
Federated Continual Instruction Tuning

Haiyang Guo1,2, Fanhu Zeng2,3, Fei Zhu4, Wenzhuo Liu2,3, Da-Han Wang5,
Jian Xu2,3, Xu-Yao Zhang1,2,3*, Cheng-Lin Liu1,2,3

1School of Advanced Interdisciplinary Sciences, UCAS 2MAIS, CASIA
3School of Artificial Intelligence, UCAS 4Centre for Artificial Intelligence and Robotics, HKISI-CAS

5FKLPRIU, School of Computer and Information Engineering, Xiamen University of Technology
{guohaiyang2023, zengfanhu2022, jian.xu}@ia.ac.cn, zhfei2018@gmail.com, {xyz, liucl}@nlpr.ia.ac.cn

Abstract

A vast amount of instruction tuning data is crucial for
the impressive performance of Large Multimodal Models
(LMMs), but the associated computational costs and data
collection demands during supervised fine-tuning make it
impractical for most researchers. Federated learning (FL)
has the potential to leverage all distributed data and train-
ing resources to reduce the overhead of joint training.
However, most existing methods assume a fixed number of
tasks, while in real-world scenarios, clients continuously
encounter new knowledge and often struggle to retain old
tasks due to memory constraints. In this work, we introduce
the Federated Continual Instruction Tuning (FCIT) bench-
mark to model this real-world challenge. Our benchmark
includes two realistic scenarios, encompassing four differ-
ent settings and twelve carefully curated instruction tuning
datasets. To address the challenges posed by FCIT, we pro-
pose a dynamic knowledge organization to effectively inte-
grate updates from different tasks during training and sub-
space selective activation to allocate task-specific output
during inference. Extensive experimental results demon-
strate that our proposed method significantly enhances
model performance across varying levels of data hetero-
geneity and catastrophic forgetting. Code and dataset are
released at https://github.com/Ghy0501/FCIT.

1. Introduction
Large Multimodal Models (LMMs) [2, 32, 34], which in-
tegrate Large Language Model [4, 20, 46, 49] with a vi-
sual encoder and multimodal projector to bridge visual and
textual modalities, have exhibited impressive visual under-
standing and complex reasoning abilities. A crucial factor
in this success is the supervised fine-tuning of LMMs us-
ing huge and diverse visual instruction-following data [32]
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to align with human preferences. However, collecting such
vast amounts of training data and computational resources
for joint fine-tuning is impractical for most researchers.
Federated Learning (FL) [28, 31, 38, 43], as a decentral-
ized paradigm, offers a viable alternative by leveraging dis-
tributed data and computational resources for local training
while integrating local weights to produce a unified model.
This paradigm accommodates constraints on storage and
computation while ensuring privacy protection.

Generally, most existing FL frameworks [7, 55, 58] are
modeled in static, closed-world scenarios [3, 59], where
a fixed set of tasks is predefined and unchanged. How-
ever, real-world applications are dynamic [59, 63], requir-
ing models to continuously acquire new knowledge while
retaining previously learned tasks. Taking a realistic health
emergency as an example, different hospitals act as local
clients when a major disease outbreak occurs. Large hos-
pitals can leverage FL to collaboratively train on their case
data, building a comprehensive virus knowledge base, while
smaller clinics update their own cases using this global
knowledge. Over time, both large and small hospitals need
to keep updating the global knowledge base through con-
tinual learning methods to cope with the event. Addition-
ally, the emergence of new strains necessitates the simul-
taneous integration of knowledge and response strategies
to minimize potential losses. In this scenario, traditional
FL methods struggle with newly arrived knowledge, while
Continual Learning (CL) [14, 15, 33, 56, 60] methods alone
do not facilitate knowledge sharing between clients. Only
an organic integration of both can address this real-world
problem. Recently, numerous Federated Continual Learn-
ing methods have emerged to address this challenge in tradi-
tional image classification tasks [11, 12, 57]. However, their
methodological and task-setting limitations make them in-
sufficient for current LMM applications. Therefore, a more
comprehensive benchmark is needed to better simulate the
practical application of LMMs in real-world scenarios.

