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Abstract

Resolving closely-spaced small targets in dense clusters
presents a significant challenge in infrared imaging, as the
overlapping signals hinder precise determination of their
quantity, sub-pixel positions, and radiation intensities. While
deep learning has advanced the field of infrared small target
detection, its application to closely-spaced infrared small tar-
gets has not yet been explored. This gap exists primarily due
to the complexity of separating superimposed characteristics
and the lack of an open-source infrastructure. In this work,
we propose the Dynamic Iterative Shrinkage Thresholding
Network (DISTA-Net), which reconceptualizes traditional
sparse reconstruction within a dynamic framework. DISTA-
Net adaptively generates convolution weights and threshold-
ing parameters to tailor the reconstruction process in real
time. To the best of our knowledge, DISTA-Net is the first
deep learning model designed specifically for the unmixing
of closely-spaced infrared small targets, achieving superior
sub-pixel detection accuracy. Moreover, we have established
the first open-source ecosystem to foster further research in
this field. This ecosystem comprises three key components:
(1) CSIST-100K, a publicly available benchmark dataset;
(2) CSO-mAP, a custom evaluation metric for sub-pixel de-
tection; and (3) GrokCSO, an open-source toolkit featuring
DISTA-Net and other state-of-the-art models, available at
https://github.com/GrokCV/GrokCSO.

1. Introduction

Infrared imaging plays a pivotal role in various long-distance
detection and surveillance tasks [26], due to its exceptional
sensitivity to thermal radiation and independence from illu-
mination conditions. However, the radiation intensity cap-
tured from remote targets is inherently weak due to their
long-range distance from the imaging system [11]. This
challenge is exacerbated when targets appear in spa-
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tially close dense clusters, as the closely-spaced objects
(CSO) [24], resulting in overlapping blob-like spots.

As shown in Fig. 1, such overlap makes it impossible
to resolve the targets independently via human vision, thus
obscuring the perception of target count, precise locations,
and radiation intensities [46], presenting a substantial imped-
iment for Infrared Search and Tracking (IRST) systems in
their subsequent phases of detection, tracking, and identifica-
tion. Therefore, exploring effective techniques for unmixing
and reconstruction of such closely-spaced infrared small
targets (CSIST), to accurately discern their exact locations
and radiant intensities, holds great significance.

Despite the critical importance of CSIST unmixing in
various applications, research addressing this specific task
remains exceedingly scarce. These approaches typically
formulate the problem as a parameter estimation task and em-
ploy optimization algorithms to solve it [21]. Target sparsity
on the imaging plane was leveraged to devise a discretized
sampling-based sparse reconstruction method [39], utiliz-
ing an over-complete dictionary and solving a second-order
cone programming problem under the ℓ1 norm regulariza-
tion. However, the performance of these optimization-based
models is highly dependent on meticulous hyperparame-
ter tuning [1], which poses significant challenges in real-
world scenarios. Variations in target quantity or location
further complicate the selection of optimal hyperparame-
ters, limiting the generalizability and practicality of these
methods [29]. Consequently, there is a pressing need for the
development of unmixing algorithms that exhibit greater ro-
bustness to hyperparameter variations and can be effectively
applied in diverse real-world settings.

While deep learning has revolutionized image super-
resolution [13], its application to CSIST unmixing remains
unexplored, primarily due to fundamentally different task
objectives and ecosystem limitations. Unlike generic super-
resolution that enhances clarity through high-frequency de-
tail restoration [33], infrared small target unmixing requires
precise estimation of overlapping targets’ counts, locations,
and radiation intensities - essentially mapping images to spe-
cific target attributes rather than conventional pixel-space
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Figure 1. Conceptual illustration of imaging and unmixing processes for closely-spaced infrared small targets (CSIST). CSIST unmixing
aims to disentangle and accurately estimate the count, positions, and intensities of overlapping targets.

super-resolution. This challenge is further compounded
by the absence of standardized benchmark datasets, task-
specific evaluation metrics, and open-source implementa-
tions, creating significant barriers to developing and compar-
ing deep learning approaches in this specialized domain.

