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Abstract

Diffusion models have emerged as the de facto choice for
generating high-quality visual signals across various do-
mains. However, training a single model to predict noise
across various levels poses significant challenges, necessi-
tating numerous iterations and incurring significant compu-
tational costs. Various approaches, such as loss weighting
strategy design and architectural refinements, have been in-
troduced to expedite convergence and improve model per-
formance. In this study, we propose a novel approach
to design the noise schedule for enhancing the training
of diffusion models. QOur key insight is that the impor-
tance sampling of the logarithm of the Signal-to-Noise ra-
tio (log SNR), theoretically equivalent to a modified noise
schedule, is particularly beneficial for training efficiency
when increasing the sample frequency around log SNR =
0. This strategic sampling allows the model to focus on
the critical transition point between signal dominance and
noise dominance, potentially leading to more robust and ac-
curate predictions. We empirically demonstrate the superi-
ority of our noise schedule over the standard cosine sched-
ule. Furthermore, we highlight the advantages of our noise
schedule design on the ImageNet benchmark, showing that
the designed schedule consistently benefits different predic-
tion targets. Our findings contribute to the ongoing efforts
to optimize diffusion models, potentially paving the way for
more efficient and effective training paradigms in the field
of generative AL

1. Introduction

Diffusion models have emerged as a pivotal technique for
generating high-quality signals across diverse domains, in-
cluding image synthesis [11, 39—41], video generation [5,
22,43, 46, 47], and 3D object generation [24, 34, 38, 50,
52]. One of the key strengths of diffusion models lies in
their ability to approximate complex distributions, where
Generative Adversarial Networks (GANs) may encounter
difficulties. Despite the substantial computational resources
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and numerous training iterations required for convergence,
improving the training efficiency of diffusion models is es-
sential for their application in large-scale scenarios, such as
high-resolution image synthesis and long video generation.

Recent efforts to enhance diffusion model training effi-
ciency have primarily focused on two directions. The first
approach centers on architectural improvements. For in-
stance, the use of Adaptive Layer Normalization [16], when
combined with zero initialization in the Transformer archi-
tecture [37], has shown promising results. MM-DiT [12]
extends this approach to multi-modality by employing sep-
arate weights for vision and text processing. Similarly, U-
shaped skip connections within Transformers [2, 9, 23] and
reengineered layer designs [26] have contributed to more
efficient learning processes.

The second direction explores various loss weighting
strategies to accelerate training convergence. Works such
as eDiff-I [1] and Ernie-ViLG 2.0 [13] address training
difficulties across noise intensities using a Mixture of Ex-
perts approach. Other studies have investigated prioritiz-
ing specific noise levels [8] and reducing weights of noisy
tasks [17] to enhance learning effectiveness. Recent de-
velopments include a softer weighting approach for high-
resolution image synthesis [9] and empirical findings on the
importance of intermediate noise intensities [12].

Despite these advances, the fundamental role of noise
scheduling in diffusion model training remains underex-
plored. In this study, we present a novel approach focus-
ing on the fundamental role of noise scheduling, which is a
function that determines how much noise is added to the in-
put data at each timestep ¢ during the training process, con-
trolling the distribution of noise levels that the neural net-
work learns to remove. Our framework provides a unified
perspective for analyzing noise schedules and importance
sampling, leading to a straightforward method for design-
ing noise schedules through the identification of curves in
the p(\) distribution, as visualized in Figure 1. Through
empirical analysis, we discover that allocating more com-
putation costs (FLOPs) to mid-range noise levels (around
log SNR = 0) yields superior performance compared to in-
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Figure 1. Illustration of the probability density functions of differ-
ent noise schedules.

creasing loss weights during the same period, particularly

under constrained computational budgets.

We evaluate several different noise schedules, including
Laplace, Cauchy, and the Cosine Shifted/Scaled variants,
through comprehensive experiments using the ImageNet
benchmark with a consistent training budget of 500K itera-
tions (about 100 epochs). Our results, measured using the
Fréchet Inception Distance (FID) metric at both 256 x 256
and 512 x 512 resolutions, demonstrate that noise schedules
with concentrated probability density around log SNR =
0 consistently outperform alternatives, with the Laplace
schedule showing particularly favorable performance.