In this work, we first establish a Federated Continual In-
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Figure 1. Overview of FCIT benchmark. FCIT encompasses 2 real-world scenarios, 4 FCIT settings, and 12 curated datasets, providing a
comprehensive simulation of LMMs instruction-following training in real-world applications.

struction Tuning (FCIT) benchmark to fill this gap. Specif-
ically, we simulate two client-level realistic scenarios: (i)
Homogeneous FCIT refers to an FL system learning a se-
ries of instruction tuning data sequentially, with different
clients learning the same task at each stage. (ii) Hetero-
geneous FCIT, on the other hand, requires the FL system
to collaborate on different tasks simultaneously, with differ-
ent clients potentially learning different tasks in the same
stage. Building on this, we define two settings of datasets
for each scenario: Capability-related and Task-related.
The former evaluates the model’s ability to integrate mul-
tiple dimensions of instruction following in a short period,
while the latter assesses the model’s performance during
long phases of continual learning. For dataset selection,
we curate twelve instruction tuning datasets unseen during
LMM fine-tuning or with low zero-shot performance, pre-
venting information leakage [13, 23]. In addition, we in-
troduce varying degrees of data heterogeneity for each set-
ting to challenge the model’s performance in the non-IID
situation [27]. An illustration of our FCIT benchmark is
provided in Figure 1. To the best of our knowledge, this is
the first work to introduce a comprehensive benchmark for
federated learning of LMM in a continual learning setting.

To effectively address the challenges posed by FCIT,
we propose a novel Dynamic knowledge organIzation
and Subspace seleCtive activatiOn (DISCO) framework.
Specifically, we identify FCIT challenges into two types:
conflicts between different tasks within the same stage and
conflicts between old and new tasks across different stages.

The former can cause catastrophic forgetting by altering the
parameter space of previous tasks when learning new ones
without access to past data, while the latter requires the
model to integrate and organize knowledge from different
tasks to derive unified representations. Therefore, we first
propose Dynamic Knowledge Organization (DKO), which
leverages a dynamic cache at the global server to store task-
specific parameters. Using a unique identity token matching
mechanism, it systematically organizes knowledge for dif-
ferent tasks into corresponding subspaces within the cache,
effectively mitigating two types of conflicts. To better uti-
lize the organized task subspaces in the dynamic cache, we
introduce Subspace Selective Activation (SSA), which se-
lectively activates subspaces relevant to the test input while
filtering out irrelevant outputs, leading to significant perfor-
mance improvements. Consequently, these designs enable
our framework to efficiently tackle the data heterogeneity
and catastrophic forgetting in FCIT. In summary, our major
contributions are:

• We present the first Federated Continual Instruction Tun-
ing (FCIT) benchmark designed for real-world scenarios,
providing a comprehensive evaluation of LMMs to con-
tinuously learn new knowledge using distributed data and
training resources in real applications.

• We propose a novel DISCO framework that integrates
dynamic knowledge organization and subspace selective
activation to efficiently address data heterogeneity and
catastrophic forgetting in FCIT settings.

• Extensive experiments demonstrate that our method sig-
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nificantly enhances model performance under data het-
erogeneity while minimizing the catastrophic forgetting,
and achieves state-of-the-art performance.

2. Related Work
Large Multimodal Models. With the grand unification
of Large Language Models (LLMs) [4, 20, 49] for various
NLP tasks, Large Multimodal Models (LMMs) [2, 9, 32,
34, 61] emerge by extending LLMs to combine with visual
encoder and multimodal projectors, demonstrating excep-
tional visual understanding and complex reasoning abilities.
To better align with human preferences, these LMMs typi-
cally undergo further fine-tuning on extensive instruction-
following data, ensuring they meet the demands of real-
world applications [32]. However, in real-world scenarios,
improving the performance of LMMs on new downstream
tasks becomes a significant challenge without access to suf-
ficient training data and computational resources. In this
paper, we introduce the first Federated Continual Instruc-
tion Tuning (FCIT) benchmark to bridge this gap from the
perspective of distributed training and continual learning.
Federated Continual Learning. In classical vision tasks,
Federated Continual Learning (FCL) [54] aims to adapt the
global model to new data while maintaining the knowledge
of the old task. From the perspective of LMMs, research
in this setting faces two main challenges: (1) Most of the
methods are designed for traditional vision tasks (i.e., im-
age classification). For instance, MFCL [1] employs a gen-
erative model to synthesize images of previously learned
classes, thereby mitigating forgetting. PILoRA [12] intro-
duces a prototype re-weight module to address the classifier
bias caused by data heterogeneity and obtain unified knowl-
edge through LoRA [18] fusion. Despite progress in classi-
fication tasks, complex designs remain challenging to adapt
for LMMs research. (2) FCL follows a single data composi-
tion by splitting a dataset (e.g. ImageNet [10]) into different
tasks based on classes, whereas LMMs face greater chal-
lenges in continual learning due to their diverse tasks with
varying styles [5, 6, 56].