To address the aforementioned challenges, in this paper,
we propose a novel deep unfolding network for CSIST un-
mixing, termed as the Dynamic Iterative Shrinkage Thresh-
olding Network (DISTA-Net). We reformulate the traditional
sparse reconstruction approach into a dynamic deep learning
framework, which adaptively generates convolution weights
and thresholding parameters to tailor the reconstruction pro-
cess in real time. Distinct from prior methods, the parameters
associated with the proximal mapping (nonlinear transforms
and shrinkage thresholds) are dynamically adapted to the
input data, rather than being hand-crafted or fixed after train-
ing. To the best of our knowledge, this represents the first
deep learning-based effort towards CSIST unmixing.

Furthermore, we establish a comprehensive open-source
ecosystem to facilitate research in this domain, includ-
ing CSIST-100K, an open benchmark dataset comprising
100,000 pairs of CSIST images and exact annotations of
location and radiation intensities; CSO-mAP, a custom eval-
uation metric inspired by the mean average precision (mAP)
from object detection, calibrated to evaluate the quantity,
spatial positioning, and radiation intensity of the unmixed in-
frared targets; and GrokCSO, an open-source PyTorch-based
toolkit encapsulating our DISTA-Net alongside other state-
of-the-art models, empowering researchers to effortlessly
leverage the CSIST-100K dataset.

Our contributions can be categorized into Four aspects:
1. We reformulate CSIST unmixing as an interpretable deep

unfolding problem. To our knowledge, this is the first deep
learning based attempt for this task. 2. Our proposed DISTA-
Net is a dynamic deep unfolding network, which adaptively
generates convolution weights and thresholding parameters
to tailor the reconstruction process conditioned on the in-
put data. 3. We establish the first open-source ecosystem
for this task, including the CSIST-100K dataset, the CSO-
mAP metric, and the GrokCSO toolkit. 4. We provide a
comprehensive analysis of our approach, validating the im-
portance of dynamic deep unfolding and the effectiveness of
the DISTA-Net in addressing the CSIST unmixing task.

2. Related Work

2.1. Infrared Small Target Detection

Driven by a range of open-source datasets [4, 6, 15], infrared
small target detection has garnered significant research at-
tention in recent years. Current research mainly focuses on
developing multi-scale feature fusion models to counteract
the scarcity of intrinsic target features [35]. Dai et al. in-
troduced an asymmetric contextual modulation module that
bridges high-level semantics with low-level details using
a bottom-up pathway via point-wise channel attention [5].
Wang et al. merged reinforcement learning with pyramid
feature fusion and proposed a global context boundary atten-
tion module to mitigate localized bright noise [32]. Cheng
et al. proposed a difference-aware attention module with a
dual-temporal aggregation module for global feature learn-
ing and channel activation, and a difference-attention module
for multi-scale detection via local correlations [20]. Tong
et al. adopted an encoder–decoder structure, enhancing fea-
ture extraction with an atrous spatial pyramid pooling and
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a dual-attention module, and using multiscale labels to fo-
cus on target edges and internal features [28]. Zhang et al.
proposed an infrared small target detection framework inte-
grating visual-textual information via CLIP-prompted SAM
adaptation with a denoising module, achieving enhanced
generalization capability for the infrared domain [41].

Our work focuses on infrared small targets but differs in
two key aspects. First, while infrared small target detection
precedes our study, we prioritize CSIST unmixing, where
detecting overlapped targets is crucial for sub-pixel local-
ization and radiation intensity prediction. Second, our task
goes beyond detection by enabling sub-pixel-level localiza-
tion and radiative intensity estimation, providing finer target
characterization than binary detection.

