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Figure 1. We propose an end-to-end technique, HVPUNet, for upsampling 3D point clouds. Unlike most existing techniques, it can
upsample points at precise positions with lower computational cost by using hybrid voxels. Our hybrid voxel representation encodes con-
tinuous point locations in a structured voxel grid, allowing both precise and efficient reconstruction. HVPUNet consists of two parts: shape
completion which imputes missing geometry in the sparse 3D input, and super-resolution which generates a more detailed reconstruction.
The estimated hybrid voxel output with normal vectors can be used to reconstruct 3D surfaces.

Abstract

Point-cloud upsampling aims to generate dense point sets
from sparse or incomplete 3D data. Most existing work uses
a point-to-point framework. While this method achieves
high geometric precision, it is slow because of irregular
memory accesses to process unstructured point data. Al-
ternatively, voxel-based methods offer computational effi-
ciency by using regular grids, but struggle to preserve pre-
cise point locations due to discretization. To resolve this
efficiency-precision trade-off, we introduce Hybrid Voxels,
a representation that combines both voxel occupancy and a
continuous point offset. We then present the Hybrid-Voxel
Point-cloud Upsampling Network (HVPUNet), an efficient
framework built upon this representation. HVPUNet inte-
grates two key modules: (1) Shape Completion to restore

missing geometry by filling empty voxels, and (2) Super-
Resolution to enhance spatial resolution and capture finer
surface details. We also use progressive refinement, oper-
ational voxel expansion, and implicit geometric learning.
Experimental results demonstrate that HVPUNet can up-
sample point clouds at significantly lower computational
cost than the state-of-the-art, but with comparable model
accuracy.

1. Introduction

Spatial enhancement in 3D is a crucial yet challenging prob-
lem for applications including computer graphics, CAD,
and virtual reality. Point-cloud upsampling aims to enhance
the details of 3D models by generating denser points from
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Figure 2. Point-based representations can be used to upsample
point density for greater surface detail, but struggle with scalabil-
ity in complex scenes. In contrast, our Hybrid Voxel representa-
tion combines discrete occupancy with continuous offset vectors,
bridging structured voxel grids and continuous surfaces. Using
Hybrid Voxels, we show how Shape Completion and Super Reso-
lution can super-sample the spatial resolution of points.

noisy and sparse inputs. In the literature [17, 25, 35, 36, 39,
56], point-to-point (P2P) frameworks [9] are widely stud-
ied to enable precise 3D reconstruction in continuous space.
However, they limit scalability and efficiency, as they rely
on operations not optimized for large-scale data and can
only generate a fixed number of points per inference regard-
less of the complexity of a given 3D model.

In contrast, voxel-based approaches [8, 44] offer effi-
ciency and scalability for large models by using structured
grids. These methods can dynamically adapt voxel occu-
pancy based on the level of detail in a given model. How-
ever, quantizing continuous points into discretized voxel
grids limits the ability to capture fine-grained details for
high-fidelity reconstruction.

To address these limitations, we propose a Hybrid Voxel
representation, combining the strengths of both paradigms.
This representation encodes discrete occupancy within the
voxel grid as well as offset vectors within each voxel to
capture finer-grained positions in continuous space. Our
approach enables better conversion between the voxel grid
and point cloud, and supports efficient sparse 3D convolu-
tions without sacrificing spatial precision. Figure 2 illus-
trates how a hybrid voxel representation can be converted
to a point cloud and vice versa.

We introduce the Hybrid-Voxel Point-cloud Upsampling
Network (HVPUNet), an end-to-end framework consisting
of two modules: Shape Completion and Super-Resolution
(see Figure 2). Shape Completion first densifies hybrid vox-
els and reconstructs geometry, and then Super-Resolution
generates high-resolution hybrid voxels with enhanced sur-
face detail. By using sparse 3D convolutions, HVPUNet ef-

Downsample Subdivision Predict

Sparse Voxel Downsampled Voxel

Operational Voxel Expanded Voxel Occupancy PredictionTrue Surface

Subdivided Voxel Voxel Reconstruction

Expanded Voxel Downsampled Voxel Subdivided Voxel Voxel Reconstruction

Downsample Subdivision Predict

Voxel Expansion

* Using expansion kernel, =3

Figure 3. We expand the operational voxels around existing active
voxels, leading to more complete scene reconstructions. The ex-
panded voxels are unoccupied but operationally active.

ficiently processes large-scale 3D scenes, focusing compu-
tation only on active voxels thus reducing memory and com-
putational costs. Additionally, our model can estimate sur-
face normals which can be useful for surface reconstruction.
To enhance scene reconstruction, we implement operational
voxel expansion and early dilation [38] to broaden the re-
ceptive fields, thus enabling better imputation of neighbor-
ing voxels (see Figure 3).

