
MSQ: Memory-Efficient Bit Sparsification Quantization

Seokho Han1* Seoyeon Yoon1* Jinhee Kim1 Dongwei Wang2

Kang Eun Jeon1# Huanrui Yang2# Jong Hwan Ko1#

1Department of Electrical and Computer Engineering, Sungkyunkwan University, Korea
2Department of Electrical and Computer Engineering, University of Arizona, USA

{beppa2396, syy000405, a2jinhee, kejeon, jhko}@skku.edu
{dongweiw, huanruiyang}@arizona.edu

Abstract

As deep neural networks (DNNs) see increased deployment
on mobile and edge devices, optimizing model efficiency has
become crucial. Mixed-precision quantization is widely fa-
vored, as it offers a superior balance between efficiency
and accuracy compared to uniform quantization. However,
finding the optimal precision for each layer is challeng-
ing. Recent studies utilizing bit-level sparsity have shown
promise, yet they often introduce substantial training com-
plexity and high GPU memory requirements. In this paper,
we propose Memory-Efficient Bit Sparsification Quantiza-
tion (MSQ), a novel approach that addresses these limita-
tions. MSQ applies a round-clamp quantizer to enable dif-
ferentiable computation of the least significant bits (LSBs)
from model weights. It further employs regularization to
induce sparsity in these LSBs, enabling effective precision
reduction without explicit bit-level parameter splitting. Ad-
ditionally, MSQ incorporates Hessian information, allow-
ing the simultaneous pruning of multiple LSBs to further
enhance training efficiency. Experimental results show that
MSQ achieves up to 8.00× reduction in trainable param-
eters and up to 86% reduction in training time compared
to previous bit-level quantization, while maintaining com-
petitive accuracy and compression rates. This makes it a
practical solution for training efficient DNNs on resource-
constrained devices.

1. Introduction
With the increasing adoption of deep neural networks
(DNNs) in mobile and edge devices [12, 20], optimizing
their efficiency has become a major area of research due
to their limited computational and memory resources [2].
Quantization - transforming model weights (and activa-

*: Equal contributions
#: Corresponding authors

tions) from high-precision floating-point to low-precision
fixed-point values [1, 3, 28, 30, 31] - has been widely
adopted to address this challenge. This transformation not
only reduces the storage requirements of models but also
enables the use of fixed-point arithmetic units, significantly
lowering energy and area costs while improving computa-
tional speed [10].

However, quantization introduces noises in model
weights and activations due to the discrepancy between
the original floating-point and low-precision values, poten-
tially degrading model performance. When every layer of a
model is quantized to the same low precision, the noise ac-
cumulated from some sensitive layers can lead to substan-
tial accuracy drops. Mixed-precision quantization, which
assigns different precision levels to each layer, has demon-
strated improvements in achieving higher accuracies with
smaller model sizes [24].

Despite its advantages in performance and compression
rate, mixed-precision quantization is challenging to imple-
ment due to the vast search space required to determine
the optimal bit scheme. Previous approaches have uti-
lized reinforcement learning-based searches [23] or com-
puted sensitivity statistics on pre-trained models [5, 6] to as-
sign higher precision to sensitive layers and lower precision
to less critical ones. However, these search-based meth-
ods are resource-intensive and fail to capture sensitivity
changes during quantization-aware finetuning.To address
this, dynamic mixed-precision quantization adjustment via
bit-level structural sparsity has gained attention [26, 27].
These methods induce certain bits in the fixed-point weight
representation to zeros, enabling simultaneous weight train-
ing and quantization scheme adjustment. However, previ-
ous bit-level training methods require instantiating a train-
able variable for each individual bit, leading to extended
training times and high GPU memory consumption.

This work aims to mitigate the memory and training
cost challenges of the bit-level training to achieve mixed-
precision quantization scheme more efficiently. We propose

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21885

Memory-Efficient Bit Sparsification Quantization (MSQ), a
method to induce bit-level sparsity without explicitly intro-
ducing bit-level trainable parameters. MSQ derives LSB
sparsity and aims to prune it. To achieve this, it employs a
novel round-clamp quantizer provides a gradient direction
for LSB sparsification. Furthermore, ℓ1 regularization is ap-
plied to the computed LSB to effectively induce sparsity
and, consequently, enable precision reduction. Addition-
ally, MSQ incorporates Hessian information to account for
layer sensitivity, enabling faster bit pruning rate on insen-
sitive layers for greater training efficiency.The experiment
examines training efficiency and the accuracy-compression
tradeoff. Training with fewer parameters ,due to the ab-
sence of bit-level splitting, achieves significant memory
savings and reduces training time by up to 86% compared
to the traditional bit-level splitting approach, while experi-
ments on ResNet and ViT models demonstrate a compara-
ble accuracy-compression tradeoff.