The key contributions of our work can be summarized as
follows:

* A unified framework for analyzing and designing noise
schedules in diffusion models, offering a more systematic
approach to noise schedule optimization.

* Empirical evidence demonstrating the superiority of mid-
range noise level focus over loss weight adjustments for
improving training efficiency.

* Comprehensive evaluation and comparison of various
noise schedules, providing practical guidelines for future
research and applications in diffusion model training.

2. Related Works

Efficient Diffusion Training. Generally speaking, the dif-
fusion model uses a network with shared parameters to
denoise different noise intensities. However, the differ-
ent noise levels may introduce conflicts during training,
which makes the convergence slow. P2 [8] improves im-
age generation performance by prioritizing the learning of
perceptually rich visual concepts during training through
a redesigned weighting scheme. Min-SNR [17] seeks the
Pareto optimal direction for different tasks, achieves better
convergence on different predicting targets. HDiT [9] pro-
pose a soft version of Min-SNR to further improve the effi-
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ciency on high resolution image synthesis. Stable Diffusion
3 [12] puts more sampling weight on the middle timesteps
by multiplying the distribution of logit normal distribution.
On the other hand, architecture modification is also ex-
plored to improve diffusion training. DiT [37] proposes
adaptive Layer Normalization with zero initialization to im-
prove the training of Transformer architectures. Building
upon this design, MM-DiT [12] extends the approach to
a multi-modal framework (text to image) by incorporat-
ing separate sets of weights for each modality. HDiT [9]
uses a hierarchical transformer structure for efficient, linear-
scaling, high-resolution image generation. A more robust
ADM UNet with better training dynamics is proposed in
EDM2 [26] by preserving activation, weight, and update
magnitudes. In this work, we directly adopt the design from
DiT [37] and focus on investigating the importance sam-
pling schedule in diffusion models.
Noise Schedule Design for Diffusion Models. The design
of the noise schedule plays a critical role in training diffu-
sion models. In DDPM, Ho et al. [21] propose linear sched-
ule for the noise level, which was later adopted by Stable
Diffusion 1.5 [40]. However, the linear noise schedule in-
troduces signal leakage at the highest noise step [30, 45],
hindering performance when sampling starts from a Gaus-
sian distribution. Improved DDPM [35] introduces a co-
sine schedule aimed at bringing the sample with the high-
est noise level closer to pure Gaussian noise. EDM [25]
proposes a new continuous framework and make the loga-
rithm of noise intensity sampled from a Gaussian distribu-
tion. Flow matching with optimal transport [31, 32] linearly
interpolates the noise and data point as the input of flow-
based models. Chen [7] underscored the need for adapt-
ing the noise schedule according to the image resolution.
Hoogeboom et al.[23] found that cosine schedule exhibits
superior performance for images of 32 x 32 and 64 x 64 res-
olutions and propose to shift the cosine schedule to train on
images with higher resolutions. In future work, we plan to
incorporate noise schedule design to other conditional gen-
eration tasks like image editing [4, 15, 18, 19] and other
modalities [36, 48, 49, 54].

3. Method

3.1. Preliminaries

Diffusion models [21, 25, 51] learn to generate data by iter-
atively reversing the diffusion process. We denote the distri-
bution of data points as X ~ pga(X). The diffusion process
systematically introduces noise to the data in a progressive
manner. In a continuous setting, the noisy data at timestep ¢
is defined as follows:

where € ~ N(0,1), (1)

Xt = 04X + OE€,

where a; and o, are the coefficients of the adding noise



process, essentially representing the noise schedule. For the
commonly used prediction target velocity: v, Q€ —
oix [42], the diffusion model vy is trained through the
Mean Squared Error (MSE) loss:

L(0) = Exwvppua 0 Etp(ty [()[[Vo(arx + o€, 1, €) = vi[3]

