This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Radiant Foam: Real-Time Differentiable Ray Tracing

Shrisudhan Govindarajan*', Daniel Rebain*?, Kwang Moo Yi?, Andrea Tagliasacchi

1,3,4

1Simon Fraser University, 2University of British Columbia,
3University of Toronto, *Google DeepMind, *equal contributions

radfoam.github.io

| 4

Figure 1. Teaser — We introduce the Radiant Foam differentiable 3D representation, which can be used to learn accurate radiance fields
for any novel view synthesis applications (left). If we slice our foam along the plane highlighted by the red “laser”, we expose (right) the
internal structure of our representation: a polyhedral mesh that provides an injective parameterization of the 3D domain. Our representation
is a foam, as the polyhedral cell structure is analogous to a closed-cell foam which partitions space into regions physically separated by thin,
flat walls. It is radiant, as each foam bubble emits a view-dependent radiance that can be used to model the plenoptic function.

Abstract

Research on differentiable scene representations is consis-
tently moving towards more efficient, real-time models. Re-
cently, this has led to the popularization of splatting methods,
which eschew the traditional ray-based rendering of radi-
ance fields in favor of rasterization. This has yielded a
significant improvement in rendering speeds due to the ef-
ficiency of rasterization algorithms and hardware, but has
come at a cost: the approximations that make rasteriza-
tion efficient also make implementation of light transport
phenomena like reflection and refraction much more diffi-
cult. We propose a novel scene representation which avoids
these approximations, but keeps the efficiency and recon-
struction quality of splatting by leveraging a decades-old
efficient volumetric mesh ray tracing algorithm which has
been largely overlooked in recent computer vision research.
The resulting model, which we name Radiant Foam, achieves
rendering speed and quality comparable to Gaussian Splat-
ting, without the constraints of rasterization. Unlike ray
traced Gaussian models that use hardware ray tracing accel-
eration, our method requires no special hardware or APIs
beyond the standard features of a programmable GPU.

4135

Figure 2. Radiant Foam — (left) In a stable foam, the pressure
inside each bubble is roughly equal. The interfaces between bubbles
settle into shapes that balance forces, leading to polygonal cells
resembling Voronoi patterns (right). Our representation is nothing
but a dense Voronoi tessellation of 3D space, where each point
belongs to exactly one Voronoi cell. The position of Voronoi sites is
differentiable, making it amenable to gradient-based optimization.

Figure 3. Ray-based effects — Ray tracing simplifies the implementation of many effects which are difficult to approximate with rasterization.
To motivate our work, we show here examples of integrating reflections, refractions, and non-linear camera models into our rendering
pipeline. Each would be complicated to achieve with rasterization, but requires only minor modification to our rendering code. S

1. Introduction

Neural radiance fields (NeRF) have revolutionized 3D com-
puter vision by allowing the extraction of dense 3D rep-
resentations from collections of 2D images [29]. In their
early days, radiance fields suffered from low training and
testing/rendering speed. Since then, researchers have de-
veloped more efficient models [31], as well as techniques
for distilling models which enable highly efficient render-
ing/testing [5]. In particular, the real-time rendering perfor-
mance was made possible by leveraging the rasterization
pipeline readily available on GPU hardware. Soon thereafter,
researchers proposed to also incorporate rasterization into
the training process, leading to the development of the now
wildly popular 3D Gaussian Splatting (3DGS) [19].

By comparing the development of radiance fields to that
of classical graphics, one may argue that history is repeating
itself: rasterization became ubiquitous in computer graphics
because it is amenable to real-time rendering workloads.
However, light effects that are trivial to implement in ray
tracing (e.g. reflections, refractions, and transparency; see
Fig. 3), are rather difficult to implement with rasterization.'
Consider the “Graphics Gems” series of books” as a practical
example, given how much of their content describes clever
implementation tricks to express advanced light effects with
rasterization engines. Nonetheless, since the introduction of
dedicated hardware support (NVIDIA RTX) in 2018, real-
time rendering engines have, at least partially, returned to
simulate light transport via ray tracing.

Recently, research on 3DGS representations has flour-
ished, and much of this research is seemingly trying to fix
issues caused by rasterization, such as the removal of 3DGS
popping artifacts [38], or the introduction of more complex
camera projection models [16]. Others integrated ray trac-
ing with 3DGS, so to accelerate rendering and enable more
complex light behavior [30]. But these developments have
not discouraged researchers from investigating new, better,
3D representations. The community craves a return to polyg-

! After all, is this really that surprising, given that the physics of light is
taught as the propagation of light rays through an environment?
zhttp://www.qraphicsqeﬂs.orq

4136

onal meshes, as meshes are the unquestionable workhorse
of modern computer graphics. And while we can find very
interesting attempts at employing meshes for the modeling
of radiance fields [11, 23, 49], as we will later discuss, none
of these has realistically been able to oust 3DGS as the rep-
resentation for learning radiance fields.