Our contributions with MSQ are as follows:
• Significantly reducing bit-level training and sparsification

cost by mitigating explicit bit splitting.
• Introducing a novel round-clamp quantizer for effective

LSB computation and sparsity-inducing regularization.
• Extending bit-level quantization to both heterogeneous

CNNs (e.g., MobileNetV3) and complex architectures
such as Vision Transformers (ViTs).

2. Related Works

Quantization and quantization-aware training. Quanti-
zation techniques transform floating-point weight param-
eters into integer representations with reduced numerical
precision. Though post-training quantization, which di-
rectly applies quantization to a pre-trained model, has un-
dergone tremendous improvements [8, 16, 18, 25], finetun-
ing is still required under ultra-low precision scenarios to
prevent substantial model performance degradation. Conse-
quently, quantization-aware training (QAT) techniques have
been investigated to finetune quantized models under low-
precisions. Since quantized weights assume discrete values,
traditional gradient-based optimization methods, designed
for continuous parameter spaces, are not directly applicable
to training quantized models [3, 5, 27, 31]. To address this
challenge, algorithms such as DoReFa-Net [31] employ the
straight-through estimator (STE) to allow continuous gradi-
ent accumulation in the floating-point format. The forward
and backward computation of the quantization-aware train-
ing process can be expressed as:

Wn =
1

2n − 1
Round[(2n − 1)W], (1)

∂L
∂W

=
∂L

∂Wn
, (2)

Figure 1. Work flow of bit-level quantization vs. MSQ.

where a normalized floating-point weight W is kept
throughout the entire training. Along the forward pass, the
STE will quantize W to an n-bit fixed-point representation
Wn, which will be used to compute the model output and
loss L. During the backward pass, the STE will directly
pass the gradient w.r.t. Wn onto W, which enables W to
be updated with the standard gradient-based optimizer.

Mixed-precision quantization is explored following the
observation that different layers in the model contributes
differently to the model loss [5, 23]. A central challenge in
mixed-precision quantization research is designing an opti-
mal set of bit schemes to balance performance and model
size. Initial approaches relied on manual heuristics, such as
setting higher precision for the first and last layers. Search-
based methods, like HAQ [23], use reinforcement learning
to determine the quantization scheme. This process can
be costly, especially for deeper models with a large search
space. Other methods attempt to measure each layer’s sen-
sitivity directly, using metrics such as Hessian eigenvalue
or trace [5, 6]. However, these approaches only account for
the sensitivity of a fully trained, high-precision model and
do not consider sensitivity changes that occur during quan-
tization or updates in quantization-aware training.

Bit-level quantization. Bit-level sparsity quantization
(BSQ) [27] was the first method to simultaneously apply
a mixed-precision quantization scheme and train a quan-
tized DNN model within a single training phase. In BSQ,
each bit in the quantized model is treated as an independent
trainable variable, where bit-level structural sparsity is in-
duced in training to achieve mixed-precision quantization
schemes. Although BSQ has shown strong empirical re-
sults, it requires straight-through gradient estimation for the
bit variables in the rounded bit-level representation, which
can reduce accuracy. Additionally, hard precision adjust-
ments applied through bit pruning during training can com-
promise convergence stability. To mitigate this instability,
Continuous Sparsification Quantization (CSQ) [26] was in-
troduced, which smooths both bit-level training and preci-
sion adjustments using continuous sparsification [21].

21886

(a) (b)

Figure 2. Comparison of bit-level splitting quantization and MSQ. (a) Training process of the bit-level model weight with STE.(b) Training
process of the MSQ with LSB regularization.

While bit-level quantization allows for simultaneous
mixed-precision quantization scheme discovery and param-
eter training, it demands substantial resources, including in-
creased time and GPU memory, due to the large number
of trainable parameters required for bit-level treatment as
shown in Fig. 1. In this work, we reduce these resource
demands by eliminating the need for multiplied parameters
and instead applying a direct LSB computation and regu-
larization from original trainable parameters, resulting in
lower training costs compared to prior bit-level quantization
methods.