Our network captures fine-grained geometric details not
only by learning to predict binary occupancy, but also by
estimating two continuous, implicit fields: unsigned dis-
tance fields (UDFs) and offset vector fields (OVFs). UDFs
encode the shortest distance from each voxel to the near-
est occupied voxel, while OVFs represent directional vec-
tors from voxel centers to the closest surface. Unlike other
voxel refinement methods that predict only binary occu-
pancy [8, 23, 44, 51], these structural features enrich the
network’s understanding of implicit geometries, enabling
more precise and complete reconstructions.

In summary, the key contributions of this work are:

• Hybrid Voxel Representation: Combines discrete occu-
pancy and continuous offsets for more efficient and accu-
rate upsampling;

• HVPUNet: A unified Shape Completion and Super-
Resolution pipeline to generate high-resolution results
with relatively low computational cost;

• Operational Voxel Expansion: Broadens the spatial con-
text around each active voxel, encouraging more compre-
hensive scene coverage by allowing the network to access
more candidate voxels to occupy; and

• Implicit Field Learning: UDFs and OVFs help improve
reconstruction quality by allowing the model to capture
implicit geometry.
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2. Related Work
2.1. Point Cloud Upsampling
Point cloud upsampling aims to densify sparse 3D data by
increasing the number of points. Most existing work on
this problem follows a point-to-point (P2P) framework [9],
where networks learn to extract features for each point
by aggregating information from its local neighborhood or
patch. Beginning with PU-Net [56], many approaches have
used multi-layer perceptrons (MLPs), often enhanced by
techniques such as adversarial training [1] (in PU-GAN
[25]) and graph convolutions [15] (in PU-GCN [35]). Re-
cent work [17, 36, 39] incorporates more advanced tech-
niques like kernel point convolution [47], diffusion models
[18], and gradient descent optimization [40]. RepKPU [39]
introduces deformable kernel point representations, Grad-
PU [17] optimizes learned distance fields via gradient de-
scent, and PUDM [36] uses diffusion for flexible upsam-
pling. While these methods can precisely reconstruct point-
clouds in continuous space, they require more computation
due to random memory access from irregular and unstruc-
tured 3D representation [27].

2.2. Voxel-based 3D Enhancement
Shape Completion aims to fill in missing voxels in 3D
scenes. MinkowskiUNet [8] uses a U-Net in which down-
sampling determines receptive regions for completion. We
extend this idea via operational voxel expansion to fur-
ther enlarge the region in which new voxels may be filled.
PVCNN [27] takes a hybrid approach by converting point
clouds into voxels for 3D convolution and then reverting to
points for upsampling. However, its final output is point-
based, inheriting the same limitations of point clouds.

Voxel Super-Resolution [31, 48] typically uses dense
3D convolutions to enhance volumetric resolution, which
is memory-intensive for large scenes. Sparse convolution
[8, 23] can address this by computing only on active vox-
els, but generally cannot fill empty regions. To make super-
resolution more feasible with sparse and incomplete data,
we apply shape completion before voxel super-resolution.

2.3. Point-Voxel Hybrid Representation
Point-based methods offer precise localization but are less
efficient; voxel-based methods are efficient but lack contin-
uous coordinate support. Hybrid strategies have been used
for feature extraction [7, 27, 45, 52, 53, 55]. Inspired by
this, we define a hybrid voxel representation that combines
occupancy and offset vectors in a unified structure for high-
quality reconstruction.

2.4. Implicit Representation Learning
Recent 3D reconstruction research shows that learning im-
plicit representations can significantly enhance surface re-

construction quality. Examples include Unsigned Distance
Fields (UDFs) [6, 17], which are the distances to the nearest
surfaces, Signed Distance Fields (SDFs) [14, 32], which is
the same distance but negative inside the volume and pos-
tive outside, and Neural Vector Fields (NVFs) [5, 28, 34, 54,
59], which indicate directional offsets from voxel centers to
the nearest surface. These implicit fields help models cap-
ture complex 3D geometry more precisely. We use UDFs
and offset vector fields (OVFs) to encourage our model to
learn implicit geometries, enabling more precise surface re-
covery and facilitating tasks like pruning (described below).