2

where w(t) is the loss weight, ¢ denotes the condition in-

formation. In the context of class-conditional generation

tasks, c represents the class label. Common practices sam-

ple ¢ from the uniform distribution [0, 1]. [27] introduced
2

the Signal-to-Noise ratio as SNR(t) = % to measure the

noise level of different states. Notably, StNR(t) monoton-
ically decreases with increasing ¢. Some works represent
the loss weight from the perspective of SNR [9, 17, 42]. To
simplify, we denote A = log SNR to indicate the noise in-
tensities. In the Variance Preserving (VP) setting, the coef-

ficients in Equation | can be calculated by a? = e:;))((p/\()/\lv
2 _

ag. t = m.

While these foundational concepts have enabled signifi-
cant progress in diffusion models, the choice of noise sched-
ule remains somewhat ad hoc. This motivates us to develop
a more systematic framework for analyzing and designing
noise schedules by examining them from a probability per-
spective.

3.2. Noise Schedule Design from A Probability Per-
spective

The training process of diffusion models involves sampling
timesteps ¢ from a uniform distribution. However, this uni-
form sampling in time actually implies a non-uniform sam-
pling of noise intensities. We can formalize this relationship
through the lens of importance sampling [3]. Specifically,
when ¢ follows a uniform distribution, the sampling proba-
bility of noise intensity A is given by:
dt dt
b =200 |35 = - 55 ®
where the negative sign appears because A monotoni-
cally decreases with t. We take cosine noise schedule [35]
as an example, where oy = cos (%t), oy = sin (%t)
Then we can deduce that A = —2logtan(nt/2) and t =
2/marctan e*/2. Thus the distribution of X is: p(\) =
—dt/dX\ = sech(A/2)/2x. This derivation illustrates the
process of obtaining p(\) from a noise schedule A(t). On
the other hand, we can derive the noise schedule from the
sampling probability of different noise intensities p(A). By
integrating Equation 3, we have:

A
t=1- [

r=P0),

p(A)dA =P(N), )

®)

4798

where P(\) represents the cumulative distribution func-
tion of A\. Thus we can obtain the noise schedule
A by applying the inverse function P~!'. In conclu-
sion, during the training process, the importance sam-
pling of varying noise intensities essentially equates to
the modification of the noise schedules. To illustrate
this concept, let’s consider the Laplace distribution as
an example , we can derive the cumulative distribu-
tion function P(A) = 1 — [ % exp (—|A — p|/b)d\ =
1 (14 sgn(A — p)(1 — exp(—|X — p|/b))). Subsequently,
we can obtain the inverse function to express the noise
schedule in terms of A\: A = p — bsgn(0.5 — ¢)In(1l —
2|t—0.5|). Here, sgn(-) denotes the signum function, which
equals 1 for positive inputs, —1 for negative inputs. The
pseudo-code for implementing the Laplace schedule in the
training of diffusion models is presented in the supplemen-
tary material.

This framework reveals that noise schedule design can
be reframed as a probability distribution design problem.
Rather than directly specifying how noise varies with time,
we can instead focus on how to optimally distribute our
sampling across different noise intensities. Our approach
is also applicable to the recently popular flow matching
with logit normal sampling scheme [12]. Within our frame-
work, we analyzed the distribution of its logSNR in the sup-
plementary material and demonstrated its superiority over
vanilla flow matching and cosine scheduling from the per-
spective of p(\).

3.3. Unified Formulation for Diffusion Training

VDM++ [29] proposes a unified formulation that encom-
passes recent prominent frameworks and loss weighting
strategies for training diffusion models, as detailed below:

1

w(A)
§Ex~D,e~N(O,I),)\~p(/\)

L,(0) = 20

léa(xx; A) — €ll3] »
(6)

where D signifies the training dataset, noise € is drawn from
a standard Gaussian distribution, and p()) is the distribution
of noise intensities. This formulation provides a flexible
framework that can accommodate various diffusion training
strategies. Different predicting targets, such as xq and v,
can also be re-parameterized to e-prediction. w(\) denotes
the loss weighting strategy. Although adjusting w(\) is
theoretically equivalent to altering p()). In practical train-
ing, directly modifying p(\) to concentrate computational
resources on training specific noise levels is more effec-
tive than enlarging the loss weight on specific noise levels.
Given these insights, our research focuses on how to design
an optimal p(\) that can effectively allocate computational
resources across different noise levels. By carefully craft-
ing the distribution of noise intensities, we aim to improve