Rather than revisiting history, and proposing clever en-
gineering tricks that enable rasterization to work slightly
better, we take a drastically different approach. In particular,
we highlight how, over two decades ago, Weiler et al. [57]
showed that fields represented by volumetric meshes admit a
very efficient ray-tracing algorithm which requires no special
hardware. This approach has been subsequently overlooked
in the resurgence of volume rendering methods, and we hope
to re-introduce volumetric mesh models which can bene-
fit from it to the differentiable rendering community.” In
this paper, we make this representation differentiable, and
carefully design refinement techniques for the underlying
mesh. These refinements allow us to accurately represent
the surface of objects, and yet render efficiently by skipping
empty portions of volume.

In a nutshell, our solution, which we name Radiant
Foam (Fig. 2) provides 3DGS-like rendering speed and qual-
ity, but has a training modality based on rays that resembles
the one from NeRF [29]. This implies that many NeRF tech-
niques can now be seamlessly adapted to our method, with
the significant advantage that the underlying geometry is
explicitly represented by a volumetric mesh. We parameter-
ize this volumetric mesh as a 3D Voronoi diagram (Fig. 1),
which enables training of a mesh structure with dynamic
connectivity through gradient descent by avoiding the dis-
continuities associated with discrete changes in other rep-
resentations. We also propose a coarse-to-fine training ap-
proach, which enables rapid construction of mesh models
with adaptive resolution.

31t is also interesting to note that the volume rendering tutorial by Max
and Chen [28] that is cited in conjunction with Mildenhall et al. [29] de-
scribes volumetric rendering within the context of volumetric meshes that
partition space, which is more similar to [27] than to [29].

Figure 4. Ray tracing foams — When a ray (red) enters a cell,
we iterate through all the planar cell faces to identify the face
through which the ray exits. This exit intersection is the first
intersection along the ray with a normal vector less than 90 degrees
from the ray direction (green); other intersections are considered
back-facing (blue) and ignored. As the faces each correspond to a
neighboring cell, the tracing then proceeds by stepping into the cell
associated with the exit intersection and repeating the process.

2. Related Work

Neural Radiance Fields (NeRFs) [29] represent 3D scenes as
volumetric radiance fields encoded within coordinate-based
neural networks. This representation allows querying the
network at any spatial location to retrieve volumetric den-
sity and view-dependent color, facilitating the generation
of photo-realistic novel views. The success of NeRFs has
led to numerous follow-up works. For instance, significant
effort has been devoted to enhancing training speed [31, 41],
quality [1, 2], and to extract surfaces from the representa-
tion [54, 59]. Finally, several works investigated ways to
speed up the inference by baking the neural fields to more
performant representations [5, 8, 42, 48, 55]. While achiev-
ing high quality and fast rendering speeds, these methods
often employ multi-stage training procedures.

Point-based rasterization. Point-based rendering with prim-
itives such as circles, spheres, or ellipsoids [36, 44, 61] laid
the foundations for point-based rasterization. Differentiable
rendering using depth-based blending has also been extended
to volumetric particles in Pulsar [24], which employs sphere-
based differentiable rasterization to render scenes with mil-
lions of spheres in real time. While Pulsar provides a differ-
entiable representation, Kerbl et al. [19] provides more ex-
pressive primitives in the form of soft, anistropic Gaussians,
which can be differentiably optimized to fit the scene content.
This approach has inspired several follow-up works aimed at
reducing its reliance on strong initialization [21], reducing
rendering time and memory footprints [9, 32, 35], enabling
the reconstruction of surfaces [12, 15], and improving their
ability to be trained for large spatial extents [20, 43].

Extensions of 3DGS. While significant progress has been

4137

made, these approaches still inherit the inherent limitations
of rasterization. They struggle to handle camera distortions,
model secondary lighting effects, or simulate sensor-specific
properties like rolling shutter or motion blur. Recent ef-
forts have aimed to address these challenges. For exam-
ple Niemeyer et al. [33] distilled a Zip-NeRF [3] into a 3DGS
so to model distorted cameras and rolling shutter effects. To
capture secondary lighting effects, recent works have ex-
plored incorporating occlusion information into spherical
harmonics for each Gaussian [10, 25], or leveraging shading
models and environment maps [17]. These methods either
rely on rasterization during inference [10], or during train-
ing [17, 25] hence inheriting the limitations of rasterization.
For complex lens effects, Seiskari et al. [47] modeled mo-
tion blur and rolling shutter by approximating them in screen
space through rasterization and pixel velocities. Our ap-
proach introduces a principled framework for efficient ray
tracing of volumetric primitives, overcoming the aforemen-
tioned limitations and enabling the simulation of effects like
reflection, refraction, and camera distortion.

2.1. Ray tracing of volumetric primitives

Ray tracing has been a cornerstone of photo-realistic ren-
dering since its introduction [58]. It enables the accurate
simulation of light interactions with scene geometry, making
it indispensable for applications requiring effects such as
shadows, reflections, and refractions. Modern advancements
in hardware have further accelerated ray tracing, allowing
for real-time applications [18]. Recently, Moenne-Loccoz
et al. [30] and Condor et al. [6] integrated the NVIDIA Op-
tiX ray tracer with 3DGS [19] for fast ray tracing, while Mai
et al. [26] employed it with constant ellipsoids. While these
methods perform real-time ray tracing, they suffer from the
tendency of 3DGS [19] to produce overlapping primitives
which degrade the quality of the hierarchical acceleration
structure and increase the number of intersections per ray.
Our method represents the scene using a non-overlapping
polyhedral mesh without the need for a secondary accelera-
tion structure, thereby efficiently avoiding these limitations.