2.2. Deep Unfolding

Deep unfolding, as delineated in [22], originated in 2010
with the Learned Iterative Shrinkage-Thresholding Algo-
rithm (LISTA) [9], which reinterprets ISTA [7] as a fully
connected feed-forward neural network. This approach gen-
eralizes effectively to new samples, achieving ISTA-like
accuracy with fewer iterations. Subsequent works, such as
ADMM-Net [36], have unfolded the steps of the Alternat-
ing Direction Method of Multipliers (ADMM) into a deep
learning framework, thereby improving the accuracy and ef-
ficiency of MRI reconstruction through a compressive sens-
ing model optimized via end-to-end discriminative training.
Likewise, ISTA-Net [40] has adopted an end-to-end learning
approach for proximal mapping, enhancing the performance
of compressive sensing for natural image reconstruction.

Motivated by such advances, deep unfolding has found
applicability in a variety of computer vision tasks. Notably,
Li et al. transformed a generalized gradient-domain total
variation algorithm into a deep interpretable network for
blind image deblurring, delivering superior performance
with learned parameters [14]. For image super-resolution,
Guo et al. incorporated trainable convolutional layers into
the Discrete Cosine Transform framework, effectively miti-
gating artifacts and enabling learning from limited data [10].
Solomon et al. unfolded robust principal component analy-
sis into a deep network, improving the distinction between
microbubble and tissue signals in ultrasound imaging [27].

Unlike previous methods with static parameters [37, 40],
our DISTA-Net dynamically adapts proximal mapping
weights based on the input, enabling an adaptive reconstruc-
tion process that caters to varying scenarios.

3. CSIST Benchmark, Metric, and Toolkit
CSIST-100K Dataset. In our study, we set σPSF at 0.5
pixels. Simulations include 1–5 overlapping targets per im-
age, each defined by 2D coordinates and radiation intensity
(220–250 units), randomly placed within an 11 × 11 grid
while maintaining ≥ 0.52 Rayleigh units separation. We
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Figure 2. CSIST Visualization: The top row shows 1 to 5 overlap-
ping targets, and the following rows display unmixing results for
sub-pixel division factors of 3×, 5×, and 7×.

generated the CSIST-100K dataset with 100,000 samples:
80,000 for training, and 20,000 split equally for validation
and testing. As shown in Fig. 2, closely spaced targets dif-
fuse, with energy concentrated in a 3× 3 pixel area, causing
significant overlap that complicates target counting and co-
ordinate determination. (See Supplementary for optical
modeling details.)

CSO-mAP Metric. Traditional bounding box metrics fail
when target separation falls below the Rayleigh criterion
(due to Airy spot interference). Our CSO-mAP with strict
sub-pixel position/intensity matching for CSIST evaluation,
redefining TP/FP as follows:

1k

(
t̂j , ti

)
=

{
1, if d

(
t̂j , ti

)
< δk,

0, otherwise.
(1)

Here, δk ∈ {0.05, 0.1, 0.15, 0.2, 0.25} is a series of distance
thresholds, with k = 1, 2, 3, 4, 5, used to control the de-
sired localization accuracy. Precision-recall (PR) curves
are generated through intensity-prioritized matching, with
Average Precision (AP) computed at each δk. The final CSO-
mAP metric is derived by averaging AP values across all
thresholds, explicitly quantifying performance under varying
spatial resolution demands (details in Supplementary).

GrokCSO Toolkit. To address the lack of specialized tools
in this domain, we introduce GrokCSO, an open-source
toolkit for CSIST unmixing. Built on PyTorch, GrokCSO
provides pre-trained models, reproducibility scripts, and spe-
cialized evaluation metrics tailored for CSO challenges. The
detailed architecture and features of this toolkit are provided
in Supplementary.
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4. Method

In this section, we introduce the imaging model for closely-
spaced infrared small targets, traditional sparse reconstruc-
tion approaches, and the proposed DISTA-Net architecture.

