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Abstract

Completeness is a widely discussed property in explain-

ability research, requiring that the attributions sum to the

model’s response to the input. While completeness intu-

itively suggests that the model’s prediction is “completely

explained” by the attributions, its global formulation alone

is insufficient to ensure faithful explanations. We contend

that promoting completeness locally within attribution sub-

regions, in a soft manner, can serve as a standalone guiding

principle for producing faithful attributions. To this end,

we introduce the concept of the completeness gap as a flex-

ible measure of completeness and propose an optimization

procedure that minimizes this gap across subregions within

the attribution map. Extensive evaluations across various

model architectures demonstrate that our method produces

state-of-the-art results.

1. Introduction

In recent years, Explainable AI (XAI) has emerged as a crit-

ical aspect of machine learning, especially for deep learning

models, which are often regarded as “black boxes” due to

their lack of transparency [8, 9, 25, 41, 66]. XAI aims to

provide insights into how these models make predictions,

offering a way to ensure their reliability and trustworthi-

ness [34]. A common approach to model explainability is

through attribution maps, which assign importance scores

to individual input features based on their contribution to

the model’s prediction [22, 27, 65]. These attributions serve

as a tool for understanding which aspects of the input were

most influential in determining the output.

A widely discussed notion in XAI is completeness (also

known as conservation or efficiency) [4, 55, 60, 65]. Com-

pleteness is defined as the requirement that the elements in

an attribution map should sum to the difference between the

model’s prediction for a given input and a baseline (e.g., the

null representation). This difference is also known as the

*Equal contribution.

model’s response. When completeness is achieved inher-

ently by an attribution method, it is intuitively appealing, as

it suggests that the attribution map fully captures the fac-

tors contributing to the model’s response. However, even a

low-quality attribution map can be superficially adjusted to

satisfy completeness through post hoc global normalization.

Yet, such an approach lacks genuine explanatory power, as

the normalization is decoupled from the underlying attribu-

tion mechanism.

This paper recognizes that completeness, as defined

in the literature as a global property that an explanation

method should satisfy, is too weak to serve as a standalone

criterion. Indeed, several well-regarded explanation meth-

ods [32, 39, 59] do not inherently satisfy completeness.

Nevertheless, these methods have demonstrated consider-

able effectiveness across diverse objective evaluation met-

rics, providing faithful explanations and successfully pass-

ing various sanity checks [3]. This suggests that complete-

ness is neither a necessary nor sufficient condition for gen-

erating high-quality explanations.

In this work, we differentiate between global complete-

ness, as originally defined in the literature, which imposes

a completeness constraint on the entire attribution map, and

local completeness, which requires completeness within in-

dividual subregions of the attribution map. By rethinking

completeness as a local and flexible guiding measure rather

than a strict global constraint, we seek to overcome its lim-

itations while harnessing the appealing motivation behind

it for producing meaningful and faithful explanations. To

achieve this, we require subregions of the attribution map,

referred to as sub-maps, to promote completeness locally

by accounting for the model’s response to the correspond-

ing subregions of the input image, yet in soft manner. An

attribution map that adheres to this guiding principle should

assign high (low) importance to image subregions where the

model exhibits a strong (weak) response, thereby maintain-

ing faithfulness to the model.

Unlike global completeness, which is a relatively weak

requirement that can be easily satisfied, achieving local

completeness across an arbitrary set of sub-maps may not
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always be feasible. To address this challenge, we introduce

the completeness gap - a measure that quantifies the devia-

tion of a sub-map from completeness. Specifically, the com-

pleteness gap measures the difference between the sum of

elements in each sub-map and the model’s response to the

corresponding subregions of the input image. Rather than

imposing a strict binary constraint, the completeness gap

serves as a soft, quantifiable criterion for local complete-

ness. We argue that minimizing this gap over a diverse set

of sub-maps leads to faithful explanations.

To this end, we present Soft LOcal Completeness

(SLOC) - a novel explainability method that promotes com-

pleteness locally within sub-maps of the attribution map in a

soft and flexible manner. SLOC accomplishes this by seek-

ing to minimize the completeness gap locally for each indi-

vidual sub-map, simultaneously.

The motivation for minimizing the completeness gap lo-

cally is to emphasize or attenuate sub-maps based on the

actual impact of their corresponding input subregions on

the model’s output. SLOC achieves this through a gradient-

based optimization process, where each sub-map is adjusted

to achieve local completeness in a soft manner. Therefore,

SLOC’s goal is not to enforce strict completeness, globally,

but to use it as a guiding principle for refining a large set

of sub-maps (subregions within the attribution), iteratively

and simultaneously.

Our contribution is the introduction of the SLOC

method, which facilitates a novel optimization procedure to

promote completeness in a soft local manner. The effec-

tiveness of SLOC is demonstrated through extensive exper-

iments on various model architectures, where it is shown to

produce state-of-the-art results across multiple benchmarks.

2. Related Work

The XAI literature encompasses a broad range of ap-

proaches for attributing model predictions to specific input

features across different tasks [2, 4, 6, 7, 16, 24, 29, 40, 54].