Noise Schedule p(A) A(t)

Cosine sech (\/2) /2« 2log (cot (%))

Laplace 6_%/219 w—bsgn(0.5 — t) log(1 — 2|t — 0.5])
Cauchy %W p+vtan (3 (1 —2t))
Cosine Shifted ~ 5-sech ( 254 1+ 2log (cot (%))

Cosine Scaled 5-sech (%) % log (cot (%t))

Table 1. Overview of various Noise Schedules. The table categorizes them into five distinct types: Cosine, Laplace, Cauchy, and two
variations of Cosine schedules. The second column p(\) denotes the sampling probability at different noise intensities A. The last column
A(t) indicates how to sample noise intensities for training. We derived their relationship in Equation 3 and 5.

the overall training process and the quality of the resulting
diffusion models. With the unified formulation providing a
flexible framework for diffusion training, we can now apply
these theoretical insights to practical settings. By carefully
designing the distribution of noise intensities, we can opti-
mize the training process and improve the performance of
diffusion models in real-world applications. In the follow-
ing section, we will explore practical strategies for noise
schedules that leverage these insights to achieve better re-
sults.

3.4. Practical Settings

Stable Diffusion 3 [12], EDM [25], and Min-SNR [9, 17]
find that the denoising tasks with medium noise intensity is
most critical to the overall performance of diffusion models.
Therefore, we increase the probability of p(A\) when A is of
moderate size, and obtain a new noise schedule according
to Section 3.2.

Specifically, we investigate four novel noise strategies,
named Cosine Shifted, Cosine Scaled, Cauchy, and Laplace
respectively. The detailed setting are listed in Table 1. Co-
sine Shifted use the hyperparameter y to explore where the
maximum probability should be used. Cosine Scaled ex-
plores how much the noise probability should be increased
under the use of Cosine strategy to achieve better results.
The Cauchy distribution, provides another form of func-
tion that can adjust both amplitude and offset simultane-
ously. The Laplace distribution is characterized by its mean
1 and scale b, controls both the magnitude of the probability
and the degree of concentration of the distribution. These
strategies contain several hyperparameters, which we will
explore in Section 4.5. Unless otherwise stated, we report
the best hyperparameter results.

By re-allocating the computation resources at different
noise intensities, we can train the complete denoising pro-
cess. During sampling process, we align the sampled SNRs
as the cosine schedule to ensure a fair comparison. Specifi-
cally, first we sample {to, t1,. .., ts} from uniform distribu-
tion [0, 1], then get the corresponding SNRs from Cosine
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we get the corresponding {¢(,t}, ..., t.} by inverting these
SNR values through the respective noise schedules. Finally,
we use DDIM [44] to sample with these new calculated
{t'}. Tt is important to note that, from the perspective of the
noise schedule, how to allocate the computation resource
during inference is also worth reconsideration. We will not

explore it in this paper and leave this as future work.

2
. ZT;} According to Equation 5,

4. Experiments

This section presents a comprehensive evaluation of our
proposed noise schedules across various datasets, model ar-
chitectures, and prediction targets. We first describe our im-
plementation details, then compare our approach with base-
line methods, and finally conduct thorough ablation studies
to validate our design choices.

4.1. Implementation Details

Dataset. We conduct experiments on ImageNet [10] with
256 x 256 and 512 x 512 resolution. For each image, we
follow the preprocessing in [40] to center crop and encode
images to latents. The resulting compressed latents have
dimensions of 32 x 32 x 4 for 2562 images and 64 x 64 x 4
for 5122 images, effectively reducing the spatial dimensions
while preserving essential visual information.