4.1. Imaging and Unmixing Framework

CSIST Imaging Model. Given the significant distance
between targets and the infrared detector, targets can be
approximated as point sources. The optical system’s diffrac-
tion spreads the energy across adjacent pixels, described by a
two-dimensional Gaussian point spread function (PSF) [18]:

p(x, y) =
1

2πσ2
PSF

exp

[
− (x− xt)

2
+ (y − yt)

2

2σ2
PSF

]
, (2)

where σ2
PSF is the diffusion variance and (xt, yt) the target

coordinates. On an infrared focal plane of U × V pixels,
each pixel integrates the PSF within its boundaries:

gi,j (xt, yt) =

∫ xi,j+1/2D

xi,j−1/2D

∫ yi,j+1/2D

yi,j−1/2D

p(x, y)dx dy, (3)

where (xi,j , yi,j) is the pixel’s center and D the pixel width.
The focal plane measurement model is vectorized as:

z = G(x,y)s+ n, (4)

where G(x,y) is the steering matrix, s represents target
intensities, and n denotes Gaussian white noise.

CSIST Unmixing via Sparse Reconstruction. Given per-
missible quantization error, target positions in closely-spaced
infrared small targets can be discretized into a finite set of
sub-pixel locations Ω = {(xl, yl)}l=1,··· ,L, where actual
target positions form a sparse subset.

Pixel

Sub-Pixel

True Center

Sub-Pixel Center

Quantization Error

Figure 3. Division of each pixel into an n× n grid of sub-pixels,
representing potential target positions.

As shown in Fig. 3, each pixel is divided into an n× n
grid, resulting in L = UV n2 sub-pixels. With sufficient grid

resolution, each sub-pixel contains at most one target, with
maximum position deviation of

√
2D/n. The measurement

model can be extended to Ω:

z = G(Ω)s̃+w, (5)

where G(Ω) contains steering vectors from Ω, and s̃ ∈ RL

is sparse with L ≫ UV . The CSIST unmixing problem
can then be formulated as a sparse reconstruction with ℓ1
regularization:

min
s̃
∥z−G(Ω)s̃∥22 + λ∥s̃∥1, (6)

where λ is the regularization parameter. The solution s̃ di-
rectly yields target attributes: its non-zero entries indicate
target count and intensities, while their corresponding posi-
tions in Ω provide sub-pixel coordinates.

Optimization Solution. The ISTA [7] solves the sparse
reconstruction problem through two alternating steps:

r(k) = s̃(k−1) − ρG⊤
(
Gs̃(k−1) − z

)
, (7)

s̃(k) = argmin
s̃

1

2

∥∥∥s̃− r(k)
∥∥∥2
2
+ λ∥Ψs̃∥1, (8)

where Ψ denotes the transform matrix, k the iteration index,
and ρ the step size. The second step represents a proximal
mapping:

proxλϕ(r) = argmin
s̃

1

2
∥s̃− r∥22 + λϕ(s̃). (9)

While ISTA with orthogonal transforms (e.g., wavelets) has
efficient solutions, it faces challenges with complex trans-
forms and requires numerous iterations. To address these
limitations, ISTA-Net replaces Ψ with a trainable non-linear
transform F(·):

s̃(k) = argmin
s̃

1

2

∥∥∥F (s̃)−F
(
r(k)

)∥∥∥2
2
+ θ∥F (s̃) ∥1,

(10)

where θ is a learnable parameter. However, ISTA-Net’s static
network weights post-training limit its adaptability to input
data, particularly in CSIST unmixing scenarios where input
sensitivity is crucial.

4.2. DISTA-Net: A Dynamic Framework

The details of our DISTA-Net are illustrated in Fig. 4.
Building upon ISTA-Net’s framework, we introduce two key
improvements. First, we design a data-adaptive nonlinear
transformation function Fd(·) that maps images to richer
dimensional representations while emphasizing significant
image regions. The transformation follows:

Fd(s̃
(k)) = Soft(Fd(r

(k)), θd), (11)
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Figure 4. Architecture of the proposed DISTA-Net. The overall framework consists of multiple cascaded stages. Each stage contains three
main components: a dual-branch dynamic transform module (F (k)

d ) for feature extraction, a dynamic threshold module (Θ(k)
d ) for feature

refinement, and an inverse transform module (F̃ (k)) for reconstruction.