This work pioneers a Federated Continual Instruction
Tuning setup for LMMs and establishes diverse scenarios
to simulate real-world applications comprehensively. No-
tably, AFCL [45] is most relevant to our work, as it enables
clients to continuously learn multiple tasks in different or-
ders and asynchronous time slots. However, it is specifi-
cally designed for image classification tasks, whereas our
study focuses on the more widely used LMM.

3. Problem Formulation
3.1. Preliminaries
Instruction tuning enhances LMM’s ability to understand
and execute human instructions by performing supervised

fine-tuning of pre-trained models on extensive datasets
comprising instructions and responses. Formally, the in-
struction data D = {(xjv, xj

ins, xj
res)

N
j=1} consists of image

input xv , instruction xins and response xres, where N rep-
resents the total number of samples. For clarity, given a
simple image-instruction pair with a response of length L,
the objective of an LMM is to predict the next token autore-
gressively based on all preceding tokens:

p(xres|xv, xins) =
L∏

i=1

pθ(xi|xv, xins, xres,<i), (1)

where θ denotes the trainable parameters during fine-tuning,
xres,<i denotes all response tokens preceding the current
prediction token xi. Then, the loss function of fine-tuning
LMMs can be expressed as:

Lθ = − 1

N

N∑
j=1

Lj∑
i=1

log pθ(x
j
i |x

j
v, xjins, xj

res,<i). (2)

Federated learning framework typically comprises a
global server and several local clients, all employing the
same LMM with a shared homogeneous model architec-
ture. In each communication round1, local clients train their
models on own data and upload the updated weights to the
global server for aggregation, enabling collaborative opti-
mization of the global model while preserving data privacy.

Considering the excessive communication overhead of
transferring the entire LMM between clients and the global
server, we adopt LoRA [18] for efficient fine-tuning, bal-
ancing training overhead and implementation cost [55, 58].
Specifically, for a weight matrix W0 ∈ Rd×k, LoRA de-
composes parameter updates ∆W during fine-tuning into
two low-rank subspaces:

W = W0 +∆W = W0 + BA, (3)

where B ∈ Rd×r, A ∈ Rr×k and r ≪ min {d, k}.
Continual learning aims to minimize the loss on the cur-
rent task while retaining knowledge from previous tasks.
Formally, given a sequence of datasets D1,D2, · · · ,DT , the
optimization objective at task t is:

min
θ

L(θ) = E(x,y)∼Dt
[L(fθt(x), y)] +

t−1∑
i=1

ϵi,

s.t. E(x,y)∼Di
[L(fθt(x), y)− L(fθt−1

(x), y)] ≤ ϵi,

ϵi ≥ 0;∀i ∈ [1, · · · , t− 1],

(4)

where ϵi is a slack variable that allows a small increase in
the loss from the old datasets, providing tolerance for mi-
nor forgetting while focusing on learning the current task.
In Eq. 4, x and y can be viewed as the multimodal inputs
(xv, xins) and the response xres, respectively.