Network Architecture. We adopt DiT-B from [37] as our
backbone. We replace the last AdaLN Linear layer with
vanilla linear. Others are kept the same as the original im-
plementation. The patch size is set to 2 and the projected
sequence length of 32 x 32 x 4 is 22 - 32 = 256. The
class condition is injected through the adaptive layernorm.
In this study, our primary objective is to demonstrate the
effectiveness of our proposed noise schedule compared to
existing schedules under a fixed training budget, rather than
to achieve state-of-the-art results. Consequently, we do not
apply our method to extra-large (XL) scale models.
Training Settings. We adopt the Adam optimizer [28] with
constant learning rate 1 x 10~%. We set the batch size to 256



Method w(A) p(A)

Cosine e M2 sech(\/2)
Min-SNR [17] e~2 . min{1,ve *} sech(\/2)
Soft-Min-SNR [9] e M2 y/(e* 4+ 7) sech(\/2)

FM-OT [31] (1 + e M)sech?(\/4) sech?(\/4)/8

EDM [25] (14 e7)(0.52 + e N (N;2.4,2.4%)  (0.5% + e NN (A;2.4,2.42)

Table 2. Comparison of different methods and related loss weighting strategies. The w()) is introduced in Equation 6. The original p(\)
for Soft-Min-SNR [9] was developed within the EDM’s denoiser framework. In this study, we align it with the cosine schedule to ensure a

fair comparison.

following [37] and [14]. Each model is trained for 500K it-
erations (about 100 epochs) if not specified. Our implemen-
tation is primarily based on OpenDiT [53] and experiments
are mainly conducted on 8x16G V100 GPUs. Different
from the default discrete diffusion setting with linear noise
schedule in the code base, we implement the diffusion pro-
cess in a continuous way. Specifically, we sample ¢t from
uniform distribution /[0, 1].

Baselines and Metrics. We compare our proposed noise
schedule with several baseline settings in Table 2. For each
setting, we sample images using DDIM [44] with 50 steps.
Despite the noise strategy for different settings may be dif-
ferent, we ensure they share the same A = log SNR at each
sampling step. This approach is adopted to exclusively in-
vestigate the impact of the noise strategy during the training
phase. Moreover, we report results with different classifier-
free guidance scales[20], and the FID is calculated using
10K generated images. We sample with three CFG scales
and select the optimal one to better evaluate the actual per-
formance of different models.

4.2. Comparison with Loss Weight Designs

This section details the principal findings from our experi-
ments on the ImageNet-256 dataset, focusing on the com-
parative effectiveness of various noise schedules and loss
weightings in the context of CFG values. Table 3 illus-
trates these comparisons, showcasing the performance of
each method in terms of the FID-10K score.

The experiments reveal that our proposed noise sched-
ules, particularly Laplace, achieve the most notable im-
provements over the traditional cosine schedule, as indi-
cated by the bolded best scores and the blue numbers repre-
senting the reductions compared to baseline’s best score of
10.85.

We also provide a comparison with methods that adjust
the loss weight, including Min-SNR and Soft-Min-SNR. Un-
less otherwise specified, the hyperparameter v for both loss
weighting schemes is set to 5. We find that although these
methods can achieve better results than the baseline, they
are still not as effective as our method of modifying the
noise schedule. This indicates that deciding where to allo-
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cate more computational resources is more efficient than ad-
justing the loss weight. Compared with other noise sched-
ules like EDM [25] and Flow Matching [31], we found that
no matter which CFG value, our results significantly surpass
theirs under the same training iterations.

Method CFG=1.5 CFG=2.0 CFG=3.0
Cosine [35] 17.79 10.85 11.06
EDM [25] 26.11 15.09 11.56
FM-OT [31] 24.49 14.66 11.98
Min-SNR [17] 16.06 9.70 10.43
Soft-Min-SNR [9] 14.89 9.07 10.66
Cosine Shifted [23] 19.34 11.67 11.13
Cosine Scaled 12.74 8.04 11.02
Cauchy 12.91 8.14 11.02
Laplace 16.69 9.04 7.96 (-2.89)

Table 3. Comparison of various noise schedules and loss weight-
ings on ImageNet-256, showing the performance (in terms of FID-
10K) of different methods under different CFG values. The best
results highlighted in bold and the blue numbers represent the im-
provement when compared with the baseline FID 10.85. The line
in gray is our suggested noise schedule.