2.5. Sparse Convolution
In dense convolution, filter kernels are applied uniformly
across the entire grid, wasting computation when large re-
gions are empty. Sparse convolution operates only on oper-
ationally active voxels, reducing computational overhead.
Frameworks like Minkowski Engine [8], TorchSparse++
[46], and SparseConvNet [13] have made these efficient and
scalable. We use sparse convolution to allow processing
large-scale scenes with our hybrid voxel approach.

3. Methods
We first introduce our Hybrid Voxel representation, and
then present an overview of our Hybrid-Voxel Point-cloud
Upsampling Network (HVPUNet).

3.1. Hybrid Voxels
To overcome limitations of point- or voxel-based ap-
proaches, we propose a hybrid voxel representation. Each
hybrid voxel contains Occupancy, a binary flag indicating
the presence of a point in the discrete voxel grid, and Off-
set Vector (voff ), a 3D vector from the voxel center to the
nearest surface point. Formally, we define an offset vector,

voff = psurf − pcoord, (1)

where psurf is the nearest surface projection and pcoord is
the center of the voxel coordinate. During inference, the
surface point can be recovered,

p̂surf = p̂coord + v̂off . (2)

In our implementation, we store each occupancy as a 1-
channel sparse tensor and each offset as a 3-channel sparse
tensor in TorchSparse++ [46], creating a 4-channel hybrid
voxel. Figure 5 illustrates how attributes for hybrid voxels
are obtained from continuous 3D surfaces.

3.2. HVPUNet
We designed HVPUNet to operate directly on our hybrid
voxel representation. Its architecture is built for both geo-
metric completion and detail enhancement, guided by im-
plicit field learning and a progressive training strategy to
improve computational efficiency.
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Figure 4. Overview of HVPUNet. An input point cloud is first converted to a 1283 Hybrid Voxel representation. Shape Completion
imputes missing points, and then Super-Resolution refines the reconstruction quality. With progressive training and refinement, the model
produces outputs at multiple scales (323, 643, 1283, and 2563). At each scale, the network generates four outputs: unsigned distance field,
occupancy, offset vector fields, and normal vectors. For memory-efficient mini-batch training, we randomly crop the input to 323 patches.

(b) Surface (c) Occupancy (d) Unsigned 
Distance Field

(e) O�set 
Vector Field

(a) Dense 3D Model

Figure 5. Illustration of unsigned distance fields (UDFs) and off-
set vector fields (OVFs), visualized in 2D for clarity. The point
cloud in (a) and shape in (b) can be converted into the sampled oc-
cupancy grid in (c). The UDF in (d) represents the distance from
each voxel to the closest occupied voxel, while the OVF in (e) con-
sists of vectors from the center of each voxel to the closest surface.

Network Architecture. HVPUNet is a U-Net architecture
with an extra upsampling module that uses sparse convolu-
tions for computational efficiency. As shown in Figure 4, it
consists of two main functional stages. First, Shape Com-
pletion processes the sparse input hybrid voxels and densi-
fies the 3D shape by imputing missing geometry. It estab-
lishes a complete, yet coarse, representation of the object.
Then, Super-Resolution progressively upscales the spatial
resolution of the voxel grid, refining the coarse shape to re-
construct finer surface details.

The overall network takes 4-channel hybrid voxels (1-
channel occupancy, 3-channel offset vector) as input. At
multiple resolutions, it predicts 8-channel outputs for each

voxel: 1-channel occupancy, a 3-channel offset vector field
(OVF), a 3-channel normal vector, and a 1-channel un-
signed distance field (UDF). The occupancy and OVF are
used to reconstruct the final point cloud, while the normals
can be used for surface reconstruction. The UDF and OVF
serve as implicit learning targets, as explained next.