1For clarification, we standardize the communication round in Sec-
tion 4 to 1.
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3.2. Federated Continual Instruction Tuning

As shown in Figure 1, we integrate federated and contin-
ual learning for LMMs within a unified framework and pro-
pose two client-level realistic scenarios: (1) Homogeneous
FCIT (Hom-FCIT). In this scenario, clients sequentially
learn a series of tasks, allowing the global server to continu-
ously update its knowledge. Each client learns the same task
at a given stage and can only access data from that stage.
(2) Heterogeneous FCIT (Het-FCIT). In real-world appli-
cations, different clients may learn different tasks within
the same stage, enabling the global server to respond more
rapidly to diverse instructions. This requires the model not
only to coordinate the knowledge of different tasks learned
by clients in the current stage but also to mitigate forget-
ting during the learning process. For each scenario, we de-
fine two dataset-level settings: capability-related and task-
related, detailed as follows.

• Capability-related. Following the dataset construction
and division in LLaVA-OneVision [25], we classify the
12 datasets into 4 capabilities: General, Math, Chart, and
Other. The General capability includes A-OKVQA [44],
ImageNet-R [16], Grounding [37], and IconQA [35];
Math comprises CLEVR-Math [8], super-CLEVR [30],
and TabMWP [36]; Chart involves ArxivQA [26], Fig-
ureQA [22], and DVQA [21]; and Other encompasses
OCR-VQA [39] and Flickr30k [40]. We treat these four
capabilities as different stages of continual learning, with
each capability comprising a mixture of datasets.

• Task-related. To evaluate the performance of differ-
ent methods in a long-phase continual learning situation,
we selected 8 datasets: ImageNet-R, ArxivQA, IconQA,
CLEVR-Math, OCR-VQA, Flickr30k, FigureQA, and
super-CLEVR as distinct stages of continual learning.

In total, we propose 4 FCIT settings to evaluate different
methods. Compared to existing works [5, 6, 55, 56, 58], we
are the first to explore the organic integration of FL and CL
in the context of LMM. We provide further illustrations on
the settings and datasets in Appendix A.

4. The Proposed Framework: DISCO

Overview of the Method. As shown in Figure 2 and 3, our
method primarily consists of: (1) Dynamic Knowledge Or-
ganization (DKO), which dynamically integrates knowl-
edge learned by different clients across stages during train-
ing, significantly reducing inter-task conflicts (Section 4.1);
and (2) Subspace Selective Activation (SSA), which se-
lectively activates subspace outputs based on input features
during inference, effectively filtering out irrelevant informa-
tion (Section 4.2). We name this framework DISCO.

Global
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… Projector
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Figure 2. Illustration of the proposed DKO. Dynamic caches store
the knowledge of each subspace while matching and updating
through identity tokens.

4.1. Dynamic Knowledge Organization
The core challenge of FCIT is enabling the global server
to effectively harmonize knowledge learned by clients, ad-
dressing both the forgetting of previous knowledge when
acquiring new tasks and the conflicts that arise from in-
tegrating knowledge from different tasks within the same
stage. To this end, we propose maintaining a dynamic cache
at the global server to organize task-specific knowledge up-
loaded by clients at different stages, thereby preventing both
forgetting and conflicts between knowledge. Specifically,
each task is assigned a dedicated parameter space to store
and update its corresponding knowledge:

∆W = BA ⇔ {B1A1, · · · ,BT AT }︸ ︷︷ ︸
task-specific subspace

, (5)

where T is the number of tasks learned. At this point, it is
crucial to aggregate the parameters uploaded by clients into
their respective subspaces without privacy leakage.

Inspired by the widespread use of prototypes in FL
fields [19, 47, 48], we propose to distinguish knowledge
across tasks by using the feature mean of each client’s train-
ing data as an Identity Token. Specifically, considering the
uniqueness of textual inputs in the visual instruction tun-
ing task, we introduce a text encoder fins for each client
to extract the feature of the input instruction xt

ins,j during
training, and take the mean value µt

k as the local identity
token of the k-th client on the task t at the end of training:

µt
k =

1

nt
k

nt
k∑

j=1

fins(xtins,j), (6)

where nt
k is the number of training samples of client k at
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Figure 3. Illustration of the proposed SSA. Each subspace organized by DKO dynamically adjusts its output via the intrinsic activation
matrix during inference, effectively filtering irrelevant information and enhancing model performance.

task t, and we use CLIP’s text encoder [41] in our experi-
ments. Notably, the text encoder fins remains frozen during
training, which prevents additional training overhead.