2.2. Delaunay triangulation and Voronoi diagrams

Voronoi diagrams have been used for representing infor-
mation in various fields. In computer graphics, Delaunay
triangulations [7] and Voronoi diagrams [53] have been ex-
tensively studied for meshing (surfaces and volumes), spatial
partitioning [13, 50, 56], and differentiable simulation [34].
Recently, they have also found novel applications in the
realm of differentiable rendering. DMTet [49] introduced
a deformable tetrahedral grid, generated using Delaunay
triangulation, as an underlying 3D representation, while
Tet-Splatting [1 1] implements a differentiable rasterizer for
this representation. Similarly, DMesh [51] proposes a dif-
ferential representation to model Delaunay triangulations

Figure 5. Delaunay and its dual Voronoi — (left) Given a set of points (red) in R™, we can find circumspheres (blue) which each pass
through N+1 points. (center) The set of all circumspheres which contain no points on their interior defines the Delaunay triangulation,
where the N+1 points tangent to each circumsphere form a simplex. (right) These circumspheres also describe the Delaunay triangulation’s
dual, the Voronoi diagram: the centers of circumspheres tangent to a point become the vertices of the Voronoi cell containing that point.

to optimize for mesh connectivity. DeRF [39] leverages
Voronoi diagrams to spatially decompose a scene, resulting
in faster training and inference, while Tetra-NeRF [23] em-
ploys a tetrahedral Delaunay mesh to model scenes more
effectively. While these methods inherit the ray-marching
approach of [29] for volume rendering, they share a com-
mon limitation: slow rendering speeds caused by many MLP
evaluations required per ray. In contrast, with our method
we propose to optimize the mesh topology generated by the
Voronoi diagram as a differentiable polygonal mesh. Our
efficient ray tracing of volumetric particles also significantly
accelerates the rendering speed.

3. Method

Our method addresses the now-familiar problem of construct-
ing representations of scenes from image collections. As
with NeRF [29] and its numerous successors, we achieve
this reconstruction by gradient-based optimization of a dif-
ferentiable scene representation. In the following sections
we propose a volumetric mesh-based differentiable represen-
tation, and explain how we are able to effectively optimize it
from image supervision.

3.1. Volume rendering

Volume rendering has become the workhorse of modern dif-
ferentiable scene reconstruction methods. Volume rendering
allows all points in space to make a continuously varying
contribution to the observed color of viewing rays which
pass through those points. The effect of this contribution is
controlled by a density field, which creates occlusions, and
a radiance field, which determines the brightness of light
observed. Unlike many alternative rendering formulations,
volume rendering of continuous fields is fully continuous
with respect to all degrees of freedom, including both the

4138

viewpoint, as well as the density and radiance field values.
This property makes it very amenable to gradient-based opti-
mization. Volume rendering is defined by an integral over
the segment (¢min, tmax) Of @ viewing ray. Specifically the
observed color c, for aray r is:

o= [T(W) - o(e(t) -cx(®) dt, ()
T(t) =exp < /t:m o(r(u)) du> ,)

where r(t) denotes the point in 3D space at distance ¢ along
ray r, and o(-) and c(-) denote the density and radiance
fields respectively; see [52] for more details.

Piecewise constant volumes. In the case of piecewise con-
stant o(-) and c(-), the integral can be expressed as a sum
over all [V ray segments with constant field values:

N

e =Y Tn-(1—exp(—0ndy)) - cp dt, 3)
n=1

Tn = 1_[6)(])<—0'j(5j)7 (4)
j=1

where ¢, is the width of segment 7. This formulation admits
a simple implementation as a loop over the segments in order
of depth. NeRF-based methods typically use Eq. (3) as an
approximation to Eq. (1), with segments sampled according
to some importance sampling scheme, e.g. see [2].
Conversely, in our model these forms are exactly equiva-
lent. We propose to leverage the algorithm by Weiler et al.
[57] along with a model of constant field values within the
cells of a volumetric mesh (see Fig. 4), arriving at a repre-
sentation for which Eq. (3) gives the exact volume rendering

\ \

Figure 6. Edge flips — The connectivity of the Delaunay graph (green) is sensitive to small positional perturbations, leading to “edge flips’

\

)

in the triangulation. These discrete changes occur at configurations where the circumspheres (blue) of two neighbouring simplices become
identical. In the dual Voronoi diagram, this configuration also corresponds to a discrete change, but the cell boundary which changes has an
area of zero at the moment of the flip (center). Consequently, while there are still discrete changes in the adjacency structure of the Voronoi
diagram, the shapes of the cells vary continuously with the positions of the points (red), which enables gradient-based optimization.

result. In the volume rendering literature, this is also known
as regular tracking [37, Chapter 15.2.2]. While this choice
is highly advantageous in avoiding any complicated or ex-
pensive sampling schemes, we must take great care to not
interfere with the continuity of the representation, which
is critical for gradient-based optimizers. In particular, the
volumetric mesh itself receives gradients only through the
segment widths d,,, which are determined by the locations of
ray intersections with cell boundaries. It is therefore critical
that these boundary intersections vary continuously with the
optimizable parameters of the model.