Algorithm 1 DISTA-Net

Input: CSIST image z, steering matrix G(x,y), initial
matrix Qinit, number of stages N , step size {ρ(k)}Nk=1

Output: Reconstructed result s̃(N)

Learnable parameters:
{ρ(k)}Nk=1, {DTG(k)}Nk=1, {F (k)

d }Nk=1, {F̃ (k)}Nk=1

(F̃ (k) ◦ F (k)
d = I)

Initialization:
1: s̃(0) ← Qinitz

Iterative reconstruction:
2: for k = 1 to N do
3: r(k) ← s̃(k−1) − ρ(k)G⊤(Gs̃(k−1) − z)
4: ś(k) ← Fd(s̃

(k−1), r(k))

5: θ
(k)
d ← DTG(k)(ś(k))

6: s̃(k) ← F̃(Soft(Fd(r
(k)), θ

(k)
d ))

7: end for

where Soft(·, θd) denotes soft-thresholding with learnable
parameter θd, and k is the stage index. The left inverse
F̃ satisfies F̃(·) ◦ Fd(·) = I, without requiring structural
symmetry to Fd(·), yielding:

s̃(k) = F̃(Soft(Fd(r
(k)), θd)). (12)

Second, we introduce a dynamic threshold module that
adapts to input image variations, addressing the sensitiv-
ity of sparse vector perturbations in image generation. This
flexible thresholding mechanism improves upon fixed pa-
rameters that can be either too strict or too lenient. As shown
in Fig. 4, DISTA-Net comprises N stages. Each stage k

(k > 1) contains three components: F (k)
d , Soft(·, θ(k)d ), and

F̃ (k). The input r(k) is derived from s̃(k−1) via Eq. (7), pro-
cessed through these components sequentially to generate

s̃(k) for the next iteration. Overall, the proposed DISTA-Net
can be referenced in Algorithm 1.

Dynamic Transform. While trainable non-linear transfor-
mations overcome limitations of handcrafted methods, their
fixed post-training parameters result in static transforma-
tion patterns. We address this by introducing a dual-branch
Dynamic Transform module F (k)

d at the k-th stage.

To handle the sensitivity of sparse image s̃(k−1) perturba-
tions, we design an auxiliary branch that guides r(k) through
a dynamic convolutional kernel. This approach enhances
feature representation adaptively.

The module first processes s̃(k−1) through a fully con-
nected network to generate a weight vector:

W = f(s̃(k−1)). (13)

The Dynamic Conv module applies this weight vector as an
adaptive convolutional kernel to r(k):

wr = C(W, r(k)). (14)

The final output combines a Conv-ReLU-Conv branch with
the sigmoid-activated auxiliary branch:

F (k)
d = α ·A(ReLU(B(r(k)))) + (1− α) · sigmoid(wr),

(15)
where A(·) and B(·) are convolution operations and α ∈
[0, 1] governs the contribution between the two branches.

Dynamic Soft-Thresholding. Unlike ISTA-Net’s fixed
threshold θ, we propose a Dynamic Thresholding Gener-
ator(DTG) module that adapts θd based on input image in-
formation. This approach better handles densely overlapped
targets and spatial context variations.
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As shown in Fig. 4, the module employs dual convolu-
tional layers to capture multi-scale features as in [12, 16].
The F (k)

d output passes through two 3× 3 convolutions, gen-
erating feature maps Ũ1 and Ũ2. These are concatenated
to form Ũ = [Ũ1, Ũ2]. Spatial relationships are captured
through parallel pooling operations:

SAavg = Pavg(Ũ), SAmax = Pmax(Ũ). (16)

The pooled features are processed through the convolution:

(ŜA) = Conv2→N ([SAavg;SAmax]), (17)

followed by a sigmoid activation to generate spatial selective
masks:

(S̃A)i = sigmoid((ŜA)i). (18)

The dynamic threshold θd is then computed by combining
these masks with multi-scale feature maps through a final
convolution C(·):

θd = C(

N∑
i=1

(S̃A)i · Ũi). (19)

Initialization and Learning Objectives. DISTA-Net em-
ploys linear initialization similar to iterative sparse coding al-
gorithms, where the initial estimate s̃(0) is obtained through
an optimal linear projection Qinit learned from training pairs
{(zi, si)} (details in Supplementary).