Implicit Geometry Learning via Distance Fields. To en-
courage our network to learn geometrically coherent struc-
tures, we train it not just to estimate binary occupancy but
also two implicit fields that describe the underlying geom-
etry: Unsigned Distance Fields (UDFs) and Offset Vec-
tor Fields (OVFs) (see Figure 5). UDFs encode the ab-
solute distance from each voxel center to the nearest sur-
face, which we compute for the ground truth using a Eu-
clidean Distance Transform [10, 30]. By training the net-
work to predict this field, we provide it with a smooth
and continuous signal that describes the underlying surface
geometry, which is essential for both robust learning and
for our pruning strategy described below. OVFs contain,
for each voxel, the 3D vector from its center to the clos-
est point on the true surface. This directly provides sub-
voxel precision, allowing us to recover fine-grained details
that would be lost in a standard voxel grid. Unlike meth-
ods that require watertight meshes for signed distance fields
(SDFs) [11, 33, 37, 50], our UDF/OVF approach works ro-
bustly with non-watertight and complex real-world models.
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Progressive Refinement and Pruning. To manage the
computational cost of high-resolution 3D processing, we
use progressive refinement and distance-based pruning.
First, the network is trained with multi-scale supervision to
generate outputs at multiple resolutions, from coarse (323)
to detailed (2563). The lower-resolution stages learn to re-
construct overall shape, while the later, higher-resolution
stages focus on refining high-frequency details. This pro-
gressive approach improves both learning efficiency and
the final reconstruction quality. Within the refinement pro-
cess, we use distance-based pruning during sparse convolu-
tion by removing any voxel whose predicted unsigned dis-
tance value is greater than a certain threshold. This helps to
preserve a thin layer of voxels around surface boundaries,
which provides context for more accurate convolution.

3.3. Operational Voxel Expansion
Sparse convolution only operates on non-empty voxels, so
the number of occupied output voxels is limited by the num-
ber of non-empty input voxels. Generative sparse convolu-
tions [8, 46] attempt to solve this by first downsampling the
voxel grid. This operation can group a distant but occupied
voxel into the same downsampled block as other nearby
empty voxels. A subsequent generative transposed convo-
lution can then fill in this local neighborhood during up-
sampling. However, this strategy is often insufficient when
the input is highly sparse. If occupied voxels are separated
by large empty spaces, they will remain isolated in separate
blocks even after downsampling.

To address this, we introduce operational voxel expan-
sion, which marks additional surrounding voxels as active
with a pre-defined expansion kernel size (kexp = 7), even
if the voxels start out as empty. Figure 3 shows the im-
pact of operational voxel expansion on the shape comple-
tion task compared to conventional generative sparse con-
volution [8]. Along with voxel expansion, we use early di-
lation [38] with larger kernel sizes (k = 7) at initial layers
to further increase the receptive field.

3.4. Loss formulation
Our loss consists of four equally-weighted terms,

Ltotal = Locc + Ludf + Lovf + Lnormal, (3)

where each term is given by:
• Occupancy Loss (Locc) is a Dice loss,

Locc = 1−
2
∑N

i pigi∑N
i pi +

∑N
i gi + smooth

, (4)

where N is the number of active voxels, pi is the occu-
pancy prediction of the i-th voxel (ranging from 0 to 1
after a sigmoid), gi is the ground truth occupancy of the
i-th voxel, and smooth is a small constant (10−5) to pre-
vent division by zero.

• UDF Loss (Ludf ) is an L1 loss that enforces accurate dis-
tance predictions,

Ludf =
1

N

N∑
i

∣∣y(i)udf − ŷ
(i)
udf

∣∣, (5)

where y
(i)
udf and ŷ

(i)
udf are the true and predicted scalar val-

ues for the absolute distance from each voxel i to the near-
est occupied coordinate.

• OVF Loss (Lovf ) is an L1 loss for the 3D offset vectors,

Lovf =
1

N

N∑
i

∣∣v(i)off − v̂
(i)
off

∣∣, (6)

where v
(i)
off and v̂

(i)
off are the true and predicted offset vec-

tors for voxel i, defined in Section 3.1.
• Normal Loss (Lnormal) is a combination of L1 and angu-

lar sine loss [2, 24] for normal estimation,

Lnormal = Lsin + LL1, (7)

Lsin =
1

N

N∑
i

∣∣n(i) × n̂(i)
∣∣, (8)

LL1 =
1

N

N∑
i

∣∣n(i) − n̂(i)
∣∣, (9)

where n and n̂ are the true and predicted normal vectors
for voxel i.

By jointly optimizing these terms, we encourage both geo-
metrically and orientationally accurate predictions.