Using the identity tokens, we first apply cosine similarity
along with a threshold to match the uploaded local identity
token µt

j with the global identity token z̃i:

µt
j · z̃i

∥µt
j∥∥z̃i∥

≥ τ, (7)

where τ denotes a pre-defined threshold. For paired local
identity tokens, we update the corresponding global identity
token. For mismatched local identity tokens, we pair them
two by two using Eq. (7) and initialize new global identity
tokens. This process can be formalized as:

z̃∗i =


nz̃i

·z̃i+
∑m

j=1 nt
j ·µ

t
j

nz̃i
+
∑m

j=1 nt
j

, if z̃i exists,∑m
j=1 nt

j ·µ
t
j∑m

j=1 nt
j

, if z̃i doesn’t exist,
(8)

where m, nz̃i
and nt

j denote the number of matched lo-
cal identity tokens, the number of samples used to form the
previous i-th global identity token, and the number of sam-
ples from the local client j at task t, respectively. Then, we
leverage this matching process to guide the update or initial-
ization of task-specific subspace {θi = BiAi} in Eq. (5):

θ∗i = F(θt1, · · · , θtm), (9)

where F denotes the FL algorithm (e.g. FedAvg [38]) used
to aggregate local weights 2. As a result, we effectively pre-
vent inter-task conflicts and integrate knowledge from dif-
ferent clients using the identity token matching mechanism.

After the global server completes the aggregation, it dis-
tributes the dynamic cache to each selected client. The
client then matches the identity token (Using Eq. (7)) of
each subspace with its own training data, deciding whether
to update the corresponding subspace or reinitialize a new
one. The entire DKO process is illustrated in Figure 2.

2In Section 5.4, we implement more FL algorithms to demonstrate the
compatibility of our method.

4.2. Subspace Selective Activation
Section 4.1 effectively mitigates inter-task conflicts by dis-
entangling and organizing complex knowledge into distinct
subspaces. The key challenge then lies in how to leverage
these task-specific subspaces during inference.

To address this, an intuitive method is to concatenate
the subspaces of the dynamic cache in low-rank dimen-
sions [50, 52], enabling the integration of knowledge across
all task spaces. However, this may introduce redundant in-
formation unrelated to the current task during inference, po-
tentially compromising the model’s output. For instance,
when the desired answer is a simple word (e.g., what
is the object in the picture), knowledge from other sub-
spaces, such as those used for generating long-form descrip-
tions, can introduce unnecessary information, leading to re-
sponses that do not align with the given instruction.

Drawing inspiration from LoRA’s intrinsic space [53],
we propose subspace selective activation (SSA) without ad-
ditional training to filter out irrelevant subspace outputs, en-
suring alignment between responses and instructions. In
particular, A vanilla LoRA can be decomposed as the prod-
uct of two low-rank subspaces (i.e., A, B) and an intrinsic
mixing matrix W:

∆W = BWA, (10)

where W ∈ Rr×r is typically an identity matrix and can
thus be omitted. In this paper, we redefine W as the ac-
tivation matrix that dynamically responds to the test input.
Specifically, we treat W as the product of an identity ma-
trix and an activation factor (i.e., W = α · Ir×r), where
α = 1 denotes full activation, and α = 0 means that
the output is fully masked. Therefore, for each subspace
{B1A1, · · · ,BT AT } in dynamic cache, we can control the
activation or inhibition of the corresponding output by ad-
justing its activation factor {α1, · · · , αT }.

To provide better flexibility in assigning activation fac-
tors, we use global identity tokens and test input features
extracted by the text encoder for similarity matching:

si =
z̃i · fins(xtest

ins )

∥z̃i∥ · ∥fins(xtestins )∥
, (11)
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Dataset setting Capability-related (4 task) Task-related (8 task)

Partition β = 0.5 β = 1.0 β = 5.0 β = 0.5 β = 1.0 β = 5.0

Methods Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg

Zero-shot 30.57 - 30.57 - 30.57 - 29.08 - 29.08 - 29.08 -
Individual 61.75 - 59.62 - 60.27 - 64.21 - 63.85 - 64.07 -
Centralized MTL 63.83 - 63.83 - 63.83 - 66.60 - 66.60 - 66.60 -