Early gradient-based methods produce explanation maps by

leveraging gradients directly [5, 60, 62] or through func-

tions that combine class activation maps with or without

their gradients [10, 26, 48, 58, 59, 63]. With the rise

of transformer architectures, new explainability techniques

for transformers have emerged [1, 4, 11, 67]. For exam-

ple, Transformer Attribution [28] introduces a class-specific

Deep Taylor Decomposition, applying relevance propaga-

tion for both positive and negative attributions. Building

on this, Generic Attention Explainability [27] generalizes

Transformer Attribution to explain bi-modal transformers.

Path integration methods form another prominent fam-

ily of attribution techniques [13, 15, 18, 50, 65]. Inte-

grated Gradients (IG) [65] computes attributions by inte-

grating gradients along an interpolation path from a base-

line to the input. A refined variant, Guided Integrated

Gradients (GIG) [50], uses an adaptive path that avoids

high-gradient regions, thereby reducing irrelevant attribu-

tions. Recently, Deep Integrated Explanations (DIX) [14]

proposed performing integration over intermediate network

representations instead of inputs, producing more faithful

attribution maps than IG and GIG.

Perturbation-based (occlusion) techniques generate at-

tribution maps by perturbing parts of the input to as-

sess the contributions of specific elements to the predic-

tion [17, 19, 20, 53]. For example, RISE [57], creates per-

turbations by masking areas in the image through the up-

sampling of randomly drawn low-resolution binary grids.

The class score corresponding to each masked version of

the image serves as an importance score for that specific

mask. A linear combination of all masks, weighted by their

importance, then forms the final attribution map. Another

branch of perturbation methods are learning-based pertur-

bation techniques [12, 30, 38, 39]. For example, Meaning-

ful Perturbation (MP) [39] learns to produce perturbations

by masking the smallest region possible while significantly

altering the original prediction, isolating the minimum nec-

essary content for the prediction. Alternatively, LTX [12]

introduces a surrogate ‘explainer’ model pretrained to mask

as much of the input as possible while preserving the orig-

inal prediction, thereby ensuring the retained features are

those most relevant to the model’s prediction. Then, LTX

finetunes the attribution per specific example, allowing the

selection of the best-performing attribution w.r.t. to the met-

ric at hand.

Our SLOC method falls within the family of learning-

based perturbation techniques, yet it diverges from prior

works in several key aspects. First, conceptually, SLOC

presents a distinct methodology by promoting local com-

pleteness rather than attempting to maximize or minimize

the model prediction through learned perturbations [12,

30, 39]. Consequently, SLOC does not require gradient

backpropagation through the model, and incorporates the

model’s predictions on the masked inputs into the loss as

constant nodes within the computation graph. This design

yields a simple, computationally efficient gradient expres-

sion, and relies solely on the model’s forward pass, hence

operating in a true black-box setting. Finally, unlike LTX,

SLOC avoids the overhead of learning an ‘explainer’ func-

tion, which would also require a dataset aligned with the

training data distribution of the model being explained.

3. Soft Local Completeness

Let f : Rn → [0, 1]C be a classification model that takes

an input image1
x ∈ R

n and outputs a discrete probability

distribution f(x) ∈ [0, 1]C over C classes. Given a target

class y to explain, our goal is to produce an attribution map

1W.l.o.g, we represent images as vectors in R
n.
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a
y
x
∈ R

n that attributes the contribution of each element i

in a
y
x

to the prediction score f(x)[y] for the class y.

Completeness requires that the attributions in a
y
x

collec-

tively account for the difference between the model’s pre-

diction on the input x and the baseline representation b,

which is set to the black image2 in this work.

The model’s response to x is defined as r(x) := f(x)−
f(b). Formally, the attribution map a

y
x

satisfies complete-

ness if
∑n

i=1 a
y
x
[i] = r(x)[y]. We note that this prop-

erty can be superficially imposed on an attribution map

through a post-processing step by normalizing each ele-

ment using the factor
r(x)[y]∑
n
i=1

a
y
x
[i]

. However, artificially sat-

isfying completeness through such normalization does not

inherently yield a meaningful explanation, as the imposed

completeness is an external adjustment rather than an in-

trinsic characteristic of the explanation method itself. For

example, even a flat attribution map (where all elements are

equally weighted) could be normalized to satisfy the com-

pleteness criterion, yet such a map lacks any explanatory

value. Consequently, relying solely on completeness, in its

global form, is deemed insufficient for producing meaning-

ful attribution maps.

3.1. Motivation

Our SLOC approach is motivated by the toy example il-

lustrated in Fig. 1, which depicts an image where the key

region influencing the model’s prediction for the ‘great-

grey-owl’ class is approximately centered. Figures 1(a)–(d)

present four images: the original image (a) and three

perturbed versions obtained by masking different regions

(b)–(d).

The four different masks applied in Figures 1(a)–(d) are

illustrated in Figure 1(e). Each mask selectively perturbs

the original image by replacing certain regions with the

baseline (in this work, the null pixels). For instance, the

mask corresponding to Figure 1(c), shown in the top-right

corner of Figure 1(e), applies a perturbation by replacing

all pixels within the black rectangle (located at the bottom-

right corner) with the baseline.

Notably, the model’s response for the great-grey-owl

class remains consistent across all four images (a-d), with

a value of 0.8. Recall that the model response is defined as

the difference between the model’s class probability for a

given image and that for the baseline (the null image).