3. Method
In this work, we propose MSQ, an efficient training algo-
rithm to achieve bit-level sparsity for mixed-precision quan-
tization scheme. MSQ mitigates the burden of having in-
dependent bit-level trainable variables as in BSQ [27] and
CSQ [26] by deriving the sparsity of LSBs and prune them.
To achieve this, we introduce a novel RoundClamp quan-
tizer that supports bipartite bit-slicing for LSB computation
and regularization, and regularization in Sec. 3.1 We then
propose the Hessian-aware aggressive pruning technique to
control the layer-wise bit reduction speed in Sec. 3.2 to
reach the targeted model compression ratio with less train-
ing epochs. Finally, the full procedure and details of the
proposed MSQ algorithm is discussed in Sec. 3.3. The
training process of MSQ is illustrated in Fig. 2.

3.1. Bipartite Bit Slicing
RoundClamp quantizer design. In previous work of BSQ
and CSQ, we observe that most precision reduction hap-
pens when LSBs are removed. This comes from the fact
that LSBs has the minimal impact on the quantized weight
values, therefore are induced to zeros more easily by the
sparsity-inducing regularizer.

To this end, we first propose a bipartite bit-slicing
method that can directly compute the values of the LSBs

from a model weight element. Specifically, consider a
weight element W scaled to [0, 1]. We want to quantize W
to a n-bit fixed point number Wn, and compute the value
represented by the k LSBs of Wn, denoted as Bk. Note that
the quantized weight is equivalent to the summation of Bk

and the top (n− k) MSBs of Wn shifted left by k bits. We
therefore propose to apply a quantizer where the top (n−k)
MSBs of Wn is exactly the (n − k)-bit quantized Wn−k,
so that Bk can be easily computed from W as

Bk = Wn − 2kWn−k. (3)

The DoReFa [31] quantizer, as discussed in Eq. (1), is the
most common linear quantizer used in previous work. How-
ever, when observing the Bk computation results under the
DoReFa quantizer, as illustrated in Fig. 3(a), we notice two
issues hindering its usage in inducing bit-level. Firstly, the
direction of inducing Bk to be zero is pointing towards the
negative direction for most of the values of W. This will in-
duce the value of W to be constantly smaller as the training
proceed, ultimately deviating away from its optimal value.
Secondly, due to the use of a scaling factor of (2n − 1)
in the rounding function, the quantization bin boundaries
under different quantization precision are not well aligned.
For example, some values quantized to “110” under 3-bit
are mapped to “10” instead of “11” under 2-bit, leading to
an error in the LSB computation.

To address this limitation, we introduce the RoundClamp
quantizer, a novel quantization scheme designed to effec-
tively compute LSBs for bit-level sparsity exploration. We
adjust the scaling factor in the rounding function to be 2n

instead of (2n − 1), which leads to the formulation of the
quantizer as

Wn = qr(W;n) =
1

2n − 1
min(⌈2nW⌋ , 2n − 1), (4)

where ⌈·⌋ denotes the rounding function. Note that a clamp-
ing is needed to ensure the quantized value stays in the valid
range of [0, 1].

21887

(a) Except for 001, gradient directions of other LSB-nonzero values do not
work properly, as they only have one decreasing direction. It even has a
gradient for 110, which should not exist.

(b) All gradient directions of LSB-nonzero values work well.

Figure 3. Three-bit and two-bit quantized weight mapping range
of (a) DoReFa quantizer and (b) round-clamp quantizer.

As illustrated in Fig. 3(b), RoundClamp adjusts the
quantization bin boundaries of (n−1)-bit quantized weights
to align with the midpoint of the quantization bins in n-
bit quantization. This ensures that for those weights where
the quantized value having nonzero LSBs, they have the
chances to be round both up or down to the nearest bin with
zero LSBs. When sparsity-inducing regularizer is applied to
the computed LSBs to induce sparsity through training, we
observe that the gradient directed by the RoundClamp quan-
tizer can lead to zero LSBs and precision reduction more
effectively.

The difference in the behavior of the two quantizers is
evident in the resulting weight distributions after training,
as shown in Fig. 4. In the case of DoReFa [31], depicted in
Fig. 4(a), the weight distribution exhibits pronounced spikes
at zero. This outcome arises due to the dominance of the
negative gradient in the process of sparsifying the nonzero
LSBs. In contrast, the RoundClamp quantizer produces
a weight distribution characterized by higher densities at
LSB-zero positions and lower densities at LSB-nonzero po-
sitions. This result aligns with the intended design, effec-
tively driving the weights toward near-zero LSB values, as
desired.

LSBs Computation and Regularization. With the Round-
Clamp quantizer, we can compute the LSB of floating-point

(a) DoReFa quantizer (b) Round-clamp quantizer

Figure 4. Weight distribution of training with (a) DoReFa and (b)
round-clamp quantizer. Both weight distributions are the results
of 179 epochs, right before pruning.

weight W under n-bit quantization as

Bk = W − 2kqr(W;n− k). (5)

Bk is a continuous function with respect to the weight W.
Through this process, the LSB can be extracted without bit-
level splitting.