3.5. Evaluation Methods
We use two types of metrics for evaluating our results com-
pared to ground truth: occupancy-based and point-based.

Occupancy-based. Dice Coefficient and Intersection-over-
Union (IoU) are used for occupancy-based metrics, which
are computed within the discrete voxel space. For these
metrics, both the ground truth and the output point clouds
are voxelized into an isotropic grid at a resolution of
1283, and evaluated using voxel-wise classification met-
rics. These metrics assess the completeness of the predicted
points by measuring how well they cover the surfaces.

Point-based. We use point-to-face (P2F) and face-to-point
(F2P) distances [20] for point-based metrics,

P2Favg =
1

|P̂ |

∑
p̂∈P̂

min
f∈F

(
dist(p̂, f)

)
, (10)

P2Fmax = max
p̂∈P̂

(
min
f∈F

(
dist(p̂, f)

))
, (11)

F2Pavg =
1

|F |
∑
f∈F

min
p̂∈P̂

(
dist(p̂, f)

)
, (12)

F2Pmax = max
f∈F

(
min
p̂∈P̂

(
dist(p̂, f)

))
, (13)
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Figure 6. Sample model outputs from PU-GAN’s test data (In-
ternal) and from an External source. These samples reflect qual-
itative visualizations of shaded results from Table 1. Bounding
boxes highlight artifacts. Zoom in for details.

where

dist(p̂, f) = min
p∈f

∥p̂− p∥. (14)

P̂ and F are the sets of predicted points and surfaces, p̂
denotes a predicted point, f is a face in the ground truth
mesh, and p is the closest point on f to p̂.

P2F quantifies the distance from each predicted point to
the nearest ground truth surface, while F2P measures the
distance from the ground truth surface to the closest pre-
dicted point. These metrics are reported as both average and
maximum values, to capture both typical accuracy across all
points as well as outliers. We avoid direct point cloud com-
parison such as Chamfer [9] and Hausdorff distances [3]
in our study due to their reliance on sampled ground truth
points, which only partially represent true 3D surfaces [56].

4. Results
4.1. Experimental Setup
Data. We use the PU-GAN [25] and PU1K datasets [35],
which include 147 3D models (120 training, 27 testing)
and 1,147 3D models (1,020 training, 127 testing), respec-
tively, all in a mesh format. We prepare multi-resolution
target variables from 323 to 2563 (see Figure 4). Target
variables are converted from meshes as follows: (1) vox-
elize the mesh into discrete voxels, (2) generate offset vec-
tor fields by calculating the directional vector between each
voxel center and closest surface, (3) map normal for each

Surface Reconstruction at Multiple Scale
32 64 128 2563 3 3 3

Surface Reconstruction via Estimated Normal

N
or

m
al
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rfa

ce

Figure 7. Normal estimation and surface reconstruction.
HVPUNet estimates normal vectors, which can be used for sur-
face reconstruction. We use Poisson Surface Reconstruction [21]
on the estimated normals.

Input Grad-PU PUDM RepKPU Ours

Sc
an

O
bj

ec
tN

N
Su

rf
ac

e
Po

in
t

K
IT

TI

Figure 8. Sample outputs from real-world 3D scanned datasets
(ScanObjectNN [49] and KITTI [12]). Please zoom in for details.

hybrid voxel to the normal from the closest surface, and (4)
calculate unsigned distance fields with a Euclidean distance
transform [30] on the voxelized grid. Overall, the target
variables have 8 channels of information: 1 for occupancy, 3
for offset vector, 3 for normal, and 1 for unsigned distance.
The occupancy and offset vector are used to reconstruct fi-
nal point-cloud, unsigned distance is used in pruning, and
estimated normal is used for surface reconstruction. For the
input, we follow other point-cloud upsampling methods and
sample 2048 points from the mesh. We then convert each
point to a hybrid voxel in 1283 resolution to feed into our
model. Each input hybrid voxel has 4 channels (1 for occu-
pancy and 3 for offset vector).

Implementation Details. In training, we use mini-batches
of size 8, each containing 323 randomly cropped hybrid
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voxels from the 1283. We train our model in a progressive
manner, first training lower-resolution modules and then in-
crementally adding higher-resolution modules. In total, we
train our model with 15 epochs for each lower resolution
(323, 643, 1283) and 155 epochs at the highest resolution
(2563). Additionally, we use a voxel expansion kernel size
(kexp in Section 3.3) of 7, and a pruning distance threshold
of 3. For hardware, we used 2 AMD EPYC 74F3 processors
(CPU) and 1 RTX L40s (GPU). Training required approxi-
mately 20GB of VRAM, while inference VRAM consump-
tion is reported in Table 1.