3.2. Differentiable mesh representation

Constructing mesh representations of volumes or surfaces
through gradient-based optimization is hardly a new prob-
lem, and many methods tackle it using a variety of strategies;
see Shen et al. [49] and citations therein. Our method, how-
ever, encounters and must solve a challenge that most mesh
optimization methods either avoid, or solve with discrete
optimization techniques. Generally, meshes are determined
by degrees of freedom in two groups: vertex locations) and
cells C (i.e. connectivity, or mesh topology). Assuming all
other parameters are fixed, optimizing for vertex locations is
typically straightforward, as the intersections between rays
and cell boundaries vary smoothly with vertex locations.
The true challenge arises if one desires to also optimize the
connectivity C of the representation.

The Delaunay triangulation. Because mesh connectivity
is inherently discrete, we can not optimize it directly with
gradient-based methods. To avoid this problem, we can
define connectivity in terms of the vertex locations, such
that each possible configuration of vertices corresponds to
a unique set of cells. The most obvious choice for this
mapping is the Delaunay triangulation [7], which in 3D

4139

comprises the set of all tetrahedral cells ¢;€C which may
be formed from four vertices such that their circumspheres
contain no additional vertices (the so-called “Delaunay crite-
rion”). This construction is unique for point sets in general
position (those lacking groups of 5 or more co-spherical
points), and is easily computed using well-known and effi-
cient algorithms; see Section 3.4. This strategy encounters
two significant problems if we wish to use it as a basis for
differentiable volume rendering: (1) the discrete nature of
the mesh connectivity is not entirely avoided, as the bound-
aries of Delaunay cells undergo discrete “flips” whenever a
vertex enters the circumsphere of another cell. These flips
introduce discontinuities into the optimization landscape,
which interfere with the convergence of gradient descent;
(2) the number of tetrahedra in this model is not fixed in this
model, and therefore it is not straightforward to associate
each cell with optimizable o and c values as required for
volume rendering. The latter issue could be solved by asso-
ciating field values with vertices (vs. tets), and interpolating
those values within the cell, but this complicates volume
rendering.

The Voronoi diagram. Rather than utilize the Delaunay
mesh directly and suffer its limitations, we instead look to
the dual graph of the Delaunay triangulation: the Voronoi
diagram [53]. As shown in Figure 5, this is constructed
by placing a vertex at the circumcenter of each Delaunay
tetrahedron; it partitions space into convex polyhedral cells
c;€C consisting of points which share a nearest neighbour
among the primal vertices” p; of the Delaunay triangulation:

®)

ci={rcR3: argmin ||z — p;|| = i}.
j

This may at first seem like a strange choice... after all, if the

4Also known as Voronoi “sites” or “seeds”.

Delaunay Triangulation is unavoidably discontinuous in op-
timization, will not its dual also suffer this issue? The an-
swer to this question lies in the fact that any discrete change
in the connectivity of the Voronoi Diagram exactly coincides
with the point that the affected cell faces attain zero surface
area. As shown in Figure 6, the discrete flips are effectively
hidden within these zero-volume regions of space, and the
resulting field representation remains completely continuous
with respect to the primal vertex locations. For a rigorous
treatment of this property of the Voronoi diagram, see the
proof by Reem [40] that Voronoi cells in R are stable with
respect to primal vertex positions. The number of cells
in the Voronoi diagram is also constant regardless of con-
figuration, which makes the association of ¢ and c values
to cells... trivial. The resulting model is then effectively a
learnable point cloud, not dissimilar to the formulation of
3D Gaussian Splatting [19], though lacking the per-point co-
variance matrix. The only remaining issue is that our ray
tracing algorithm [27] expects tetrahedral cells. We there-
fore modify the algorithm to handle the more general case
of convex cells. This modified tracing process pre-fetches
the neighboring vertices of each vertex, thereby allowing an
efficient iteration over the cell faces to find ray intersections.
For more detail on this algorithm, see the supplementary
material.

3.3. Optimization

Similarly to Kerbl et al. [19], the (mostly) local nature of
Voronoi cells renders the optimization landscape more prone
to local minima. We follow a similar strategy, by first care-
fully initializing the optimization, and then adaptively densi-
fying and pruning Voronoi sites. Additionally, to promote the
formation of surface-like densities, we also employ a regular-
ization objective similar to the distortion loss [2] commonly
used by NeRF methods.

Densification. Similarly to Kerbl et al. [19], to initial-
ize training we start with a sparse point cloud obtained
from COLMAP [46]. Over training, we perform densi-
fication and pruning operations to control the number of
Voronoi sites and their density, allowing the model to adap-
tively re-allocate representational capacity to areas of space
with more geometric and/or photometric detail. =~ We ob-
serve that gradients of the reconstruction loss with respect to
Voronoi site locations can be used to identify cells which are
underfitting the training signal. We therefore use the norm
of this gradient multiplied by the approximate radius of the
cell as a measure of which cells require further densification.
Inspired by Kheradmand et al. [21], we select the candidates
for densification by sampling a Multinomial distribution with
probability mass function proportional to this measure.