To enforce LSB sparsity and precision reduction, we ap-
ply the ℓ1 regularization to the computed LSB across all
layers during training. The regularization term is expressed
as:

R(Bk) =
∑
∀l

|B(l)
k |, (6)

where B(l)
k denotes the LSBs of the weights for layer l, and

|·| represents the absolute value function. The gradient of
the regularization loss with respect to W is given by:

∂R(Bk)

∂W
= sign(Bk), (7)

which will guide the weight towards the nearest low-
precision value following the RoundClamp quantizer de-
sign.

The overall quantization-aware training objective with
the ℓ1 regularization is defined as:

min
W
L(Wn) + λ

∑
∀l

|B(l)
k |, (8)

where L(·) is the original training loss, Wn is the n-bit
quantized weight with the RoundClamp quantizer, and λ
is the regularization strength trading off model compres-
sion rate and model performance. The objective can be op-
timized via gradient-based optimizer with the help of the
straight-through estimator.

3.2. Hessian-aware Aggressive Pruning
The bipartite bit slicing introduces a new hyperparameter,
k, to the MSQ process. As the MSQ training objective in
Eq. (8) aims to sparsify the k LSBs in each layer, k de-
cides each layer’s precision reduction speed. Intuitively, if

21888

(a) Omega values during the first pruning step.

(b) Omega values during the last pruning step.

Figure 5. Comparison of Omega values for each layer of ResNet-
20 between the first and last pruning steps. Layers with omega
values exceeding the average (red dotted line) are pruned by 1 bit,
while those below are pruned by 2 bits.

a layer’s weight can tolerate more perturbations without im-
pacting the final model loss, i.e. less sensitive, it’s precision
can be reduced at a higher pace. On the other hand, pre-
cision reduction on a sensitive layer should be cautious to
avoid catastrophically hurting the model performance.

To incorporate sensitivity information into the pruning
process, we propose Hessian-aware Aggressive Pruning,
where we measure the sensitivity of each layer using their
Hessian statistics and assign a larger k to those layers that
are less sensitive. Specifically, we follow the methodology
proposed in HAWQ-V2 [6], which identifies the Hessian
trace can be used as a reliable sensitivity metric for quan-
tized models. The sensitivity of each layer, Ωl, is calculated
as:

Ωl = Tr(Hl)∥W(l)
n −W(l)∥2, (9)

where l refers to the lth layer, Tr(Hi) denotes Hessian
trace with respect to the lth layer weight, Wn represents
the quantized weight under the current precision, and ∥ · ∥
the L2 norm.

MSQ uses a heuristic-based thresholding method to de-
cide the precision reduction speed k for each layer. We
set the threshold to be the averaged sensitivity of all lay-
ers. If the sensitivity of a layer is larger than the thresh-
old, we set k = 1, where as layers with sensitivity lower
than the threshold use k = 2, as shown in Fig. 5. Addi-
tionally, as the training and LSB pruning step progresses,
the sensitivity metric Ωl for each layer will be recomputed

Algorithm 1 Overall training algorithm
Input: Data X, label Y
Output: mixed-precision model G

1: Initialize: p, q in G
2: Initialize: regularization strength λ, pruning interval I ,

pruning threshold α, target compression Γ
3: Initialize: LSB-nonzero rate β, compression γ
4: for epoch = 1, ..., T do
5: for batch from X, Y do
6: Compute forward pass of G
7: # LSB L1 regularization
8: Update parameters with L = Lce + λR(B)
9: end for

10: if epoch % I == 0 and γ > Γ then
11: Calculate Hessian trace Tr(H)
12: Initialize Ω
13: # Omega and LSB-nonzero rate calculation
14: for Quantized layer l in G do
15: Ωl ← Tr(Hl)||W(l)

ql −W(l)||2
16: βl ← sum(B > 2pl−1)
17: end for
18: # Pruning
19: Ascending sort β
20: for Quantized layer l in G do
21: if βl < α then
22: ql = ql − pl
23: end if
24: if γ > Γ then
25: break
26: end if
27: end for
28: # Hessian aware changing pruning bit
29: for Quantized layer l in G do
30: if Ωl < mean(Ω) then
31: pl = 2
32: else
33: pl = 1
34: end if
35: end for
36: end if
37: end for

to capture its change, which can be observed in the tran-
sition from Fig. 5a to Fig. 5b. This adaptive strategy al-
lows for accelerated training by pruning multiple bits at
once in low-sensitivity layers while preserving accuracy in
high-sensitivity layers. Moreover, it ensures that Hessian
information is effectively utilized to optimize the pruning
process, resulting in both computational efficiency and im-
proved performance in quantized networks.