4.2. Results
Results on PU-GAN. Tables 1 and 2 compare results
of our method with other state-of-the-art point cloud up-
samplers including Grad-PU [17], PUDM [36], and Rep-
KPU [39]. Table 1 shows results at various scaling fac-
tors. Since we use a different upscaling strategy than other
point cloud upsamplers, we selected the highest upsampling
factor for comparison. Occupancy-based metrics (Dice
and IoU) provide insight for scene completion, and our
method outperforms the other models. Point-based metrics
show mixed performance, indicating the precision varies
by methods. Even though other point-cloud upsamplers
are directly trained on regression for precise point local-
ization, our model shows best results on maximum scores
in point-based metrics, indicating better robustness to out-
liers [29, 41]. Furthermore, Table 2 demonstrates that our
model performs robustly under diverse conditions, includ-
ing corrupted inputs (random, noisy, or undersampled) and
arbitrary upsampling factor.

We report model efficiency in Table 1, including model
size, average inference VRAM consumption, and average
runtime. Our method is the second lightest in terms of
model size, but dramatically outperforms others in memory
efficiency and inference speed.

Results on PU1K. Table 3 shows quantitative results on
PU1K [35]. On this dataset, our model has superior per-
formance on Dice, IoU, and F2P while other metrics show
mixed rankings. We used an upsampling factor of 256x and
2563 for point-based and our method, respectively.

Qualitative Results. Sample visualizations are shown in
Figure 6 using test cases from PU-GAN [25] as well as ex-
ternal sources (Open3D [58] and Sketchfab [22]). We show
samples at the highest scaling factors for each method (x256
for point-cloud upsamplers and 2563 for our method). The
visualization indicates that Grad-PU [17] and PUDM [36]
suffer from incomplete scene reconstruction (holes). Rep-
KPU [39] and our method show more complete scene cov-
erage, although RepKPU can fill points in incorrect regions.
Additionally, Figure 8 shows sample visualizations of real-
world 3D scanned datasets, including ScanObjectNN [49]
and KITTI [12]. Overall, our method shows more complete

and precise reconstruction of surface boundaries.

4.3. Ablation Study

Table 4 shows the results of an ablation study to investi-
gate the effect of each component of our model. Both voxel
expansion and distance-based pruning help in accuracy;
the performance gain is especially dramatic in occupancy-
based metrics. Furthermore, operational voxel expansion
starts producing comparable performance from threshold of
5, while optimal is 7 as in our final model.

4.4. Normal Estimation

While the primary objective of our work is point-cloud up-
sampling, we also explored normal estimation to demon-
strate how our framework can support downstream tasks
like surface reconstruction. Figure 7 shows predicted nor-
mals and their utility in surface reconstruction [4, 21]. This
illustration highlights that our method not only enhances
point density but can also provide orientation cues for more
coherent and visually pleasing surfaces.

5. Limitations and Future Work

Unlike P2P upsampling frameworks, our approach follows
a different path using hybrid voxel and other attributes, pro-
viding a unique solution. Since this unique problem set-
ting allows dynamic point-cloud upsampling factor, it is
hard to compare with other fixed-scaled upsamplers since
some evaluation metrics can be sensitive to the number of
points. Furthermore, we provide normal estimation per-
formance only in a qualitative manner. In future work,
we plan to focus more on Point-to-Surface reconstruc-
tion [16, 19, 57] by expanding our work with learnable sur-
face extractors [26, 42, 43].

6. Conclusion

We introduced HVPUNet, a unified method that combines
point- and voxel-based strategies for computationally ef-
ficient point-cloud upsampling. By fusing discrete occu-
pancy and continuous offset vectors, our hybrid represen-
tation preserves fine geometry while benefiting from the
computational efficiency of sparse 3D convolutions. Exper-
iments show that HVPUNet produces structurally complete
and detailed reconstructions at low computational cost.

7. Acknowledgments

This work was supported by an Electronics and Telecom-
munications Research Institute (ETRI) grant funded by the
government of the Republic of Korea (25ZC1110, The re-
search of the basic media-contents technologies).