Pruning. Towards building a parsimonious representation,
we remove cells from the Voronoi diagram that do not con-

4140

tribute to rendering. However, it is not sufficient to simply
delete “empty” cells (i.e. zero density), as the geometry of
Voronoi cells is determined by the positions of adjacent sites,
even when the density in those cells is zero. To accurately
represent object boundaries, it is therefore essential to retain
cells with near-zero density that define the boundary. For this
reason, our pruning strategy removes Voronoi sites that have
very low density, and are surrounded by neighbors with very
low density. This pruning ensures that we eliminate sites
that neither contribute to nor define the surfaces, thereby
maintaining the accuracy of the object boundaries.

Training objectives. Similarly to the distortion loss of Mip-
NeRF 360 [2], we apply a regularization on the distribution
of contribution to the volume rendering integral along the
ray. This additional loss function encourages the density to
concentrate at surfaces and reduces visible “floater” artifacts.
This objective is computed as

ﬁquantile -]Etl,tQNZ/I[O,l] [|W71(t1) - Wﬁl(tQ)Ha (6)

where W ~1(-) denotes the quantile function (inverse CDF)
of the volume rendering weight distribution along the ray.
This form has the same effect as the distortion loss [2], but
avoids the need for a quadratic nested sum which would
increase the computational cost and memory footprint of
training. Denoting with L, the typical L2 photometric
reconstruction loss (including ground truth opacity equal to
one for all rays), our overall training objective is

L= Acrgba +)\ﬂquamile (N

3.4. Implementation details

We implemented our method in Python and C++ within the
PyTorch framework, with custom CUDA kernels for ray trac-
ing, Delaunay triangulation, and other operations requiring
high efficiency. This implementation includes an interactive
viewer and a (very) low overhead renderer, which we used to
measure frame rates. Importantly, nothing in our implemen-
tation is dependent on dedicated ray tracing hardware, or the
OptiX library, which is required by methods like [30]. There-
fore, with some engineering effort, our entire rendering loop
could easily be implemented in a portable rendering frame-
work like WebGL. For more details on training and Voronoi
optimization please refer to Section 7 in the supplementary
material.

4. Experiments

We evaluated our algorithm on a total of 9 real-world scenes
sourced from two publicly available datasets. Specifically,
we utilized the complete set of scenes from the Mip-NeRF
360 dataset [2] except for two private scenes (flowers and
treehill) and two scenes from the Deep Blending dataset [14].
These datasets contain scenes with a diverse range of cap-
ture styles, including bounded indoor scenes and expansive,

MipNeRF 360 [2] Deep Blending [14]
PSNRT SSIM7T LPIPS| FPST|PSNR1 SSIM?T LPIPS| FPSt

Rasterization

3DGS* [19] 28.69 0.87 022 293| 2941 090 032 319
Mip-Splatting [60] | 29.39 0.88 0.20 241| 2947 0.90 0.32 260
3DGS-MCMC [21]| 29.72 0.89 0.19 302] 29.71 090 032 662
Ray Tracing / Marching
Plenoxels [45] 2363 0.67 044 <30|23.06 0.80 051 <30
iNGP-Big [31] 2675 075 030 < 30| 2496 0.82 039 <30
MipNeRF360 [2] | 29.23 0.84 0.21 <1| 29.40 0.90 0.25 <1
3DGRT** [30] 2871 0.85 0.25 78| 29.23 090 0.32 119
RadiantFoam (v1)| 2847 0.83 0.21 200| 2895 0.89 026 301

Table 1. Novel view synthesis — We evaluate our method’s accuracy
in reconstructing held-out views for two standard datasets. Our
method has similar performance to 3DGS and 3DGSRT, while
providing significantly higher frame rates than the latter. FPS is
measured as an average on the test set for each scene at their native
resolutions. *For 3DGS, we report corrected LPIPS scores provided
by Bulo et al. [4] **Note that 3DGRT FPS results were measured
with an RTX 6000 Ada GPU. We report the results from the original
publication, as the code is not open source.

unbounded outdoor environments. For Mip-NeRF 360, to
make our results compatible with [19, 30], we downsample
images for the indoor scenes by a factor of two, and the out-
door scenes by four. For Deep Blending scenes, we use the
original image resolutions. All frame rates were measured
on a consumer-grade RTX 4090 GPU.

Metrics. We assess each method using three widely rec-
ognized image quality metrics: Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS). In the supple-
mentary web page we include rendered video paths for se-
lected scenes, showcasing views significantly different from
the input images.

Quantitative results. We report our quantitative results for
the Mip-NeRF 360 [2] and Deep Blending [14] in Table 1. In
terms of quality, our method achieves results comparable to,
or slightly below, those of 3DGS [19] and 3DGRT [30] (the
state of the art differentiable ray tracing method). However,
our method excels in rendering speed. As shown in Table 1,
our efficient ray-tracing implementation achieves in some
cases over 300 FPS, more than twice as fast as 3DGRT (119
FPS), while maintaining a similar rendering speed to rasteri-
zation methods.

Qualitative results. We include in the supplementary ma-
terial additional qualitative comparison showing the differ-
ences between our reconstruction and that of 3D Gaussian
splatting. These results highlight how 3DGS tends to over-
smooth some details and miss some view dependence, but
also more gracefully extrapolates to under-observed regions.