Finetune 48.68 60.05 49.67 59.01 50.40 58.08 46.24 68.93 47.20 68.79 48.00 69.97
EWC 49.12 60.13 49.46 59.28 49.89 58.76 47.51 69.04 47.92 69.22 48.15 70.27
LwF 48.87 60.32 50.02 59.88 50.15 59.06 47.89 69.57 47.62 69.14 48.26 70.30
L2P 48.22 59.79 49.56 59.34 49.62 59.25 47.30 69.31 48.08 69.65 48.42 70.16
O-LoRA 51.65 60.19 49.13 57.93 50.29 58.18 52.87 71.54 49.87 70.26 47.76 70.84
M-LoRA 49.04 60.08 50.39 60.76 50.56 58.06 50.68 71.94 48.53 71.58 48.38 71.21
MoELoRA 49.69 61.00 50.90 60.18 50.43 59.11 49.23 70.96 49.02 70.65 48.82 71.08

DISCO 53.73 62.00 55.47 62.07 55.06 60.53 57.69 74.03 56.22 73.03 55.58 72.64

Table 1. Last and Avg performance of different methods on Hom-FCIT setting. The best performance is shown in bold.

Figure 4. Performance curves of different methods in Hom-FCIT across seen tasks under varying data heterogeneity. We plot the average
performance across all seen tasks at each stage.

where si denotes the similarity between the i-th global iden-
tity token and the feature of the test instruction xtestins . The
activation factor αi is then computed by applying softmax
normalization over all similarities:

αi =
exp(si/ε)∑T
j=1 exp(sj/ε)

, (12)

where ε is the temperature coefficient.
Overall, our proposed SSA can be formulated as follows:

∆W = B̄W̄Ā

= B̄


α1 · Ir×r 0r×r · · · 0r×r

0r×r α2 · Ir×r · · · 0r×r

...
...

. . .
...

0r×r 0r×r · · · αT · Ir×r

 Ā,

(13)
where B̄ ∈ Rd×(r·T ) represents the concatenation of all
{B1, · · · ,BT } in the dynamic cache along the low-rank di-
mension r, and Ā ∈ R(r·T )×k follows the same structure.
The activation factors {α1, · · · , αT }, computed via Eq. (11)
and Eq. (12), control each subspace’s output by amplifying
matched subspaces while suppressing irrelevant ones. The
schematic of SSA is provided in Figure 3.

5. Experiments

5.1. Experimental Setup
Datasets. The dataset composition is detailed in Sec-
tion 3.2. For the experimental setup, we implement two
types of dataset-level settings: Capability-related and Task-
related, based on the two client-level realistic scenarios,
Hom-FCIT and Het-FCIT, respectively. At each stage, the
own data of local clients is partitioned according to the
Dirichlet distribution [27], with three partitions β for each
setting to model different levels of data heterogeneity. More
details are provided in Appendix A.
Baselines & Evaluation Metrics. We compare our
method with continual learning methods such as LwF [29],
EWC [24], L2P [51], O-LoRA [50], MoELoRA [6], and
also with the LoRA merging method from the federated
continual learning approach PILoRA [12], referred to as
M-LoRA. We follow a rehearsal-free continual learning set-
ting [62], where only the data for the current task is avail-
able. All comparison methods are carefully calibrated to
ensure the fairness of evaluations.

For the evaluation metrics, we report the standard met-
rics to measure the model performance: Last refers to the
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Dataset setting Capability-related (4 task) Task-related (8 task)

Partition β = 0.5 β = 1.0 β = 5.0 β = 0.5 β = 1.0 β = 5.0

Methods Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg

Zero-shot 30.57 - 30.57 - 30.57 - 29.08 - 29.08 - 29.08 -
Individual 61.75 - 59.62 - 60.27 - 64.21 - 63.85 - 64.07 -
Centralized MTL 63.83 - 63.83 - 63.83 - 66.60 - 66.60 - 66.60 -