21889

(a) ResNet-20 (b) ResNet-18 (c) ResNet-50

Figure 6. Comparison of training time per epoch for different methods across varying batch sizes. Results are reported up to the maximum
batch size that does not cause out-of-memory (OOM). Circle sizes represent the number of trainable parameters.

3.3. Overall Training Algorithm

The complete training workflow is summarized in Algo-
rithm 1. The model is trained using the objective defined
in Eq. (8), enabling simultaneous weight optimization and
LSB sparsification through L1 regularization. At every
pruning interval, the sensitivity metric Ω is calculated for
all layers, guiding the adjustment of the pruning bit amount
p for the subsequent pruning step.

The pruning strength is controlled by two key parame-
ters: the regularization strength λ and the pruning threshold
α,which are applied uniformly across all layers. Pruning
occurs when the LSB nonzero rate β for a given layer falls
below the pruning threshold α. The pruning continues until
the target compression ratio Γ is achieved. In the final round
of pruning, we sort β to prioritize pruning layers with the
lowest LSB nonzero rates until the target model compres-
sion ratio is reached. Once the Γ is reached, regularization
and pruning are completely stopped, and training continues
as a standard QAT process to improve model performance
under the finalized quantization scheme.

4. Evaluation

We evaluate MSQ on a variety of neural network architec-
tures to demonstrate its generality and effectiveness. For
convolutional networks, we test MSQ on ResNet-20 [9]
using the CIFAR-10 dataset [13], and on ResNet-18 and
ResNet-50 [9] using the ImageNet dataset [4]. To further
assess generalization to heterogeneous CNN architectures,
we also evaluate MSQ on MobileNetV3-Large [11], which
include depthwise convolutions and squeeze-and-excitation
blocks. For transformer-based architectures, we assess
MSQ on ImageNet using DeiT [22] and Swin-T [17], rep-
resenting both lightweight and hierarchical Vision Trans-
formers (ViTs). For CNNs, we compare MSQ with exist-
ing uniform quantization methods [3, 31] as well as mixed-
precision quantization approaches [6, 26, 27, 29]. For ViTs,
we evaluate MSQ against various ViT-specific quantization
techniques [7, 14, 19, 22].

4.1. Experimental Setup
We employ a consistent set of hyperparameters for exper-
iments conducted on the same model. Models trained on
CIFAR-10 use the SGD optimizer with an initial learning
rate of 0.1 and a warm-start cosine annealing scheduler. For
ImageNet, we use the SGD optimizer with an initial learn-
ing rate of 0.01, also adopting a warm-start cosine anneal-
ing schedule. Experiments on CIFAR-10 are trained from
scratch and for 400 epochs, whereas on ImageNet, we use
floating-point pretrained models and train for 100 epochs.
These training durations are comparable to the total epochs
used in prior methods, such as BSQ [27] and CSQ [26].
For activation quantization, we use uniform quantization
and report the bit precision in the “A-Bits” column. In Im-
ageNet experiments, all activations remain at full precision,
while in ViT experiments, activations are quantized to 8-bit.

4.2. Experimental Results
We compare MSQ with previous baseline quantization
methods. In all tables, “FP” refers to the full-precision
model, and “MP” denotes mixed-precision weight quanti-
zation. The weight compression ratio, “Comp” is calculated
relative to the full-precision model. The target compression
ratios of 16.00 and 10.67 correspond approximately to av-
erage weight bit-widths of 2 and 3 bits, respectively.

Table 1. Training resource usage for each quantization method.
Network BSQ CSQ MSQ

ResNet-20

Epochs 350 600 400
Train Batch Size 256 256 1024
Total Time (h) 0.36 0.90 0.33

Params (M) 2.16 2.16 0.27
Peak Memory(GB) 2.21 2.40 2.77

ResNet-18

Epochs 90 200 100
Train Batch Size 64 32 256
Total Time (h) 63.92 220.32 21.11

Params (M) 93.52 93.52 11.69
Peak Memory(GB) 10.13 10.41 11.13

ResNet-50

Epochs 90 200 100
Train Batch Size 32 16 256
Total Time (h) 128.76 346.12 24.30

Params (M) 204.8 204.8 25.6
Peak Memory(GB) 11.54 12.82 12.22

21890

Table 2. Quantization results of ResNet-20 models on the CIFAR-
10 dataset.