Furthermore, we investigate the convergence speed of
these method, and the results are shown in Figure 2. It can
be seen that adjusting the noise schedule converges faster
than adjusting the loss weight. Additionally, we also no-
tice that the optimal training method may vary when using
different CFG values for inference, but adjusting the noise
schedule generally yields better results.

4.3. Effectiveness across Different Targets

We evaluate the effectiveness of our designed noise sched-
ule across three commonly adopted prediction targets: e,
X, and v. The results are shown in Table 4.

We observed that regardless of the prediction target, our
proposed Laplace strategy significantly outperforms the Co-
sine strategy. It’s noteworthy that as the Laplace strategy fo-
cuses the computation on medium noise levels during train-
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Figure 2. Comparison between adjusting the noise schedule, ad-
justing the loss weights and baseline setting. The Laplace noise
schedule yields the best results and the fastest convergence speed.

ing, the extensive noise levels are less trained, which could
potentially affect the overall performance. Therefore, we
have slightly modified the inference strategy of DDIM to
start sampling from ¢,,x = 0.99.

4.4. Scalability to High-Resolution Modeling

To explore the robustness of the adjusted noise schedule
to different resolutions, we also designed experiments on
Imagenet-512. As pointed out by [7], the adding noise strat-
egy will cause more severe signal leakage as the resolution
increases. Therefore, we need to adjust the hyperparameters
of the noise schedule according to the resolution.

Specifically, the baseline Cosine schedule achieves the
best performance when the CFG value equals to 3. So we
choose this CFG value for inference. Through systematic
experimentation, we explored the appropriate values for the
Laplace schedule’s parameter b, testing within the range
{0.5,0.75, 1.0}, and determined that b = 0.75 was the most
effective, resulting in an FID score of 9.09. This indicates
that despite the need for hyperparameter tuning, adjusting
the noise schedule can still stably bring performance im-
provements.

4.5. Ablation Study

We conduct an ablation study to analyze the impact of hy-
perparameters on various distributions of p()\), which are
enumerated below.

Laplace distribution, known for its simplicity and ex-
ponential decay from the center, is straightforward to im-
plement. We leverage its symmetric nature and adjust the
scale parameter to center the peak at the middle timestep.
We conduct experiments with different Laplace distribu-
tion scales b € {0.25,0.5,1.0,2.0,3.0}. The results are
shown in Figure 3. The baseline with standard cosine sched-
ule achieves FID score of 17.79 with CFG=1.5, 10.85 with
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Figure 3. FID-10K results on ImageNet-256 with location pa-
rameter y fixed to 0 and different Laplace distribution scales b in
{0.25,0.5,1.0, 2.0, 3.0}. Baseline denotes cosine schedule.

CFG=2.0, and 11.06 with CFG=3.0 after 500K iterations.
We can see that the model with Laplace distribution scale
b = 0.5 achieves the best performance 7.96 with CFG=3.0,
which is relatively 26.6% better than the baseline.

Cauchy distribution is another heavy-tailed distribution
that can be used for noise schedule design. The distribution
is not symmetric when the location parameter is not 0. We
conduct experiments with different Cauchy distribution pa-
rameters and the results are shown in Table 6. Cauchy(0,
0.5) means %W with ¢ = 0,7 = 0.5. We can see
that the model with ¢ = 0 achieve better performance than
the other two settings when fixing ~ to 1. It means that the
model with more probability mass around A = 0 performs
better than others biased to negative or positive directions.

Cosine Shifted [23] is the shifted version of the stan-
dard cosine schedule. We evaluate the schedules with
both positive and negative p values to comprehensively
assess its impact on model performance. Shifted with
o = 1 achieves FID-10k score {19.34,11.67,11.13} with
CFG {1.5,2.0,3.0}. Results with shifted value p = —1
are {19.30,11.48,11.28}. Comparatively, both scenarios
demonstrate inferior performance relative to the baseline
cosine schedule (4 = 0). Additionally, by examining the
data presented in Table 6, we find concentrated on A = 0
can best improve the results.