Finetune 55.65 55.82 56.34 56.85 56.74 57.15 58.04 53.05 57.96 54.22 58.17 54.87
EWC 55.21 54.58 55.13 55.76 55.69 56.02 58.74 53.76 57.96 54.18 57.44 54.30
LwF 55.92 56.18 56.42 56.80 56.81 57.26 58.82 53.77 58.01 54.34 58.22 54.78
L2P 56.10 56.63 56.76 57.02 56.95 57.36 58.84 53.80 58.73 54.67 58.39 54.66
O-LoRA 58.24 58.58 58.32 58.65 58.60 58.94 59.61 54.55 59.74 55.20 59.51 54.97
M-LoRA 57.76 58.02 57.65 57.89 57.80 58.17 59.76 54.11 58.82 54.03 59.35 54.89
MoELoRA 57.68 57.95 57.77 58.00 58.15 58.44 59.02 54.25 59.14 54.69 58.86 54.50

DISCO 59.40 60.01 59.94 59.91 59.71 60.16 62.08 59.64 63.25 61.99 62.78 60.87

Table 2. Last and Avg performance of different methods on Het-FCIT setting. The best performance is shown in bold.

Figure 5. Performance curve of different methods in the Het-FCIT under varying degrees of data heterogeneity. We plot the average
performance across all tasks at each stage. The black dashed line marks the stage where the model has encountered all tasks.

average result across all learned tasks after the completion
of learning the final task. Avg is based on Last, which tracks
the performance of the learned tasks at each stage of the
continual learning process and reports the average results.
Implementation Details. We choose LLaVA-1.5-7b [32]
as the base LMM due to its structural simplicity and adopt
its LoRA fine-tuning strategy, training only the LoRAs and
multimodal projector. The LoRA rank r at each stage is set
to 8, with a learning rate of 2e-4, and it is embedded solely
in the FFN layers of each block. The learning rate for the
projector is set to 2e-5. For identity token extraction, we use
the frozen CLIP text encoder [41]. The threshold τ and tem-
perature coefficient ε are set to 0.9 and 0.05, respectively.

For the setting of FCIT, we set the epoch to 1 and com-
munication rounds to 10 in each stage, and the Dirichlet
distribution coefficients β are set to {0.5, 1.0, 5.0}. In each
round, the global server randomly selects 5 clients from a
pool of 50 to participate in the training, and we use Fe-
dAvg [38] as the base FL aggregation algorithm.

5.2. Main Results
Results are shown in Table 1, Table 2, Figure 4, and Fig-
ure 5. Under Hom-FCIT setting, our proposed DISCO

achieves the best performance in both capability-related and
task-related dataset settings, surpassing the best baseline by
an average of 4.84% and 1.43% in the Last and Avg met-
rics, respectively. As illustrated in Figure 4, DISCO effec-
tively mitigates the forgetting of previous tasks while learn-
ing new ones, outperforming other methods in the challeng-
ing long-stage continual learning setting.

In Het-FCIT setting, we plot the upward curve of the av-
erage performance across all tasks in Figure 5. As shown
in the figure. Before completing all tasks (Left of the black
dotted line), our method maintains the fastest rate of im-
provement, significantly outperforming other methods. In
the subsequent phases (Right of the black dashed line), it
continues to consolidate previously learned knowledge and
further enhance performance, demonstrating strong adapt-
ability in dynamic real-world scenarios. On the Last and
Avg metrics, our method outperforms the best comparison
method by an average of 2.17% and 3.62%, respectively.

Additionally, our method demonstrates superior robust-
ness to varying degrees of data heterogeneity, adapting well
to diverse distributions and maintaining strong performance
even as heterogeneity increases, highlighting its reliability
in dynamic real-world scenarios.
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Method Hom-FCIT Het-FCIT
Last ∆ Avg ∆ Last ∆ Avg ∆

(a)
Text 56.22 0.0 73.03 0.0 63.25 0.0 61.99 0.0
Image 55.63 -0.59 72.13 -0.90 63.00 -0.25 61.80 -0.19
Text & Image 55.96 -0.26 72.68 -0.35 63.02 -0.23 61.78 -0.21

(b)

Softmax 56.22 0.0 73.03 0.0 63.25 0.0 61.99 0.0
Concatenate 51.74 -4.48 69.20 -3.83 60.36 -2.89 59.88 -2.11
Cosine sim 52.83 -3.39 70.07 -2.96 60.92 -2.33 60.13 -1.86
Argmax 55.74 -0.48 72.07 -0.96 62.88 -0.37 61.42 -0.57