A-Bits 32 3 2

Method W-Bit Comp Acc W-Bit Comp Acc W-Bit Comp Acc

FP 32 1.00 92.62 – – – – – –
LQ-Nets 3 10.67 92.00 3 10.67 91.60 2 16.00 90.20

PACT – – – 3 10.67 91.60 2 16.00 89.70
DoReFa – – – 3 10.67 89.90 2 16.00 88.20

BSQ MP 19.24 91.87 MP 11.04 92.16 MP 18.85 90.19
CSQ T2 MP 16.00 92.68 MP 16.93 92.14 MP 16.41 90.33

MSQ MP 16.13 92.17 MP 17.43 92.00 MP 19.13 90.22
MSQ MP 20.13 92.15 – – – MP 16.43 90.60

Table 3. Quantization results of ResNet-18 and ResNet-50 models
on the ImageNet dataset.

ResNet-18 ResNet-50

Method W-Bits Comp(x) Acc(%)W-Bits Comp(x) Acc(%)

FP 32 1.00 69.76 32 1.00 76.13

DoReFa [31] 4 6.40 68.4 3 10.67 69.90
PACT [3] 4 8.00 69.2 3 10.67 75.30
LQ-Nets [30] 3 10.67 69.30 3 10.67 74.20
HAWQ-V3 [29] 4 8.00 68.45 4 8.00 74.24
HAQ [23] - - - MP 10.57 75.30
BSQ [27] - - - MP 13.90 75.16
CSQ T3 [26] MP 10.67 69.73 MP 10.67 75.47
MSQ MP 11.84 69.74 MP 10.89 75.32

Training Efficiency Comparison. As shown in Fig.6, This
comparison presents the training time for each batch size
across different methods (BSQ, CSQ, and MSQ). The batch
size for each method was increased until it reached the out-
of-memory limit. The specific details are summarized in Ta-
ble 1, where the training resource usage is reported. MSQ
achieves up to 8× fewer trainable parameters compared to
BSQ and CSQ, primarily due to its structural design that
avoids explicit bit-level splitting during training. Conse-
quently, MSQ allows for larger batch sizes before reach-
ing the out-of-memory limit, ultimately reducing training
time. To ensure a fair comparison, we also measured the to-
tal training time using batch sizes adjusted to yield similar
peak memory usage for each method on an RTX GeForce
4080 Super. As the number of parameters increased, MSQ’s
efficiency advantage became more significant. In particular,
on ResNet-50, MSQ achieved a 5.3× speedup over BSQ and
a 14.2× speedup over CSQ. This acceleration stems from
MSQ’s architectural efficiency, which enhances parallelism
and minimizes computational overhead by eliminating bit-
level splitting during training.
ResNet Results. We evaluate MSQ on ResNet-20 with
CIFAR-10, while ImageNet is used for ResNet-18 and
ResNet-50. As shown in Table 2, MSQ achieves higher
compression ratios than CSQ under 32-bit and 3-bit activa-
tion settings, with minimal accuracy drop. In the 2-bit case,

Table 4. Comparison of quantization methods on DeiT-T/S and
Swin-T with compression ratio and Top-1 accuracy on ImageNet.

DeiT-T DeiT-S Swin-T

Method W-Bits Comp(×) Acc(%) Comp(×) Acc(%) Comp(×) Acc(%)

LSQ 3 10.67 68.09 10.67 77.76 10.67 78.96
Mix-QViT 3 10.67 69.62 10.67 78.08 10.67 79.45

QViT 3 10.67 67.12 10.67 78.45 10.67 80.06
OFQ 3 10.67 72.72 10.67 79.57 10.67 79.57
OFQ 4 8.00 75.46 8.00 81.10 8.00 81.88
MSQ MP 10.54 74.74 9.58 80.64 9.14 81.38

MSQ even improves accuracy over CSQ. On ImageNet (Ta-
ble 3), MSQ outperforms prior methods on ResNet-18 and
achieves comparable performance to CSQ on ResNet-50.
MobileNetV3 Results. To assess the generalization capa-
bility of MSQ, we evaluate it on MobileNetV3-Large us-
ing the ImageNet dataset. This architecture includes di-
verse components such as depthwise separable convolutions
and squeeze-and-excitation (SE) blocks, which present ad-
ditional challenges for quantization. As shown in Table 5,
MSQ achieves higher compression ratios compared to prior
methods while preserving model accuracy.
ViT Results. Table 4 presents the MSQ results for Vision
Transformer models on ImageNet datasets, including DeiT
[22] and Swin [17]. In these experiments, we use the 4-bit
quantized checkpoint from the OFQ [15] repository as the
pretrained model and fine-tune it using using MSQ. MSQ
achieves a better efficiency-accuracy trade-off compared to
previous methods, delivering comparable performance at
higher compression ratios. These results demonstrate that
MSQ is effective for transformer-based models, extending
its applicability beyond CNN architectures.