As defined earlier, a sub-map represents a subset of el-

ements in the attribution map that are associated with spe-

2The baseline representation should resemble missing information or

the neutral representation. While determining the ultimate representation

for the baseline is an open question and an active research field in explain-

ability [21, 36], in this work, we opt for the simple choice of a null baseline

represented by the black image. This choice is on par with other notable

works [57, 65]. Additionally, we conducted experiments using alternative

baselines and observed that the resulting trends remained consistent with

those obtained using the black image.

(a) Original image: 0.8 (c)  Masked Image: 0.8

(f) Attribution Map(d) Masked Image: 0.8(b) Masked Image: 0.8

(e)  Four masks

Figure 1. Subfigures (a)–(d) present the model’s response (0.8) for

the class ‘great-grey-owl’ when applied to the original input (a)

and its masked versions (b)–(d). The four masks used to generate

(a)–(d) are depicted in (e). A sub-map refers to a subset of ele-

ments in the attribution map that correspond to specific subregions

in the input. We consider four distinct sub-maps (not shown), each

corresponding to the non-masked (visible) subregions in (a)–(d).

For instance, the sub-map associated with (c) includes all elements

in the attribution map except those corresponding to the black rect-

angle in the bottom-right corner of (c). This exclusion aligns with

the masked region in the input, effectively determining which at-

tributions are included in that sub-map. A sub-map satisfies local

completeness if the sum of attributions within it equals the model’s

response for the corresponding perturbed image. For example, the

sub-map induced by (c) satisfies local completeness if the sum of

its elements equals 0.8, which is the model’s response to (c). By

enforcing local completeness across the four sub-maps induced by

(a)–(d), the remaining central stripe, which is unmasked in all im-

ages (a)–(d), must account for the model’s entire response of 0.8.

This results in the attribution depicted in (f) that highlights the cen-

tral stripe containing the owl in red. See 3.1 for more details.

cific subregions in the input. In the context of Fig. 1, we

consider four different sub-maps, each corresponding to

the non-masked (visible) subregions in Figs.1(a)–(d). For

instance, the sub-map corresponding to Fig. 1(c) consists

of all elements in the attribution map except those associ-

ated with the black rectangle in the bottom-right corner of

Fig.1(c). This exclusion aligns with the masked region in

the input, effectively defining which attributions are con-

sidered within that sub-map. Notably, the sub-map corre-

sponding to the original image (Fig. 1(a)) is equivalent to

the entire attribution map, as no regions are masked. This

formulation allows us to analyze how different subregions

contribute to completeness by evaluating attributions over

various sub-maps.

A sub-map satisfies local completeness if the sum of at-

tributions within it equals the model’s response for the cor-

responding perturbed image. For example, the sub-map in-

duced by Fig. 1(c) satisfies local completeness if the sum

of its elements equals 0.8, which is the model’s response to

Fig. 1(c).
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Our key insight is that enforcing local completeness

across the four sub-maps induced by Figs.1(a)-(d) allows

us to pinpoint the important region of the image w.r.t. the

model’s prediction. Specifically, the intersection of these

four sub-maps forms a central stripe around the owl, illus-

trated in red in Fig.1(f). By evenly distributing the total

attribution sum of 0.8 across the pixels within this intersec-

tion (red stripe) and assigning 0 elsewhere (highlighted in

dark blue in Fig. 1(f)), we obtain an attribution map that en-

sures local completeness for all four sub-maps. Since each

sub-map contains the intersection while the attribution val-

ues outside it are zero, the sum of attributions within each

sub-map is exactly the sum of attributions within the in-

tersection: 0.8. This resulting attribution map effectively

captures the key region containing the owl.

This simple example can be slightly generalized under

similar settings. We make the following assumptions: (1)

The model response for a subregion is R if the subregion

contains the object of interest and 0 otherwise. (2) Each

sub-map either fully contains the object of interest or does

not intersect with it at all. (3) One of the sub-maps corre-

sponds to the complete attribution map. (4) All attribution

values are non-negative. It can then be shown that if an at-

tribution map satisfies local completeness for all sub-maps,

the intersection defined by these sub-maps is the largest sub-

region that can have non-zero attribution. Simply put, this

intersection highlights the important regions in the image

responsible for the model’s prediction. Moreover, as the

number of sub-maps increases, the important regions can

potentially become more precisely defined. The formaliza-

tion and proof follow straightforwardly and are provided in

Appendix K.

Keep in mind, however, that this setting and its assump-

tions are simplistic and unrealistic, serving only to illus-

trate the motivation. Therefore, SLOC does not actually

rely on these assumptions. In more realistic scenarios, sat-

isfying local completeness for all sub-maps is often infea-

sible (an example is provided in Fig. 11 in Appendix I). To

address this challenge, we introduce the completeness gap,

which quantifies the degree to which a sub-map deviates

from local completeness. Our approach seeks to minimize

the completeness gap across multiple sub-maps simultane-

ously, hence promoting completeness locally within subre-

gions of the attribution map, in a soft manner. We formu-

late this as an optimization problem and employ gradient

descent to find a solution.