The training objective combines reconstruction fidelity
with structural preservation:

L = Ldiscrepancy + γLconstraint, (20)

where:

Ldiscrepancy =
1

MNs

M∑
i=1

∥s̃(N)
i − si∥22, (21)

Lconstraint =
1

MNs

M∑
i=1

N∑
k=1

∥F̃ (k)(F (k)
d (si))− si∥22. (22)

Here, Ldiscrepancy computes the MSE between reconstructed
s̃
(N)
i and ground truth si, while Lconstraint enforces multi-

stage identity constraints through F̃ (k) ◦ F (k)
d ≈ I, with

γ = 0.01 balancing these objectives.

5. Experiments

5.1. Experimental Settings

Training. Using CSIST-100K images as input, we ap-
ply Sec. 4.1’s method to perform sub-pixel division with

a sampling grid ratio of c. This generates an unmixed
high-resolution grid as ground truth, where for each target
(xi, yi, gi), the intensity gi is assigned to the pixel at position(
c · xi +

c−1
2 , c · yi + c−1

2

)
while other pixels remain zero.

The selected c value ensures each target appears as a distinct
point, enabling accurate spatial separation.

Testing. We (1) apply post-processing with an intensity
threshold of 50 to identify predicted targets; (2) project
the unmixed grid back to the original 11 × 11 space via(

xi−⌊ c−1
2 ⌋

c ,
yi−⌊ c−1

2 ⌋
c

)
. These mapped coordinates are

then compared with ground truth target positions to com-
pute CSO-mAP. Additionally, we calculate PSNR and SSIM
by directly comparing the full predicted and ground truth
high-resolution images.

Hyperparameters. Our configuration uses: c = 3 (baseline
grid ratio), batch size of 64, DISTA-Net with 6 stages (N =
6), and Dynamic Transform branch coefficient (1−α) = 0.3.

5.2. Comparison with State-of-the-Art Methods

Experimental Results. Table 1 compares DISTA-Net with
traditional optimization (ISTA), image super-resolution, and
deep unfolding methods on the CSIST-100K dataset, evalu-
ated by computational efficiency (#P/FLOPs), localization
accuracy (CSO-mAP), and image quality (PSNR/SSIM).

For localization accuracy, we adopt CSO-mAP with dif-
ferent distance thresholds (from AP-05 to AP-25), where a
smaller threshold indicates a stricter localization precision
requirement. For instance, AP-05 evaluates the detection ac-
curacy within 0.05-pixel distance, representing an extremely
high precision demand. Considering the inherent error of
0.236 pixel width at subpixel division factor c = 3, AP-
20 and AP-25 (with 0.20 and 0.25 precision requirements
respectively) serve as primary performance benchmarks.
DISTA-Net achieves remarkable accuracy rates of 86.18%
and 97.14% accuracy, outperforming most existing methods.
On the mAP metric reflecting average CSIST unmixing per-
formance, our method maintains a leading advantage with
46.74% accuracy, demonstrating its robust localization capa-
bility across different precision requirements.

In terms of model efficiency, DISTA-Net achieves these
results with moderate computational costs (2.179M pa-
rameters and 35.103G FLOPs), showing better efficiency
compared to methods like ACTNet (46.212M, 62.798G)
and HAN (64.342M, 0.495T). Additionally, DISTA-Net
demonstrates superior image quality with the highest PSNR
(37.8747) and SSIM (99.79) scores among all methods, indi-
cating its excellent capability in preserving image details.