4.3. Ablation Study
In this section, we delve into the critical design aspects of
the MSQ, particularly examining the influence of the Hes-
sian information in determining the bit scheme for mixed-
precision quantization. The experiments used in this section
are performed using ResNet-20 models [9], leveraging 3-bit
activation quantization, and are evaluated on the CIFAR-10
dataset [13].

Table 5. Quantization results of MobileNetV3-L on the ImageNet
dataset.

Method W-Bits Comp(×) Acc(%)

FP 32 1.00 75.27

DoReFa [31] 8 4.00 74.44
MSQ MP 5.36 74.29

DoReFa [31] 4 8.00 72.92
MSQ MP 10.30 73.58

21891

Figure 7. Final bit scheme selected during the training process.
The bit scheme is determined at epoch 210 for the case without
Hessian (accuracy: 91.23%), and at epoch 150 for the case with
Hessian (accuracy: 91.93%).

Figure 8. The change of validation accuracy with and without Hes-
sian during training. Accuracy drop is observed when LSB prun-
ing happens.

Effectiveness of Hessian. As discussed in Sec. 3.2, MSQ
leverages Hessian information to account for layer sensi-
tivity, enhancing the efficiency of the bit-pruning process.
Fig. 7 compares the final bit schemes after training with
and without Hessian guidance. Without the Hessian guid-
ance, some layers are constantly pruned while others are
less changed, leading to the need of using more pruning
epochs to reach the target compression rate and poorer final
accuracy. On the other hand, the proposed Hessian-aware
aggressive pruning scheme reduces the pruning speed for
overly-pruned layers, which becomes more sensitive as they
are pruned, while promoting faster pruning of other less
sensitive layers. This leads to a more well-behaving quanti-
zation scheme. As we achieve faster pruning speed with the
Hessian guidance, the accuracy drop suffered by the model
from each pruning step is smaller as shown in Fig. 8, which
helps achieving a better compression-accuracy tradeoff with
less training.
Quantization Scheme Comparison with BSQ. We show-
case the quantization scheme achieved by MSQ and BSQ
on the ResNet-20 model in Fig. 9. We noticed that the
sparsity observed by BSQ is more concentrated on a few
layers, whereas that achieved by MSQ appears more even.
We believe that this difference is induced by the overly ag-
gressive bit-level training and regularization introduced by

Figure 9. Comparison of Final Bit Schemes Between MSQ and
BSQ During Training: The BSQ’s compression ratio is 19.24x
with accuracy 91.87%, while MSQ’s compression ratio is 20.13x
with accuracy 92.15%.

BSQ, where each bit is trained and regularized separately.
In BSQ, strong regularization may reduce some layers to 0-
bit precision, effectively removing all weights and allowing
the layer to be skipped. MSQ, on the other hand, single out
only the LSBs with the guidance of Hessian information,
which leads to a better quantization scheme with improved
accuracy and compression rate.

5. Conclusion

In this work, we introduce MSQ, a novel memory-efficient
approach for bit-level mixed-precision quantization DNN
training. MSQ computes and regularizes LSBs directly
from the trainable parameters, leading to bit-level spar-
sity and precision reduction without explicit bit splitting.
Hessian information is incorporated to guide proper preci-
sion reduction rate across the layers. Experimental results
demonstrate the effectiveness of MSQ, achieving accuracy
on par with existing mixed-precision methods while signif-
icantly reducing computational resources, including train-
ing time and GPU memory usage. This efficiency makes it
feasible to train large-scale networks, such as Vision Trans-
formers (ViTs), using a bit-level training approach.

Acknowledgments

This work was partly supported by the National Re-
search Foundation of Korea (NRF) grant (No. RS-
2024-00345732); the Institute for Information & Com-
munications Technology Planning & Evaluation (IITP)
grants (RS-2020-II201821, RS-2019-II190421, RS-2021-
II212068, RS-2025-10692981); the Technology Innovation
Program (RS-2023-00235718, 23040-15FC) funded by the
Ministry of Trade, Industry & Energy (MOTIE, Korea)
grant (1415187505); the BK21-FOUR Project; and High
Performance Computing (HPC) resources supported by the
University of Arizona TRIF, UITS, and Research, Innova-
tion, and Impact (RII), and maintained by the UArizona Re-
search Technologies department.