Finally, recall that in our simple example, in the absence

of additional information, we distributed the attribution uni-

formly across the central red stripe. When introducing the

loss terms for the SLOC optimization, we will also discuss

regularization terms. One such term is the Total Variation

loss, which encourages spatial smoothness in the attribu-

tion. As we demonstrate in Sec. 4, by encouraging this soft

form of local completeness, the resulting attribution map of-

fers robust explanatory performance, both visually and ac-

cording to a variety of evaluation metrics.

3.2. SLOC optimization

Let m ∈ {0, 1}n be a binary mask. We define the masked

input by

x
m = x ◦m+ (1−m) ◦ b, (1)

where ◦ stands for the elementwise product. In words, xm

is a perturbation (masked version) of x, according to the

mask m, where all masked elements of x
m are replaced

with their respective elements from the baseline b.

In this work, we consider binary masks constructed over

patches, where each patch is randomly assigned a Bernoulli

outcome with probability p. We explore two methodologies

for automatically selecting p: one that determines p dynam-

ically per input image, and another that uses a fixed value

per model. The reader is referred to Appendix D for the ex-

act details of the masks construction process, including the

methodologies used for determining p.

Given an initial attribution map a
y
x

and a set of masks

M ¢ {0, 1}n, the SLOC loss is defined as follows:

Lc(a
y
x
;M) =

1

2|M|

∑

m∈M

1

|m|
(r(xm)[y]− a

y
x
·m

︸ ︷︷ ︸

completeness gap

)2,

(2)

where · is the dot-product operator, and | · | denotes the L1

norm. As observed in Eq. 2, Lc promotes the minimiza-

tion of the completeness gap, a soft measure of complete-

ness, locally, for all sub-maps induced by M. The rationale

behind the local minimization of the completeness gap is

that attributions within a sub-map should be strengthened

or reduced so that their sum closely matches r(xm)[y] - the

model’s response to the respective regions exposed in x
m.

This behavior is achieved by applying gradient descent on

Lc with respect to a
y
x

.

To better understand the optimization process, one can

inspect the gradient:

∂Lc

∂a
y
x

= −
1

|M|

∑

m∈M

1

|m|
(r(xm)[y]− a

y
x
·m)m. (3)

For simplicity, assume M contains a single mask m. Then,

for each element ay
x
[i] that is exposed in x

m (i.e., m[i] =
1), the gradient is the negative of the completeness gap nor-

malized by the number of elements in the sub-map, i.e.,
∂Lc

∂a
y
x
[i]

= − 1
|m| (r(x

m)[y] − a
y
x
· m), and for each i where

m[i] = 0, the gradient vanishes. Accordingly, the gradient

descent update ensures an equal increase (decrease) for all

elements in the sub-map when the sum of the attributions

falls short of (exceeds) the model’s response r(xm)[y]. As-

suming a learning rate of 1, it follows that after the gradient

descent update, the completeness gap vanishes, resulting in
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an updated sub-map satisfying completeness. This can be

seen mathematically as follows: for a sub-map induced by

the mask m, the sum of its elements after the gradient up-

date is given by

∑

i:m[i]=1

a
y
x
[i]−

∂Lc

∂a
y
x[i]

=
∑

i:m[i]=1

a
y
x
[i] +

1

|m|
(r(xm)[y]− a

y
x
·m)

︸ ︷︷ ︸

independent of i

= |m|
1

|m|
(r(xm)[y]− a

y
x
·m) +

∑

i:m[i]=1

a
y
x
[i]

= r(xm)[y]− a
y
x
·m+ a

y
x
·m = r(xm)[y],

where the second transition follows from the fact that the

normalized completeness gap is independent of i and is

therefore summed |m| times, as the summation is taken

over every i where m[i] = 1, with m being a binary ten-

sor. The penultimate transition then arises from express-

ing the sum of elements in the sub-map as the dot product,

a
y
x
· m. This derivation justifies the normalization of the

squared completeness gap by |m| in Eq. 2, as it ensures that

after the gradient update, the sub-map satisfies local com-

pleteness.

To give further intuition for using the normalized com-

pleteness gap in Eq. 2, consider two different masks: one

that exposes a single pixel (element), and another that ex-

poses a large portion of the input. Given that the gradient

update of elements in the sub-map is equal for all elements,

it makes sense to distribute the completeness gap among all

elements. In the case of a mask exposing a single pixel, we

have full confidence that this specific element is responsible

for the model’s response r(xm)[y]. Therefore, it is reason-

able to expect that the gradient update for this element will

match the size of the completeness gap. However, in the

case of a sub-map associated with a mask exposing large

portions of the input, we cannot differentiate the account-

ability of individual elements within the exposed portions

for the model’s response. Thus, without further informa-

tion, it is reasonable to apply an update step that evenly dis-

tributes the completeness gap across all exposed elements.

Hence, the squared completeness gap is divided by |m|.
So far, the discussion and analysis have been limited to

the case of a single mask, i.e., |M| = 1. When consid-

ering a set of masks, the update for ay
x
[i] is determined by

the accumulation of gradients from all the sub-maps it is

associated with. Specifically, sub-maps that include the i-th

element and whose total sum of elements is below (exceeds)

the model’s response r(xm)[y] will contribute to the inten-

sification (reduction) of a
y
x
[i], with the contribution from

each individual mask weighted according to the normalized

completeness gap it induces.