4141

SfM Densify Prune Quantile Point opt | Bonsai | Garden | Playroom | Mean

X 29.65 | 25.83 26.34 |27.00
X X 20.23 | 18.88 19.55 |19.36
X 32.25 | 26.58 | 29.46 |29.15

X 29.62 | 2535 | 29.59 |27.90

X 30.51 | 25.03 28.35 |27.96

32.15 | 26.58 | 29.59 |29.15

Table 2. Ablation table — We evaluate the impact of various compo-
nents in our method by systematically excluding them and analyz-
ing the reconstruction quality (PSNR?) on the Bonsai and Garden
scenes from MipNeRF 360 [2], as well as the Playroom scene from
Deep Blending [14].

4.1. Ablation

We isolated the different contributions and choices we made
and constructed a set of experiments to measure their effect.
Specifically, we test the following aspects of our algorithm:
initialization from SfM, our densification and pruning strate-
gies, and regularization loss. The quantitative effect of each
choice is summarized in Table 2.

Initialization from SFM. We assess the importance of ini-
tializing our Voronoi sites from the SfM point cloud. For this,
we initialize our representation with 27 points from a nor-
mal distribution with a standard deviation of 25. We observe
that our method performs relatively well even without the
StM points. Instead, it degrades mainly in the background
and tends to have more floaters in regions that are sparsely
covered in the training views, see Figure 7.

Densification and pruning. Due to numerical approxima-
tions, our triangulation algorithm can fail when processing
very close (or identical) points. This limitation prevents
us from initializing our representation directly with the fi-
nal set of points obtained by duplicating and perturbing the
Structure from Motion (SfM) points, as SfM typically pro-
duces numerous closely spaced points. Consequently, for
the ablation study on densification, we utilize the random
initialization strategy described earlier to initialize our repre-
sentation with the intended number of points. We observe
that our method significantly underperforms without den-
sification, resulting in an under-represented scene where
resources are not adequately allocated to regions with com-
plex geometry or texture. In the ablation study of our
pruning strategy, we cease pruning those Voronoi sites that
are neither surface nor boundary points. We notice that this
pruning approach has minimal impact on the quality of the
renderings because the number of prunable points is very low.
By starting with a sparse point set and progressively densi-
fying only in under-represented areas, we ensure that points
are allocated exclusively to necessary regions, resulting in
few prunable points.

No SFM No Densify+SFM No Quantile No Prune Points freeze Full

Figure 7. Ablations — We qualitatively analyze the impact of excluding various components from our method. For better visualization,
we zoom in on specific image regions and present their corresponding error maps. No SFM: While the method performs relatively well
without initialization, it degrades in sparsely covered regions of the training views. No Densify+SFM: Without densification, the method
significantly underperforms, leading to under-represented scenes. No Quantile: Disabling the quantile loss introduces floaters, degrading
rendering quality. No Pruning: Ceasing point pruning has minimal impact due to the low number of prunable points. Points freeze: Fixing
points position leads to sub-optimal mesh topology, resulting in a lack of fine details.

Quantile loss. We disable the quantile regularization while 3D Gaussian Splatting without sacrificing either the bene-
training, which results in floater artifacts that degrade render- fits of a true ray tracing-based volume renderer, or the fast
ing quality for novel views. Some scenes are more affected rendering speed of rasterization-based renderers.

by this than others, as the floaters result from data-dependent

ambiguities, but on average we find that the quantile regular- Limitations and future work. While the Voronoi-based
ization improves reconstruction metrics. representation we have proposed is very effective at con-

structing foam models through continuous optimization, the
space of possible foam models which could be used in our
rendering pipeline is much larger than what is parameter-
ized by Voronoi. Most notably, our current model always
requires that cell boundaries be equidistant between neigh-
bouring points, which leads to many small, empty cells being
needed to define a surface. Future work could potentially
. relax this requirement by generalizing beyond Voronoi di-
5. Conclusions agrams. Other open research questions include how to
compose multiple foam models together efficiently and ac-
counting for varying illumination, how to model dynamic
content instead of static scenes, how to enable editing of
scenes, and how to integrate generative modeling with our
representation. Progress in these directions could make foam
models relevant in real-time ray tracing applications cur-
rently dominated by triangle meshes, as we have already
found that foam-based ray tracing can exceed the perfor-
mance of dedicated ray tracing hardware.

Point optimization. For this ablation, we keep the positions
of the points fixed during training, leading to a suboptimal
mesh topology that lacks adaptability to scene geometry.
This rigidity prevents the mesh from dynamically optimizing
its structure, resulting in degraded novel view quality, as the
fixed topology fails to accurately represent fine details.

We have introduced Radiant Foam, a novel representation
that allows real-time differentiable ray tracing. The core of
our method is a foam structure of polyhedral cells, which
allows efficient volumetric mesh ray tracing algorithms to
be applied without relying on dedicated hardware such as
NVIDIA RT cores. We allow these cells to be continuously
optimized by parameterizing them as a Voronoi diagram,
which we show to be differentiable under volume rendering.
By doing so, we have achieved similar modeling quality as

4142

Acknowledgements. This work was supported in part by
the Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant [2023-05617], NSERC
Collaborative Research and Development Grant, the SFU
Visual Computing Research Chair, Google Research, Digital
Research Alliance of Canada, and Advanced Research Com-

puting at the University of British Columbia.