21892

References
[1] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-

ing 4-bit quantization of convolutional networks for rapid-
deployment. Advances in Neural Information Processing
Systems, 32, 2019. 1

[2] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi,
Giuseppe Tagliavini, Davide Rossi, and Francesco Conti.
Dory: Automatic end-to-end deployment of real-world dnns
on low-cost iot mcus. IEEE Transactions on Computers, 70
(8):1253–1268, 2021. 1

[3] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activa-
tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018. 1, 2, 6, 7

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[5] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Ma-
honey, and Kurt Keutzer. Hawq: Hessian aware quantization
of neural networks with mixed-precision. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 293–302, 2019. 1, 2

[6] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Hawq-v2: Hessian
aware trace-weighted quantization of neural networks. Ad-
vances in neural information processing systems, 33:18518–
18529, 2020. 1, 2, 5, 6

[7] Steven K. Esser, John L. McKinstry, Dhruv Bablani, Raja
Appuswamy, and Dharmendra S. Modha. Learned step size
quantization. arXiv preprint arXiv:1902.08153, 2019. 6

[8] Cong Guo, Yuxian Qiu, Jingwen Leng, Xiaotian Gao, Chen
Zhang, Yunxin Liu, Fan Yang, Yuhao Zhu, and Minyi Guo.
Squant: On-the-fly data-free quantization via diagonal hes-
sian approximation. arXiv preprint arXiv:2202.07471, 2022.
2

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6, 7

[10] Mark Horowitz. 1.1 computing’s energy problem (and what
we can do about it). In 2014 IEEE international solid-state
circuits conference digest of technical papers (ISSCC), pages
10–14. IEEE, 2014. 1

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun
Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and
Hartwig Adam. Searching for mobilenetv3. arXiv preprint
arXiv:1905.02244, 2019. 6

[12] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 1

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6, 7

[14] Yanjing Li, Shuang Xu, Bowen Zhang, Xiangtai Cao, Peng
Gao, and Guodong Guo. Q-vit: Accurate and fully quantized

low-bit vision transformer. In Advances in Neural Informa-
tion Processing Systems, pages 34451–34463, 2022. 6

[15] Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng.
Oscillation-free quantization for low-bit vision transformers.
In International Conference on Machine Learning, pages
21813–21824. PMLR, 2023. 7

[16] Yijiang Liu, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du,
and Shanghang Zhang. Noisyquant: Noisy bias-enhanced
post-training activation quantization for vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20321–20330, 2023.
2

[17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 6, 7

[18] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
conference on machine learning, pages 7197–7206. PMLR,
2020. 2

[19] Andreas Savakis Navin Ranjan. Mix-qvit: Mixed-
precision vision transformer quantization driven by layer
importance and quantization sensitivity. arXiv preprint
arXiv:2501.06357, 2025. 6

[20] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1

[21] Pedro Savarese, Hugo Silva, and Michael Maire. Winning
the lottery with continuous sparsification. Advances in neu-
ral information processing systems, 33:11380–11390, 2020.
2

[22] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 6, 7

[23] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8612–8620,
2019. 1, 2, 7

[24] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 10734–10742, 2019. 1

[25] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien
Demouth, and Song Han. Smoothquant: Accurate and effi-
cient post-training quantization for large language models.
In International Conference on Machine Learning, pages
38087–38099. PMLR, 2023. 2

[26] Lirui Xiao, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li
Du, and Shanghang Zhang. Csq: Growing mixed-precision

21893

quantization scheme with bi-level continuous sparsification.
In 2023 60th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2023. 1, 2, 3, 6, 7

[27] Huanrui Yang, Lin Duan, Yiran Chen, and Hai Li. Bsq: Ex-
ploring bit-level sparsity for mixed-precision neural network
quantization. arXiv preprint arXiv:2102.10462, 2021. 1, 2,
3, 6, 7

[28] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,
Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-
tization networks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
7308–7316, 2019. 1

[29] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gho-
lami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida
Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural net-
work quantization. In International Conference on Machine
Learning, pages 11875–11886. PMLR, 2021. 6, 7

[30] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. Lq-nets: Learned quantization for highly accurate and
compact deep neural networks. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 365–
382, 2018. 1, 7

[31] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 1, 2, 3, 4, 6, 7

21894

	Introduction
	Related Works
	Method
	Bipartite Bit Slicing
	Hessian-aware Aggressive Pruning
	Overall Training Algorithm

	Evaluation
	Experimental Setup
	Experimental Results
	Ablation Study

	Conclusion