Mask Generation

L1-LossTV-Loss

Masks & Responses Generation Phase

Gradient Descent Step

Initial 
attribution

7

r

+

Optimization Phase Completeness Gap - Loss

Model

6

5

4

3

2

1

Figure 2. SLOC overview: The upper section illustrates the

Masks & Responses Generation Phase. In this phase, (1) M

masks are randomly generated. (2) Perturbations are produced by

combining the original image and baseline according to the masks,

as defined in Eq. (1) (3) These perturbations are passed as inputs

to the model, and the corresponding outputs are obtained. (4) Sub-

tracting the model’s output for the baseline from these outputs

produces the model responses. (5) These masks and their corre-

sponding responses are then passed to the Optimization Phase. (6)

Starting with an initial attribution. (7) Gradient descent is used to

iteratively update the attribution. The loss function L (Eq. 4) con-

sists of three components: the completeness gap (computed using

the masks, responses, and attributions), as well as TV and L1 reg-

ularization. See Sec. 3.2 for details.

To promote smooth and focused attribution maps, we

combine Lc with two types of regularization applied to the

attribution map: Total Variation (TV) and L1 regularization

that encourage smoothness and sparsity, respectively. The

final loss function is then defined as:

L(ay
x
;M) = Lc(a

y
x
;M) + λ1|a

y
x
|+ λ2TV(ay

x
), (4)

with

TV(ay
x
) :=

∑

i,j

(ay
x
[i, j]−a

y
x
[i+1, j])2+(ay

x
[i, j]−a

y
x
[i, j+1])2

(5)

where a
y
x

in Eq. 5 is reshaped to match the spatial dimen-

sions of the final attribution map. Additionally, λ1 and λ2

are hyperparameters controlling the strength of the regular-

ization terms. In our experiments, these hyperparameters

are set based on a separate validation set.

The optimization of ay
x

is carried out via gradient descent

on L. The optimization process allows for tracking the per-

formance of the metric during the optimization and select-

ing the best-performing attribution map based on this met-

ric from the resulting maps [12]. A diagram of the SLOC

method is depicted in Fig. 2.
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Figure 3. SLOC attribution maps across training steps. Faithful

explanations emerge after a few hundred gradient updates, with an

appropriate learning rate decay.

In practice, we observed that a few hundred gradient up-

dates, combined with an appropriate learning rate decay,

were sufficient to produce faithful and meaningful expla-

nations. Therefore, in our experiments, we report SLOC

results for T = 500. An example for SLOC’s attribution

across gradient update steps is shown in Fig. 3. For the

exact implementation details and hyperparameter configu-

ration, the reader is referred to Appendix D.

Due to space limitations, Appendix G provides a

detailed discussion of SLOC’s computational complex-

ity. Appendix H presents a runtime analysis, comparing

SLOC against various methods and demonstrating its effi-

ciency over other state-of-the-art learning-based perturba-

tion methods. Additionally, Appendix L examines addi-

tional axioms and explains which of them are satisfied by

SLOC.

Finally, it is important to clarify that the SLOC opti-

mization procedure does not guarantee convergence to an

attribution map that fully satisfies completeness. Instead, it

leverages the completeness gap as a guiding measure to up-

date subregions within the attribution map, thereby promot-

ing local completeness for these subregions in a soft man-

ner. Nevertheless, as demonstrated in Sec. 4, SLOC has

proven effective in generating attribution maps that outper-

form state-of-the-art explanation methods.

4. Experiments and Results

4.1. Experimental setup

The experiments were conducted on an NVIDIA DGX

8xA100 Server, utilizing the PyTorch package. As explana-

tions are multifaceted by nature, no single evaluation metric

can fully capture their quality, and no definitive metric ex-

ists [21, 23, 35, 45, 47, 51, 68]. Therefore, our evaluation

encompasses several distinct protocols designed to assess

explanation quality from multiple complementary perspec-

tives, on different datasets, and across four model architec-

tures: ResNet50 (RN) [43], DenseNet201 (DN) [46], ViT-

Base (ViT-B) and ViT-Small (ViT-S) [33].

Experiment 1: Faithfulness evaluation This evaluation

assesses the faithfulness (also known as correctness or fi-

delity) of the explanation via a set of perturbation-based

metrics. These metrics are designed to reveal the actual in-

put elements the model relies on for its predictions. Follow-

ing prior works [28, 49, 50, 69], we conducted an extensive

evaluation using a comprehensive set of perturbation-based

explanation metrics to assess the faithfulness of the gen-

erated explanations: the Area Under the Curve (AUC) of

Positive (POS) and Negative (NEG) perturbation tests [28],

AUC of the Insertion (INS) and Deletion (DEL) tests [57],

and AUC of the Softmax Information Curve (SIC) and Ac-

curacy Information Curve (AIC) [49]. For POS and DEL,

lower values indicate better performance, while for NEG,

INS, SIC, and AIC, higher values are preferred. Since NEG

and POS, as well as INS and DEL, are complementary met-

rics, we also report the NEG-POS Difference (NPD) and

the INS-DEL Difference (IDD) as single summaries of their

respective complementary performances. Faithfulness per-

formance is reported on a sample from the ImageNet [31]

ILSVRC 2012 (IN) validation set, which consists of 10,000

images across 1,000 classes. Since most images in the IN

dataset contain a single, centrally focused object, we ex-

tend our evaluation to multi-object scenes by assessing ex-

planation faithfulness on a sample from the Pascal VOC

2012 [37] (VOC) test set, which includes 1,000 images

spanning 20 object classes.