We would

like to thank George Kopanas, Lily Goli, Sherwin Bahmani,
Alex Evans, Thomas Muller, Bernhard Kerbl, Vincent Sitz-
mann, Forrester Cole, Or Litany, David Fleet, and Delio
Vicini for their feedback and/or early research discussions.

References

(1]

[2

—

(3]

(4]

[5

—

(6]

(7]

(8]

(9]

(10]

(1]

[12]

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. ICCV, 2021. 3

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 3, 4, 6, 7,
12, 13

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. /CCV, 2023. 3

Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder.
Revising densification in gaussian splatting, 2024. 7, 12
Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon raster-
ization pipeline for efficient neural field rendering on mobile
architectures. In CVPR, 2023. 2, 3

Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic,
Simon Green, Piotr Didyk, and Adrian Jarabo. Don’t splat
your gaussians: Volumetric ray-traced primitives for modeling
and rendering scattering and emissive media. ACM Trans.
Graph., 44(1), 2025. 3

Boris Delaunay. Sur la sphere vide. Bulletin of the Academy
of Sciences of the USSR Classe des Sciences Mathematiques
et Naturelles, 1934. 3, 5

Daniel Duckworth, Peter Hedman, Christian Reiser, Pe-
ter Zhizhin, Jean-Frangois Thibert, Mario Luci¢, Richard
Szeliski, and Jonathan T Barron. Smerf: Streamable memory
efficient radiance fields for real-time large-scene exploration.
ACM Transactions on Graphics (TOG), 43(4):1-13, 2024. 3
Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia
Xu, and Zhangyang Wang. Lightgaussian: Unbounded 3d
gaussian compression with 15x reduction and 200+ fps. arXiv
preprint arXiv:2311.17245, 2023. 3

Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li
Zhang, and Yao Yao. Relightable 3d gaussian: Real-time
point cloud relighting with brdf decomposition and ray trac-
ing. arXiv preprint arXiv:2311.16043, 2023. 3

Chun Gu, Zeyu Yang, Zijie Pan, Xiatian Zhu, and Li Zhang.
Tetrahedron splatting for 3d generation. In NeurlPS, 2024. 2,
3

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned
gaussian splatting for efficient 3d mesh reconstruction and

4143

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

high-quality mesh rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5354-5363, 2024. 3

Leonidas Guibas and Jorge Stolfi. Primitives for the manipu-
lation of general subdivisions and the computation of voronoi.
ACM Trans. Graph., 4(2):74-123, 1985. 3

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. 37(6):257:1-257:15,
2018. 6,7, 12,13

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically accu-
rate radiance fields. In ACM SIGGRAPH 2024 Conference
Papers, New York, NY, USA, 2024. Association for Comput-
ing Machinery. 3

Letian Huang, Jiayang Bai, Jie Guo, Yuanqi Li, and Yanwen
Guo. On the error analysis of 3d gaussian splatting and an
optimal projection strategy. arXiv preprint arXiv:2402.00752,
2024. 2

Yingwengqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaox-
iao Long, Wenping Wang, and Yuexin Ma. Gaussianshader:
3d gaussian splatting with shading functions for reflective
surfaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5322-5332,
2024. 3

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and
Tom Sanocki. Harmonic coordinates for character articulation.
ACM transactions on graphics (TOG), 26(3):71-es, 2007. 3
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4), 2023.
2,3,6,7,12,13

Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas,
Michael Wimmer, Alexandre Lanvin, and George Drettakis.
A hierarchical 3d gaussian representation for real-time ren-
dering of very large datasets. ACM Transactions on Graphics,
43(4), 2024. 3

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Wei-
wei Sun, Jeff Tseng, Hossam Isack, Abhishek Kar, Andrea
Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as
markov chain monte carlo. NeurIPS, 2024. 3,6,7, 12, 13
Diederik P Kingma. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 12

Jonas Kulhanek and Torsten Sattler. Tetra-nerf: Representing
neural radiance fields using tetrahedra. In /ICCV, 2023. 2, 4
Christoph Lassner and Michael Zollhofer. Pulsar: Effi-
cient sphere-based neural rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1440-1449, 2021. 3

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia.
Gs-ir: 3d gaussian splatting for inverse rendering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21644-21653, 2024. 3
Alexander Mai, Peter Hedman, George Kopanas, Dor Verbin,
David Futschik, Qiangeng Xu, Falko Kuester, Jonathan T.
Barron, and Yinda Zhang. Ever: Exact volumetric ellipsoid
rendering for real-time view synthesis, 2024. 3

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

[39]

Gerd Marmitt and Philipp Slusallek. Fast ray traversal of
tetrahedral and hexahedral meshes for direct volume render-
ing. In Proceedings of the Joint Eurographics/IEEE VGTC
conference on Visualization, pages 235-242, 2006. 2, 6
Nelson Max and Min Chen. Local and global illumination
in the volume rendering integral. Technical report, Lawrence
Livermore National Lab. (LLNL), Livermore, CA (United
States), 2005. 2

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. ECCV, 2020. 2, 3,4

Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Riccardo
de Lutio, Janick Martinez Esturo, Gavriel State, Sanja Fidler,
Nicholas Sharp, and Zan Gojcic. 3d gaussian ray tracing: Fast
tracing of particle scenes. ACM Transactions on Graphics
and SIGGRAPH Asia, 2024. 2,3,6,7, 12