Cosine Scaled is also a modification of Cosine schedule.
When s = 1, it becomes the standard Cosine version. s > 1
means sampling more heavily around A = 0 while s < 1
means sampling more uniformly of all A. We report related
results in Table 7. Our experimental results reveal a clear
trend: larger values of s(s > 1) consistently outperform the
baseline, highlighting the benefits of focused sampling near
A = 0. However, it’s crucial to note that s should not be
excessively large and must remain within a valid range to
maintain stable training dynamics. For example, decreasing
1/s from 0.5 to 0.25 hurts the performance and cause the



Predict Target Noise Schedule 100K 200k 300k 400k 500k
X0 Cosine 3520 17.60 13.37 11.84 11.16
Laplace (Ours) 21.78 10.86 9.44  8.73  8.48

v Cosine 25.70 1401 11.78 11.26 11.06
Laplace (Ours) 18.03  9.37 8.31 8.07 7.96

€ Cosine 28.63 1580 1249 11.14 1046
Laplace (Ours) 2798 1392 11.01 10.00 9.53

Table 4. Effectiveness evaluated using FID-10K score on different predicting targets: Xo, €, and v. The proposed Laplace schedule
performs better than the baseline Cosine schedule along with training iterations.

Noise Schedule
FID-10K

Cosine

11.91

Laplace
9.09 (-2.82)

Table 5. FID-10K results on ImageNet-512. All models are trained
for 500K iterations.

FID score to drop. Striking the right balance is key to op-
timizing performance. In our experiments, a model trained
with s = 2 achieved a remarkable score of 8.04, represent-
ing a substantial 25.9% improvement over the baseline.

The experiments with various noise schedules, includ-
ing Laplace, Cauchy, Cosine Shifted, and Cosine Scaled,
reveal a shared phenomenon: models perform better when
the noise distribution or schedule is concentrated around
A = 0. For the Laplace distribution, a scale of b = 0.5
yielded the best performance, outperforming the baseline by
26.6%. In the case of the Cauchy distribution, models with
alocation parameter . = 0 performed better than those with
1 values biased towards negative or positive directions. The
Cosine Shifted schedule showed inferior performance when
shifted away from p = 0, while the Cosine Scaled schedule
demonstrated that larger values of s (sampling more heavily
around A = 0) consistently outperformed the baseline, with
an optimal improvement of 25.9% at s = 2. This consistent
trend suggests that focusing the noise distribution or sched-
ule near A = 0 is beneficial for model performance. While
these different schedules take various mathematical forms,
they all achieve similar optimal performance when given
equivalent training budgets. The specific mathematical for-
mulation is less crucial than the underlying design philos-
ophy: increasing the sampling probability of intermediate
noise levels. This principle provides a simple yet effective
guideline for designing noise schedules.

4.6. Importance Sampling as Loss Weight

We investigate the comparative effectiveness of our ap-
proach when applied as a noise schedule versus a loss
weighting mechanism. We adopt Cosine-Ply (as in supple-
mentary material) as our primary noise schedule due to its
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foundation in the cosine schedule and demonstrated supe-
rior FID performance. To evaluate its versatility, we refor-
mulate the importance sampling as a loss weighting strategy
and compare it against established weighting schemes, in-
cluding Min-SNR and Soft-Min-SNR.

Figure 4 illustrates the loss weight derived from Cosine-
Ply (n=2) schedule alongside Min-SNR and Soft-Min-
SNR. Under the setting of predict target as v, Min-SNR
and Soft-Min-SNR can be seemed as putting more weight
on intermediate levels, aligning with our earlier findings on
the importance of middle-level noise densities.