Experiment 2: FunnyBirds evaluation While

perturbation-based protocols are a standard approach

for assessing explanation faithfulness, they are criticized

for introducing domain shifts that undermine the validity

of the evaluation [45]. To address this, we additionally

report results on the FunnyBirds (FB) dataset which

consists of 500 images from 50 classes, following the

evaluation protocol from [44]. The FB evaluation employs

controlled interventions to estimate ground-truth (GT)

importance scores at the level of object parts rather than

individual pixels, mitigating issues associated with pixel-

wise perturbation-based evaluations [68]. Furthermore,

FB avoids domain shifts by incorporating semantically

meaningful interventions during training. By evaluating

explanations at the part level—closer to human visual

understanding—FB reduces the gap between automatic

XAI evaluation (e.g., faithfulness metrics) and human-

centric studies, providing a more interpretable and robust

assessment of the explanations. FB evaluates explainability

in three aspects: Completeness, Correctness, and Con-

trastivity - and provides a combined overall score (higher

is better).

Experiment 3: Segmentation evaluation To ensure a

comprehensive comparison with prior works [27, 28, 48],

we conduct an extensive evaluation using segmentation tests

on the ImageNet-Seg dataset (IN-Seg) [42], a subset of the

ImageNet validation set comprising 4,276 human-annotated
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ground-truth (GT) segmentation maps across 445 classes.

As detailed in [28], these tests generalize the“Pointing

Game” [45] and serve as a human-grounded evaluation [56]

by measuring the alignment between GT segmentation

maps and the attributions generated by the explanation

method. While higher segmentation accuracy does not

necessarily indicate greater explanatory power [57], seg-

mentation tests assess the alignment between explanations

and human-annotated GT, hence providing a complemen-

tary perspective to other evaluations. We follow the eval-

uation protocol from [28], assessing segmentation perfor-

mance using Pixel Accuracy (PA), mean Intersection-over-

Union (mIoU), and mean Average Precision (mAP), higher

is better for all metrics.

Detailed descriptions of the evaluation protocols and

metrics used in Experiments 1, 2, and 3 are provided in Ap-

pendices B.1, B.2, and B.3, respectively.

Evaluated methods We evaluate SLOC against a com-

prehensive suite of 14 explanation methods encompass-

ing gradient-based, path-integration, perturbation, and

CAM methods. For CNN models, we include the fol-

lowing methods: Grad-CAM (GC) [59], Grad-CAM++

(GC++) [26], Deep Integrated Explanations (DIX) [14],

FullGrad (FG) [63], Ablation-CAM (AC) [32], Layer-

CAM (LC) [48], Learning To Explain (LTX) [12],

RISE [57], Meaningful Perturbation (MP) [39], Extremal

Perturbations (EP) [38], Integrated Gradients (IG) [64], and

Guided IG (GIG) [50]. For ViT models, we considered the

following methods: Transformer Attribution (T-Attr) [28]

and Generic Attention Explainability (GAE) [27], along-

side DIX, RISE, LTX, EP, and MP, which are applicable

to both CNN and ViT architectures. Hyperparameters for

all methods were set according to the recommended set-

tings published by the authors, unless a better configura-

tion was found. A detailed description of all explanation

methods is provided in Appendix C. Finally, we evaluated

three different versions of our SLOC method on both CNN

and ViT models: SLOC, which tunes p dynamically per in-

put, SLOCxp, where p is calibrated per model (i.e., fixed

across all inputs for a given model) based on a validation

dataset, and SLOCm, which is identical to SLOC but addi-

tionally monitors the IDD metric on the specific input and

selects the explanation with the best performance accord-

ing to this metric. All versions were run with T = 500.

The precise implementation details, including the monitor-

ing procedure, the p tuning procedures, optimization pro-

cess, and all hyperparameter configurations, are provided in

Appendix D and in our GitHub repository.

4.2. Results

Tables 1 and 2 present a quantitative comparison of SLOC

with other state-of-the-art explanation methods across mul-

tiple faithfulness metrics, for DN and ViT-S, respectively.