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. SIGGRAPH, 2022. 2,3,7, 13
Simon Niedermayr, Josef Stumpfegger, and Riidiger West-
ermann. Compressed 3d gaussian splatting for accelerated
novel view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10349-10358, 2024. 3

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakoto-
saona, Michael Oechsle, Daniel Duckworth, Rama Gosula,
Keisuke Tateno, John Bates, Dominik Kaeser, and Federico
Tombari. Radsplat: Radiance field-informed gaussian splat-
ting for robust real-time rendering with 900+ fps. arXiv.org,
2024. 3

Logan Numerow, Yue Li, Stelian Coros, and Bernhard
Thomaszewski. Differentiable voronoi diagrams for simula-
tion of cell-based mechanical systems. ACM Trans. Graph.,
43(4),2024. 3

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl,
Alexandre Lanvin, and George Drettakis. Reducing the mem-
ory footprint of 3d gaussian splatting. Proceedings of the
ACM on Computer Graphics and Interactive Techniques, 7
(1):1-17, 2024. 3

Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 335-342,
2000. 3

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
based rendering: From theory to implementation. Third
edition, 2023. 5

Lukas Radl, Michael Steiner, Mathias Parger, Alexander
Weinrauch, Bernhard Kerbl, and Markus Steinberger. Stopthe-
pop: Sorted gaussian splatting for view-consistent real-time
rendering. ACM Transactions on Graphics (TOG), 2024. 2
Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decomposed
radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
14153-14161, 2021. 4

4144

(40]

[41]

(42]

[43]

(44]

(45]

[46]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

Daniel Reem. The geometric stability of voronoi diagrams
with respect to small changes of the sites. In Proceedings
of the twenty-seventh annual symposium on Computational
geometry, pages 254-263, 2011. 6

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 14335—
14345, 2021. 3

Christian Reiser, Stephan Garbin, Pratul Srinivasan, Dor
Verbin, Richard Szeliski, Ben Mildenhall, Jonathan Barron,
Peter Hedman, and Andreas Geiger. Binary opacity grids:
Capturing fine geometric detail for mesh-based view synthe-
sis. ACM Transactions on Graphics (TOG), 43(4):1-14, 2024.
3

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu,
Zhangkai Ni, and Bo Dai. Octree-gs: Towards consistent
real-time rendering with lod-structured 3d gaussians. arXiv
preprint arXiv:2403.17898, 2024. 3

Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object
space ewa surface splatting: A hardware accelerated approach
to high quality point rendering. In Computer Graphics Forum,
pages 461-470. Wiley Online Library, 2002. 3

Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 7,
13

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 6

Otto Seiskari, Jerry Ylilammi, Valtteri Kaatrasalo, Pekka
Rantalankila, Matias Turkulainen, Juho Kannala, Esa Rahtu,
and Arno Solin. Gaussian splatting on the move: Blur and
rolling shutter compensation for natural camera motion. In
European Conference on Computer Vision, pages 160-177.
Springer, 2025. 3

Gopal Sharma, Daniel Rebain, Kwang Moo Yi, and Andrea
Tagliasacchi. Volumetric rendering with baked quadrature
fields. ECCV, 2024. 3

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid representa-
tion for high-resolution 3d shape synthesis. NeurIPS, 2021.
2,3,5

Jonathan Richard Shewchuk. Delaunay refinement algorithms
for triangular mesh generation. Computational Geometry, 22
(1):21-74, 2002. 16th ACM Symposium on Computational
Geometry. 3

Sanghyun Son, Matheus Gadelha, Yang Zhou, Zexiang Xu,
Ming C. Lin, and Yi Zhou. Dmesh: A differentiable represen-
tation for general meshes, 2024. 3

Andrea Tagliasacchi and Ben Mildenhall. Volume rendering
digest (for nerf), 2022. 4

Georges Voronoi. Nouvelles applications des parametres
continus a la théorie des formes quadratiques. Journal fiir die
reine und angewandte Mathematik (Crelles Journal), 1908.
3,5

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit

[55]

[56]

[57]

(58]

[59]

[60]

[61]

surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021. 3

Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas
Sharp, Jun Gao, Alexander Keller, Sanja Fidler, Thomas
Miiller, and Zan Gojcic. Adaptive shells for efficient neural
radiance field rendering. arXiv preprint arXiv:2311.10091,
2023. 3

D. F. Watson. Computing the n-dimensional delaunay tessel-
lation with application to voronoi polytopes. The Computer
Journal, 24(2):167-172, 1981. 3

M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based
view-independent cell projection. IEEE Transactions on Visu-
alization and Computer Graphics, 9(2):163-175, 2003. 2, 4,
12

Turner Whitted. An improved illumination model for shaded
display. In ACM Siggraph 2005 Courses, pages 4—es. 2005. 3
Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. Advances in Neural
Information Processing Systems, 34:4805-4815, 2021. 3
Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. Conference on Computer Vision and Pattern Recognition
(CVPR),2024. 7,13

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus Gross. Surface splatting. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive
Techniques, page 371-378, New York, NY, USA, 2001. Asso-
ciation for Computing Machinery. 3

4145

