations of part segmentation on Pascal-Part. The first row shows the original images, the second row shows the ground

truth, and the third row presents the predictions from our proposed KPS model. These high-quality part predictions demonstrate the

effectiveness of our proposed approach.

        Tail
Tail

Tail

Wing
Wing
Body

Hand
Body

Body

Fin

       Body
            Foot

  Foot

         Foot
BodyFoot

Body
Body

Body

MouthHead

Head

Tail

Engine

Head

 Body
Tire

Seat

Tire
Side Mirror

Body
Sail

           Head Head

Body

           Head           Head

           Head

BodyHand

Tail

Tail Tail

Wing
Body

Body

Body

Body

Body

Body

Side Mirror
Body Tire

         Foot
Body

                Head
Engine Body Wing

Foot

Body
Tail

Head
Fin

Head Head
Seat

Tire
Tail

Head         
Foot

Sail

         Foot

Mouth

                HeadTail

                Head

: Fish: Snake: Biped : Boat : Reptile : Quadruped: Aeroplane : Bird : Bottle : Bicycle : Car

(b)  ���(a)  ���
                Head

Tail

   Tail

Figure 6. t-SNE visualization of text features on the PartImageNet

dataset: (a) Original text features; (b) Text features embedded with

part structure relationships from the knowledge graph. Similar col-
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Connection Types LLM mIOU(%) mACC(%)

Fully connected across all parts ✗ 60.47 70.28

Fully connected within parts of individual objects ✗ 61.21 70.43

True structural relationships between parts GPT-4 62.42 72.13

Table 5. Ablation Study on Knowledge Graph Connection.

between semantically similar or distinct parts. Additionally,

restricting connections to parts within the same object pre-

serves local structure but overlooks potential commonalities

across different objects, limiting the model’s understanding

of intra-object part relationships. In contrast, the knowl-

edge graph based on true structural relationships effectively

models both hierarchical and cross-object connections, en-

abling the model to maintain local structural integrity while

accurately capturing relationships among different parts.

Effectiveness of the Ng in the GCN. As shown in Table 6,

we analyze the impact of the number of convolutional layers

(Ng) of the graph convolutional network (GCN) within the

SKGM module, which embeds part structural knowledge

into textual features. We evaluate different settings with

Ng ∈ {1, 2, 3, 4}. The results show that increasing Ng en-

Ng = 1 Ng = 2 Ng = 3 Ng = 4

mIOU (%) 60.75 62.42 61.82 61.78

mACC (%) 70.69 72.13 71.41 71.04

Table 6. Ablation Study on the Number of Convolutional Layers

Ng in the GCN using TAGConv.

hances the GCN’s ability to capture complex structural rela-

tionships, improving segmentation performance. However,

when Ng= 3 or Ng= 4, the performance gain saturates, and

slight degradation occurs due to overfitting in deeper GCNs,

where feature representations become overly similar, weak-

ening the model’s ability to distinguish part boundaries.

Additional ablations are shown in Appendix.

5. Conclusion

In this work, we propose a knowledge-guided part segmen-

tation framework that simulates real-world cognitive pro-

cesses by capturing the differences between coarse-grained

objects and the structural relationships among fine-grained

parts. It transforms this information into structured knowl-

edge to guide segmentation, enabling a deeper understand-

ing of object composition and providing richer contex-

tual awareness. Specifically, we employ the Knowledge

Acquisition process to structure relationships among parts

into a nearest-neighbor knowledge graph, embedding this

structural information into text features through the Struc-

tural Knowledge Guidance Module. This module enhances

the model’s understanding of fine-grained structures by in-

corporating part-level relational knowledge. Meanwhile,

we introduce object-level distinctions as auxiliary guidance

through the Coarse-grained Perception and Object Guid-

ance Module, which integrates coarse-grained knowledge to

enhance fine-grained differentiation, facilitating hierarchi-

cal perception. We conduct experiments on PartImageNet,

Pascal-Part, and Pascal-Part-116 datasets, and the results

strongly validate the effectiveness of knowledge guidance.

5497



Acknowledgement

This work was supported in part by the Key Project of

National Natural Science Foundation of China (62431020,

62231027), the Joint Fund Project of National Natural Sci-

ence Foundation of China (No.U22B2054), the Fund for

Foreign Scholars in University Research and Teaching Pro-

grams (the 111 Project) (No.B07048), the Postdoctoral Fel-

lowship Program of China Postdoctoral Science Founda-

tion (CPSF) (No.GZC20232033), the Program for Cheung

Kong Scholars and Innovative Research Team in Univer-

sity (No.IRT 15R53), the Key Scientific Technological In-

novation Research Project by Ministry of Education and

the National Key Laboratory of Human-Machine Hybrid

Augmented Intelligence, Xi’an Jiaotong University (No.

HMHAI-202404, No. HMHAI-202405).

References

[1] Researchers’ work from xidian university focuses on net-

works (mfnet: a novel gnn-based multi-level feature network

with superpixel priors). Network Daily News, (7):82–83,

2023. 1

[2] KM Annervaz, Somnath Basu Roy Chowdhury, and Ambed-

kar Dukkipati. Learning beyond datasets: Knowledge graph

augmented neural networks for natural language processing.

arXiv preprint arXiv:1802.05930, 2018. 3

[3] Nikita Araslanov and Stefan Roth. Single-stage seman-

tic segmentation from image labels. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 4253–4262, 2020. 2

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE transactions on pattern anal-

ysis and machine intelligence, 39(12):2481–2495, 2017. 1

[5] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya

Malaviya, Asli Celikyilmaz, and Yejin Choi. Comet: Com-

monsense transformers for automatic knowledge graph con-

struction. arXiv preprint arXiv:1906.05317, 2019. 3

[6] Xavier Bresson and Thomas Laurent. Residual gated graph

convnets. arXiv preprint arXiv:1711.07553, 2017. 2

[7] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203, 2013. 4
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