29159



Occupancy ↑ Point ↓ Complexity
P2F (×103) F2P (×103)

Method Scale # points (103) Dice IoU Avg Max Avg Max # param. (106) ↓ VRAM (GB) ↓ Runtime (sec) ↓

Grad-PU [17]
16x 32.768 0.591 0.425 1.949 27.923 1.679 22.467

0.067
1.082 2.095

64x 131.072 0.677 0.516 2.059 28.102 1.273 22.080 4.329 28.868
256x 524.288 0.698 0.539 2.143 28.409 1.127 22.027 17.315 576.160

PUDM [36]
16x 32.768 0.517 0.355 3.205 29.131 2.530 25.324

11.544
1.164 4.269

64x 131.072 0.601 0.452 3.343 30.001 2.018 25.156 4.511 22.148
256x 524.288 0.639 0.461 3.425 30.365 1.802 24.949 17.899 272.806

RepKPU [39]
16x 32.768 0.581 0.417 2.061 43.613 1.607 16.678

2.048
2.116 1.273

64x 131.072 0.674 0.514 2.167 46.247 1.122 16.234 8.417 18.218
256x 524.288 0.695 0.539 2.261 46.822 0.963 16.238 33.621 345.387

Ours 1283 99.585 0.610 0.443 1.783 25.556 1.345 14.443 0.449 0.868 0.134
2563 416.131 0.707 0.549 2.736 26.023 1.756 15.723 2.817 1.543

Table 1. Results on the PU-GAN dataset [25], using two types of metrics: (1) Occupancy-based using Dice and IoU, and (2) Point-based
using Point-to-Face (P2F) and Face-to-Point (F2P). We also show complexity analysis including (1) model size, (2) inference VRAM
consumption, and (3) inference runtime. The best result is in bold and second-best in underline. Point-cloud upsampler methods upscale
by increasing the number of points, while our method uses resolution-based upscaling.

Experiment Method Dice IoU P2F P2F F2P F2P
(Avg) (Max) (Avg) (Max)

Random

Grad-PU 0.591 0.428 2.295 38.857 2.688 40.499
PUDM 0.511 0.404 4.435 74.031 4.457 77.579

RepKPU 0.659 0.509 2.465 50.870 1.717 25.260
Ours 0.670 0.517 2.792 33.435 1.895 24.120

Grad-PU 0.457 0.304 5.386 42.313 2.311 28.321
Noisy PUDM 0.476 0.32 5.126 41.200 2.375 29.393
(τ=0.01) RepKPU 0.509 0.348 6.017 65.168 1.669 20.242

Ours 0.514 0.355 5.098 42.595 1.852 20.378

Grad-PU 0.516 0.355 3.731 39.164 4.206 57.109
Under PUDM 0.465 0.310 5.043 41.656 4.658 56.155
(512 points.) RepKPU 0.550 0.393 3.421 62.195 2.068 38.911

Ours 0.604 0.445 2.783 37.335 1.891 36.940

Grad-PU 0.667 0.512 2.106 29.122 1.369 22.476
Arbitrary PUDM 0.592 0.428 3.272 28.995 2.085 25.451
(×50) RepKPU 0.652 0.490 1.947 47.964 1.139 17.618

Ours 0.666 0.512 2.830 26.699 1.938 15.888

Table 2. Performance under (1) corrupted inputs (random, noisy,
or undersampled) and (2) arbitrary upsampling. For undersam-
pled inputs, we used 512 input points, compared to the 2,048
points used in Table 1. For arbitrary upsampling, we used far-
thest point sampling, following RepKPU [39] and Grad-PU [17].

Occupancy ↑ Point ↓

P2F (×103) F2P (×103)

Method Dice IoU Avg Max Avg Max

Grad-PU 0.526 0.366 1.388 16.423 1.612 13.873
PUDM 0.414 0.305 2.891 18.413 3.397 18.890
RepKPU 0.485 0.339 0.880 13.872 2.039 14.186
Ours 0.537 0.376 1.507 25.438 1.262 10.101

Table 3. Our reconstruction results on the PU1K dataset [35] com-
pared to Grad-PU [17], PUDM [36], and RepKPU [39]. We use
a scaling factor of 16 for point cloud-based methods and a target
resolution of 1283 for ours.
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