—— Min-SNR
—— Soft-Min-SNR
Cosine-Ply(n = 2)

0.0030

0.0025

0.0020

0.0015

Weight value

0.0010

0.0005

0.0000

0.2 0.4 0.6

t

Figure 4. Visualization of different loss weight schemes.

4.7. Generalization on Other Datasets

ImageNet, comprising over one million natural images, has
been widely adopted as a benchmark dataset for validating
improvements in diffusion models [26, 37].

In addition to ImageNet, we evaluate our approach on
the CelebA [33] dataset (64 x 64 resolution in pixel space),
which consists of face images. We employ a DiT architec-
ture (12 layers, embedding dimension of 512, 8 attention
heads, and patch size of 4) using different noise schedules.
This is an unconditional generation setting within a single
domain. Our Laplace noise schedule consistently outper-
forms the cosine baseline on FID scores: 7.94 vs 10.07 at
100k iterations and 6.58 vs 7.94 at 150k iterations, demon-



(,v) (0,05 (O, ¢1L,H (1, 1)
CFG=1.5 1291 1432 18.12 16.60
CFG=2.0 8.14 893 1038 10.19
CFG=3.0 11.02 11.26 10.81 10.94

Table 6. FID-10k results on ImageNet-256 with different Cauchy
distribution parameters.

Method FID-10K
Cosine 10.85
Cosine-Ply (n=2) 7.98
Min-SNR 9.70
Soft-Min-SNR 9.07
Cosine-Ply as weight 8.88

Table 8. Quantitative comparison of different noise scheduling
strategies and loss weighting schemes. Lower FID scores indicate
better performance.

strating substantial improvements of 21.1% and 17.1% re-
spectively.

We also follow Stable Diffusion 3 [12], train on a more
complicated dataset CC12M [6] dataset (over 12M image-
text pairs) and report the FID results here. We download the
dataset using webdataset. We train a DiT-base model
using CLIP as text conditioner. The images are cropped and
resized to 256 x 256 resolution, compressed to 32 x 32 x 4
latents and trained for 200k iterations at batch size 256.

Method FID
Cosine 58.36
Laplace (ours) 54.35 (-4.01)

Table 9. FID scores on CC12M dataset at 200k iterations

Our method demonstrated strong generalization capa-
bilities across both unconditional image generation using
the CelebA dataset and text-to-image generation using the
CCI12M dataset.

4.8. Visual Results

We present visual comparison in Figure 5 to demon-
strate the differences in generation quality between mod-
els trained with Cosine and our proposed Laplace schedule.
Each case presents two rows of outputs, where the upper
row shows results from the cosine schedule and the lower
row displays results from our Laplace schedule. Each row
contains five images corresponding to models trained for
100k, 200k, 300k, 400k, and 500k iterations, illustrating the
progression of generation quality across different training
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1/s 1.3 1.1 0.5 0.25
CFG=1.5 3974 22.60 1274 15.83
CFG=2.0 2338 1298 8.04 8.64
CFG=3.0 1394 11.16 11.02 8.26

Table 7. FID-10k results on ImageNet-256 with different scales of
Cosine Scaled distribution.

stages. For each case, the initial noise inputs are identical.
As shown in the results, our method achieves faster con-
vergence in both basic object formation (at 100k iterations)
and fine detail refinement, demonstrating superior learning
efficiency throughout the training process.

Figure 5. Visual comparison of results generated by model trained
by cosine schedule and our proposed Laplace. For each case, the
above row is generated by cosine schedule, the below is generated
by Laplace. The 5 images from left to right represents the results
generated by the model trained for 100k, 200k, 300k, 400k, and
500k iterations.

5. Conclusion

In this paper, we present a novel method for enhancing the
training of diffusion models by strategically redefining the
noise schedule. Our theoretical analysis demonstrates that
this approach is equivalent to performing importance sam-
pling on the noise. Empirical results show that our pro-
posed Laplace noise schedule, which focuses computational
resources on mid-range noise levels, yields superior per-
formance compared to adjusting loss weights under con-
strained computational budgets. This study not only con-
tributes significantly to the development of efficient training
techniques for diffusion models but also offers promising
potential for future large-scale applications.
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