Method POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

SLOCm 11.61 76.54 9.39 65.79 64.93 56.4 79.21 78.35

SLOC 11.52 70.97 9.12 60.53 59.45 51.41 77.79 77.72

SLOCxp 11.78 70.20 9.34 59.75 58.43 50.41 77.33 76.80

AC 17.24 67.68 13.27 57.18 50.44 43.91 77.78 75.41

DIX 13.36 62.95 10.36 52.43 49.59 42.07 74.62 71.47

EP 16.12 65.68 12.94 55.0 49.55 42.06 77.38 74.97

FG 19.06 44.66 15.26 37.62 25.6 22.37 58.23 53.86

GC 16.88 68.54 13.04 57.95 51.66 44.91 78.38 76.01

GC++ 17.36 67.29 13.34 56.75 49.93 43.41 78.04 75.62

GIG 14.81 49.96 12.28 41.93 35.16 29.65 61.12 57.6

IG 14.14 51.99 11.2 44.08 37.85 32.88 61.26 58.48

LC 17.28 67.27 13.31 56.71 49.99 43.4 77.95 75.42

LTX 16.24 71.09 12.95 59.69 54.84 46.74 78.92 76.25

MP 18.54 53.24 14.87 43.79 34.7 28.92 66.98 64.13

RISE 18.42 62.75 14.26 52.99 44.33 38.73 76.82 74.24

Table 1. Faithfulness results for all combinations of method and

metric, using the DN model on the IN dataset.

Method POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

SLOCm 14.83 81.81 12.27 70.31 66.98 58.04 83.78 83.34

SLOC 15.25 77.97 12.47 66.51 62.72 54.04 83.19 82.88

SLOCxp 15.79 77.85 12.85 66.18 62.06 53.33 83.06 81.97

DIX 18.69 68.17 14.86 56.83 49.48 41.97 76.88 75.05

EP 27.37 72.52 21.66 60.8 45.14 39.14 79.45 77.56

GAE 19.98 66.93 15.93 55.72 46.95 39.79 75.42 73.9

LTX 20.84 68.5 16.63 56.89 47.66 40.27 74.22 71.56

MP 27.72 63.25 22.46 52.28 35.53 29.81 74.22 71.25

RISE 29.51 69.52 23.47 57.93 40.02 34.46 79.93 77.23

TATTR 19.06 67.52 14.91 56.41 48.46 41.5 78.03 75.69

Table 2. Faithfulness results for all combinations of method and

metric, using the ViT-S model on the IN dataset.

Results for RN and ViT-B are available in Tabs. 7 and 8 in

Appendix E, respectively. Overall, the results indicate that

all SLOC versions are the best-performing methods, with

LTX, DIX, RISE, and EP as runners-up, depending on the

combination of architecture and evaluation metric.

Among the three versions of SLOC, SLOCm performs

best. This can be attributed to its use of the IDD metric,

which measures the difference between INS and DEL per-

formance. The fact that SLOCm outperforms across the vast

majority of metrics suggests that the IDD metric correlates

well with other faithfulness metrics. SLOC and SLOCxp

follow, with SLOC performing slightly better. This sug-

gests that tuning p per instance offers a modest advantage

in metrics, at the cost of increased inference complexity.

When a representative sample of data is available, p can be

calibrated per model using this data. Otherwise, p should

be adjusted dynamically per input during inference.

Notably, both SLOC and SLOCxp surpass learning-based

approaches such as LTX, MP, and EP, achieving state-of-

the-art results without requiring gradient backpropagation

through the model (see the discussion on SLOC complex-

ity in Appendix G) or metric monitoring (as in LTX). Fig-

ures 6 and 5 present comparative examples of the top-

performing methods for DN and ViT-S. Arguably, SLOC

produces focused explanation maps highlighting relevant

class-discriminative features in the image.

Table 3 presents faithfulness results on the VOC dataset
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Figure 4. Qualitative comparison of attributions produced by dif-

ferent methods, using the DN model w.r.t. the classes (top to bot-

tom): ‘sea anemone’, ‘French horn’, ‘airliner’, ‘brown bear’.

Figure 5. Qualitative comparison of attributions produced by dif-

ferent methods, using the ViT-S model w.r.t. the classes (top to

bottom): ‘American aligator’, ‘spiny lobster’, ‘black and gold gar-

den spider’, ‘promontory’.

Method POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

SLOCm 7.31 69.2 5.07 48.83 61.89 43.76 75.63 79.09

SLOC 7.32 63.56 5.09 44.58 56.25 39.5 74.96 77.84

SLOCxp 7.61 63.23 5.22 43.72 55.65 38.48 73.69 77.59

DIX 10.19 48.66 6.74 31.73 38.47 24.99 64.51 68.66

EP 14.06 55.96 9.26 36.55 41.89 27.29 68.43 72.04

GAE 11.2 47.4 7.47 30.92 36.20 23.44 64.22 67.95

LTX 12.56 49.28 8.2 32.26 36.71 24.06 56.55 63.16

RISE 15.67 53.21 10.26 35.35 37.53 25.09 66.91 70.5

T-Attr 10.37 47.56 6.81 31.35 37.19 24.54 65.62 69.53

Table 3. Faithfulness results for combinations of method and met-

ric, using the ViT-S model on the VOC dataset.

using ViT-S. The VOC dataset contains multi-object im-

ages, allowing multiple classes to appear within the same

image. These results demonstrate the superior performance

of all SLOC variants not only on single-object images but

also on images containing multiple objects from different

classes. Results for the DN model are provided in Tab. 9 in

Appendix E.

Tables 4 and 5 present the overall summarized perfor-

mance scores (higher is better) on the FB benchmark for

the RN and ViT-B models, respectively. Detailed fine-

grained results are provided in Appendix E. Notably, SLOC

Method SLOC AC DIX EP FG GC GC++ GIG IG LC RISE

Score 0.78 0.70 0.72 0.73 0.70 0.72 0.72 0.56 0.63 0.72 0.62

Table 4. FunnyBirds results for the RN model.