(c)
FFN 56.22 0.0 73.03 0.0 63.25 0.0 61.99 0.0
Attn 56.03 -0.19 72.88 -0.15 63.01 -0.24 61.83 -0.16
FFN & Attn 56.30 +0.08 72.96 -0.07 63.18 -0.07 62.04 +0.05

Table 3. Ablation studies on (a) identity token extraction methods;
(b) calculation of activation factors in SSA; (c) location of LoRA
embedding. All experiments were conducted in the task-related
setting with β = 1.0.

5.3. Ablation Study
The detailed ablation studies are provided in Table 3. In
this paper, we use CLIP’s text encoder to extract textual fea-
tures as identity tokens. This section tests two alternatives:
using only visual features from CLIP’s visual encoder, and
combining visual and textual features. From Table 3a, we
observe that both alternatives degrade performance. This is
potential because, in visual instruction tuning datasets, task
similarities at the image level are higher than at the textual
level (e.g. CLEVR-Math and super-CLEVR), making visual
features less effective than textual ones.

Table 3b shows the ablation studies on how to calculate
the activation factors in SSA. Direct concatenation, where
the activation factors of all subspaces are set to 1.0, leads to
significant performance degradation due to unfiltered out-
puts. Using cosine similarity (Eq.(11)) to filter the outputs
also fails to solve the issue. While selecting the largest simi-
larity (Argmax) can filter out irrelevant information, it risks
fully activating a subspace that, though similar, is not di-
rectly related to the current task. This can negatively im-
pact the output, as there are inherent similarities between
the textual information of different tasks. In contrast, our
method normalizes the cosine similarity to better focus on
the relevant task output, achieving optimal performance.

We also test the location of LoRA embedding. As can
be seen in Table 3c, embedding in the attention layer alone
proved less effective than in the FFN layer. Moreover, em-
bedding LoRA in every linear layer did not offer significant
improvement and resulted in higher parameter transmission.
Therefore, we chose to embed LoRA only in the FFN layer
as a balanced solution. We provide more ablation and visu-
alization results in Appendix B.

5.4. Further Analysis
Compatible with other FL algorithms. In this paper,
we use the classical FedAvg as the FL algorithm for
global server aggregation of local weights. Additionally,
we implement other federated learning algorithms, includ-
ing FedAvgM [17], FedAdam [42], FedAdagrad [42], and

Method Hom-FCIT Het-FCIT
Last Avg Last Avg

FedAvg 56.22 73.03 63.25 61.99
FedAvgM 56.07 72.59 62.47 61.10
FedAdam 55.76 72.91 62.78 61.35
FedAdagrad 56.02 72.80 62.55 61.41
FedYogi 56.11 73.16 62.88 61.67

Table 4. Results of different FL algorithms. All experiments were
conducted in the task-related setting with β = 1.0.

Figure 6. Visualization of activation factors during inference.

FedYogi [42], to extend our framework. As shown in Ta-
ble 4, FedAvg achieves the best average performance.
Visualization of activation factors. In Figure 6, we plot
the responses of activations to the test inputs of different
tasks. As observed, only the activator corresponding to the
current task is responsive, effectively activating the relevant
subspace, while the others remain largely inhibited. This
confirms the effectiveness of our proposed SSA.

6. Conclusion
We have explored for the first time the integration of fed-
erated learning and continual learning for the instruction
tuning of LMMs, addressing the real-world challenge of
dynamically acquiring new knowledge through distributed
training resources and data. Our proposed FCIT bench-
mark encompasses 2 real-world scenarios, 4 distinct set-
tings, and 12 curated datasets, providing a comprehensive
evaluation of different methods. Additionally, we introduce
the DISCO framework, which leverages dynamic knowl-
edge organization (DKO) to decompose inter-task conflicts
and subspace selective activation (SSA) to assign task-
relevant outputs while suppressing irrelevant information.
Extensive experiments demonstrate that our approach sig-
nificantly improves the model’s ability to learn new knowl-
edge and handle data heterogeneity in real-world scenarios.
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