These comprehensive results validate that DISTA-Net
achieves an effective balance between computational effi-
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Method #P ↓ FLOPs ↓ CSO-mAP
PSNR ↑ SSIM ↑

mAP AP-05 AP-10 AP-15 AP-20 AP-25

Traditional Optimization
ISTA [7] - - 7.46 0.01 0.31 2.39 9.46 25.14 - -
Image Super-Resolution
ACTNet [45] 46.212M 62.80G 45.61 0.38 7.46 41.13 83.12 95.95 35.4526 99.70
CTNet [30] 0.400M 2.756G 45.11 0.38 7.53 40.39 82.11 95.14 35.1499 99.70
DCTLSA [38] 0.865M 13.69G 44.51 0.39 7.35 39.35 81.15 94.34 34.6314 99.65
EDSR [19] 1.552M 12.04G 45.32 0.33 7.07 40.58 83.24 95.41 35.3724 99.71
EGASR [25] 2.897M 17.73G 45.51 0.42 8.03 41.32 85.71 95.08 34.5681 99.66
FeNet [31] 0.348M 2.578G 45.77 0.42 8.19 42.13 83.30 94.80 34.1531 99.66
RCAN [43] 1.079M 8.243G 45.87 0.42 7.96 41.81 83.61 95.57 35.2119 99.69
RDN [44] 22.306M 173.0G 45.81 0.35 7.11 41.07 84.07 96.43 36.4686 99.74
SAN [2] 4.442M 34.05G 45.95 0.36 7.35 41.17 84.32 96.57 36.5037 99.74
SRCNN [8] 0.019M 1.345G 29.06 0.23 4.10 21.65 49.95 69.39 28.7608 98.44
SRFBN [17] 0.373M 3.217G 46.05 0.43 8.31 42.83 83.72 94.95 34.0174 99.68
HAN [23] 64.342M 495.0G 45.70 0.39 7.46 40.90 83.61 96.17 35.2703 99.71
HiT-SNG [42] 0.952M 13.324G 45.01 0.39 7.34 40.19 81.98 95.17 35.1390 99.71
Deep Unfolding
ISTA-Net [40] 0.171M 12.77G 45.16 0.41 7.71 40.57 82.58 94.53 33.9215 99.68
ISTA-Net+ [40] 0.337M 24.33G 46.06 0.42 7.66 41.58 84.46 96.17 36.0892 99.72
LAMP [7] 2.126M 0.278G 14.22 0.05 1.11 7.31 21.56 41.06 27.8299 96.89
LIHT [7] 21.10M 1.358G 10.35 0.06 0.92 4.99 14.74 30.5 27.5107 96.42
LISTA [7] 21.10M 1.358G 30.13 0.25 4.13 22.29 51.18 72.82 29.8936 99.12
FISTA-Net [34] 0.074M 18.96G 44.66 0.45 7.68 39.74 81.24 94.19 35.7519 99.67
TiLISTA [7] 2.126M 0.278G 14.95 0.06 1.23 7.72 22.50 46.23 27.7038 97.40
⋆ DISTA-Net (Ours) 2.179M 35.10G 46.74 0.38 7.54 42.44 86.18 97.14 37.8747 99.79

Table 1. Comparison with SOTA methods on the CSIST-100K dataset.

ciency, localization accuracy, and reconstruction quality.

Visual comparison. Fig. 5 compares reconstruction re-
sults with 3× sub-pixel division across methods for scenes
containing 3 ∼ 5 targets, assessing performance in dense
multi-target scenarios. Existing methods struggle to recon-
struct closely spaced targets, exhibiting blurred boundaries
or merged detections, with degradation worsening for higher
target counts (e.g., five-target cases). In contrast, DISTA-Net
preserves both target quantity and sub-pixel positions while
maintaining sharp boundaries and accurate spatial distribu-
tions, even under extreme density.

5.3. Ablation Study

Method CSO-mAP AP-05 AP-10 AP-15 AP-20 AP-25

ISTA-Net [40] 45.16 0.41 7.71 40.57 82.58 94.53
DISTA-Net w/o DT 46.32 0.34 6.83 40.76 86.18 97.50
DISTA-Net w/o Thres. 46.17 0.44 7.77 42.18 84.67 95.79
⋆ DISTA-Net (Ours) 46.74 0.38 7.54 42.44 86.18 97.14

Table 2. The effect of different components.