Method SLOC DIX EP RISE T-Attr

Score 0.88 0.87 0.79 0.77 0.87

Table 5. FunnyBirds results for the ViT-B model.

Method SLOC AC DIX EP GC GC++ GIG IG LC LTX RISE

mIoU↑ 0.56 0.55 0.66 0.52 0.55 0.56 0.51 0.48 0.55 0.56 0.51

mAP↑ 0.80 0.86 0.84 0.76 0.85 0.85 0.78 0.76 0.85 0.83 0.79

PA↑ 0.77 0.72 0.82 0.72 0.73 0.73 0.74 0.79 0.73 0.51 0.7

Table 6. Segmentation tests results for the RN model.

achieves state-of-the-art performance on the FB benchmark

as well. The distinct evaluation protocol employed in FB

offers a complementary perspective to the faithfulness eval-

uation conducted on the IN dataset, further reinforcing our

confidence in the robustness of SLOC.

Table 6 presents segmentation tests results on the IN-Seg

dataset using the RN model. We observe that DIX achieves

the best average performance across all metrics, while the

runner-up varies depending on the specific metric. Over-

all, SLOC is found to be competitive, on average, with all

runner-up methods. We note that higher segmentation accu-

racy may reflect a method’s ability to facilitate strong object

detection rather than to identify the most informative fea-

tures that explain the model’s prediction. In reality, the most

explanatory features do not always cover the entire object;

instead, they may correspond to a subset of features that are

critical to the model’s decision. Consequently, higher seg-

mentation accuracy does not necessarily indicate superior

explanatory value.

Due to space limitation, ablation studies, runtime com-

parison, sanity checks [3], and additional qualitative analy-

ses, are provided in Appendices F, H, J, and I, respectively.

These experiments offer further insights into the effective-

ness and efficiency of SLOC.

5. Conclusion

This work introduced SLOC, a novel and efficient explain-

ability method. By rethinking completeness as a guiding

principle promoted locally rather than as a strict global con-

straint, SLOC exhibits state-of-the-art performance across

various explainability benchmarks. These findings sug-

gest that completeness, when promoted in a soft and local

manner, provides a robust foundation for generating high-

quality attribution maps that closely align with the model’s

predictive behavior and human comprehension. Finally,

discussions on the limitations of SLOC and potential av-

enues for future research are provided in Appendix M.
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[22] Alexander Binder, Grégoire Montavon, Sebastian La-

puschkin, Klaus-Robert Müller, and Wojciech Samek.

Layer-wise relevance propagation for neural networks with

local renormalization layers. In International Conference on

Artificial Neural Networks, pages 63–71. Springer, 2016. 1

[23] Alexander Binder, Leander Weber, Sebastian Lapuschkin,
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Imagenet auto-annotation with segmentation propagation.

International Journal of Computer Vision, 110(3):328–348,

2014. 6

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016. 6

[44] Robin Hesse, Simone Schaub-Meyer, and Stefan Roth. Fun-

nybirds: A synthetic vision dataset for a part-based analysis

of explainable ai methods, 2023. 6, 13, 14, 16

[45] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and

Been Kim. A benchmark for interpretability methods in deep

neural networks. Advances in neural information processing

systems, 32, 2019. 6, 7

[46] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely

connected convolutional networks. 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

2261–2269, 2017. 6

[47] Alon Jacovi and Yoav Goldberg. Towards faithfully inter-

pretable nlp systems: How should we define and evaluate

faithfulness? In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, pages 4198–

4205, 2020. 6

[48] Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming

Cheng, and Yunchao Wei. Layercam: Exploring hierarchical

class activation maps for localization. IEEE Transactions on

Image Processing, 30:5875–5888, 2021. 2, 6, 7, 15

[49] Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viégas, and

Michael Terry. Xrai: Better attributions through regions. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 4948–4957, 2019. 6, 12, 13

19803



[50] Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci,

Ben Wedin, Michael Terry, and Tolga Bolukbasi. Guided

integrated gradients: An adaptive path method for remov-

ing noise. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 5050–5058,

2021. 2, 6, 7, 14

[51] Sunnie SY Kim, Nicole Meister, Vikram V Ramaswamy,

Ruth Fong, and Olga Russakovsky. Hive: Evaluating the

human interpretability of visual explanations. In European

Conference on Computer Vision, pages 280–298. Springer,

2022. 6

[52] D Liu, R Nicolescu, and R Klette. Stereo-based bokeh effects

for photography. Machine Vision and Applications, pages 1–

13, 2016. 13

[53] Scott M Lundberg and Su-In Lee. A unified approach to

interpreting model predictions. In Advances in Neural Infor-

mation Processing Systems, pages 4765–4774, 2017. 2

[54] Itzik Malkiel, Dvir Ginzburg, Oren Barkan, Avi Caciularu,

Jonathan Weill, and Noam Koenigstein. Interpreting bert-

based text similarity via activation and saliency maps. In

Proceedings of the ACM Web Conference 2022, pages 3259–

3268, 2022. 2
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