Effect of different components. We conduct ablation
studies to evaluate the contribution of each component in
DISTA-Net, with results shown in Table 2. The second
row (DISTA-Net w/o DT) corresponds to the model variant

without Dynamic Transform and the third row (DISTA-Net
w/o Thres.) represents the model without Dynamic Soft-
Thresholding. Compared to the baseline ISTA-Net, our com-
plete model shows notable improvements in both CSO-mAP
(45.16% to 46.74%) and AP-20 (82.58% to 86.18%).

Removing the Dynamic Transform leads to a slight perfor-
mance decrease (CSO-mAP drops to 46.32%), highlighting
its role in enhancing the model’s performance. The removal
of Dynamic Soft-Thresholding results in the most significant
performance degradation (CSO-mAP decreases to 46.17%),
emphasizing its key role in ensuring accuracy.

Method #P ↓ FLOPs ↓ CSO-mAP
mAP AP-10 AP-15

c=5
ISTA-Net [40] 0.171M 39.544G 66.90 56.73 87.26
ISTA-Net+ [40] 0.225M 48.158G 68.50 57.96 89.52
CFGN [3] 0.538M 4.122G 67.95 58.08 88.35
⋆ DISTA-Net (Ours) 5.153M 102.4G 69.58 60.95 90.85
c=7
ISTA-Net [40] 0.171M 89.51G 71.19 76.45 84.16
ISTA-Net+ [40] 0.225M 103.0G 71.09 74.90 84.90
CFGN [3] 0.548M 4.202G 70.38 73.88 83.97
⋆ DISTA-Net (Ours) 6.409M 142.3G 72.84 78.47 86.09

Table 3. Comparison of methods across different Sampling Grids
on the CSIST-100K dataset.
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Figure 5. Visual comparison of 3× sub-pixel division reconstruction for scenes containing different numbers of closely-spaced infrared
small targets. The red boxes highlight regions where targets exhibit significant sub-pixel characteristics.

Model Performance and Sampling Grid. We evaluate
sampling ratios c = 5 and 7 across methods, analyzing their
impact on performance and efficiency. As the sampling grid
ratio increases, all methods show improved detection perfor-
mance due to better target positioning precision. DISTA-Net
consistently outperforms other methods across all config-
urations. While ISTA-Net and ISTA-Net+ exhibit similar
trends with lower overall performance, our proposed method
achieves greater accuracy improvements for equivalent in-
creases in sampling ratio. This advantage is particularly
pronounced in the AP-10 (c = 5) and AP-15 (c = 7) metrics
(see Table 3 for complete results). However, these perfor-
mance gains are accompanied by substantially increased
computational complexity. We recommend selecting an ap-
propriate sampling grid ratio that aligns with specific appli-
cation requirements to achieve an optimal balance between
detection accuracy and computational efficiency.

Ours vs Super-Resolution + Detector Pipeline. The
unmixing stage typically serves as a refinement step fol-
lowing the detection phase. For experimental rigor, we
conducted experiments implementing the “SR + Detector”
pipeline. We used YOLOv11 as the detector following lead-
ing SR methods (retrained on our IR data with unmixing GT
for point-source super-resolution). The results demonstrate
DISTA-Net’s continued advantage: DISTA-Net + YOLOv11
achieved a CSO-mAP of 47.82, outperforming SRFBN +
YOLOv11 (45.74) and CFGN + YOLOv11 (46.71). Vi-

sual analysis reveals that both conventional SR methods
and our unmixing approach generate high-resolution images
with well-resolved peaks, enabling effective target separa-
tion through simple thresholding. This demonstrates the
dominant role of the unmixing stage in this task.

Hyperparameters Analysis. We analyzed model perfor-
mance versus stage numbers and dynamic branch coeffi-
cients in Supplementary, demonstrating robust design.

6. Conclusion

In this paper, we present the Dynamic Iterative Shrinkage
Thresholding Network (DISTA-Net) to address CSIST un-
mixing task, which features adaptive generation of both
convolution weights and thresholding parameters. Extensive
experiments demonstrate that DISTA-Net achieves superior
performance in both sub-pixel target detection accuracy and
image reconstruction quality. To advance research in this
domain, we introduce the CSIST dataset, CSO-mAP metric,
and GrokCSO toolkit.
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