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Figure 1. We propose GECO, an optimal-transport-based approach for learning geometrically consistent visual features. Characterizing

geometric properties, like distinguishing left/right eyes or front/back legs, remains challenging even for sophisticated methods. For in-

stance, in the keypoint transfer example, showing a zebra, Geo [64] confuses the eyes, while our features have low similarity. Our method

learns robust feature representations, achieving high accuracy while remaining lightweight and efficient at inference time (plot on the right),

enabling real-time applications at 30fps. Our feature embedding exhibits a continuous and structured understanding of objects, making it

highly effective for image segmentation (left) and precise keypoint matching, even in challenging scenarios involving occlusions (middle,

with attention maps overlaid on the target images).

Abstract

Recent advances in feature learning have shown that self-

supervised vision foundation models can capture semantic

correspondences but often lack awareness of underlying 3D

geometry. GECO addresses this gap by producing geomet-

rically coherent features that semantically distinguish parts

based on geometry (e.g., left/right eyes, front/back legs). We

propose a training framework based on optimal transport,

enabling supervision beyond keypoints, even under occlu-

sions and disocclusions. With a lightweight architecture,

GECO runs at 30 fps, 98.2% faster than prior methods,

while achieving state-of-the-art performance on PFPascal,

APK, and CUB, improving PCK by 6.0%, 6.2%, and 4.1%,

respectively. Finally, we show that PCK alone is insuffi-

cient to capture geometric quality and introduce new met-

rics and insights for more geometry-aware feature learning.

https://reginehartwig.github.io/publications/geco/

1. Introduction

Vision Foundation models either trained only on im-

ages [14, 42] or text-image pairs [47] produce flexible fea-

tures that can be applied across various tasks such as im-

age generation, style transfer, and correspondence estima-

tion. While these models perform well across a range of

applications, they are constrained by their limited ability

to distinguish between geometric properties [16]. For in-

stance, they may struggle to differentiate between left and

right eyes or the legs of a chair, issues that have been ex-

plored in the context of the Janus problem [16, 64]. Since

they are trained using consistency between self-augmented

images, including flipping, they often do not differentiate

between symmetric parts, and are even encouraged to learn

features that are invariant to such transformations. These

models often encounter challenges like ambiguous features

for semantically similar regions and confusion due to occlu-

sions. Such mismatches can lead to severe artifacts in prac-

tical downstream applications, such as a category template

reconstruction pipeline incorrectly reconstructing 5-legged

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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animals or chairs [39]. More advanced approaches, such as

Geo [64], enhance SD+DINO features [65] to address left-

right ambiguities. However, despite its advancements, this

method is often too slow, taking several seconds for a single

prediction, making it impractical and difficult to scale.

Our work proposes GEometrically COnsistent embed-

dings, an efficient and robust approach to address this prob-

lem without compromising efficiency. A key limitation of

previous methods is their reliance on argmax-based assign-

ments during training, which inherently assumes the key-

point to be visible in both views and fails to account for

(dis-)occlusions. Our intuition is that it therefore does not

provide a strong supervision signal for the model to learn

meaningful features. Specifically, it overlooks the fact that

we are dealing with a partial assignment problem. For in-

stance, in cases of occlusion, annotated information is ig-

nored during training, even though it could help the model

learn the correct bin assignment. Furthermore, the supervi-

sion signal is sparse: only a few annotated points are used,

while the rest of the image contributes nothing to the train-

ing process. Although soft-argmax assignments with Gaus-

sian perturbations of the position have been proposed to

mitigate this issue, they tend to introduce blurring and ul-

timately still depend on an argmax operation, which is not a

natural fit for the underlying assignment problem. Instead,

to account for the partial assignments and differentiability,

we introduce a novel soft assignment loss that leverages op-

timal transport on top of vision foundation models, leading

to a nuanced and discriminative feature learning process.

This loss function provides strong supervision feedback, al-

lowing our module to learn distinctive features that effec-

tively differentiate symmetric keypoints. The optimal trans-

port loss is based on the Sinkhorn algorithm [11], which en-

ables a differentiable soft assignment formulation for back-

propagation.

Importantly, unlike previous approaches [48, 50], our

method does not rely on cross-attention between image

pairs, the marginal distributions of the optimal transport

module are created and enforced differently (see supple-

mentary), and the module operates without trainable param-

eters. As a result, our model is a feature encoder rather

than a feature matcher. GECO focuses on robust represen-

tation learning rather than direct correspondence estimation

between two images.

Concretely, we employ a pre-trained model and refine

it through LoRA adaptation [26]. Leveraging DINOv2

ensures computational efficiency, enabling more extensive

data augmentation compared to prior methods and further

enhancing the robustness of learned features.

Our method outperforms the state of the art while being

faster and smaller by two orders of magnitude w.r.t. the

closest competitor (40 ms vs 2127ms; 332MB vs 9GB).

We perform an extensive evaluation, demonstrating our su-

periority on the classical PCK@0.1 metric on CUB, APK,

and PFPascal datasets [22, 55, 64]. We also extend our anal-

ysis to complement the information provided by the PCK

metric, which we found might not be indicative of some

prediction modes. Thanks to this, we demonstrate that our

better performance directly derives from a better geometri-

cal understanding, which also leads to a more focused and

calibrated prediction, distributing similarity on the correct

area and assigning occluded parts to the bin (see Fig. 1).

In summary, our contributions are:

1. We propose a novel loss function and a lightweight ar-

chitecture for image representation learning, leveraging

optimal transport-based soft assignment;

2. Our formulation leads to geometrically-aware features,

enabling state-of-the-art performance on correspon-

dence estimation while being significantly more effi-

cient. It surpasses geometrically-aware competitors on

multiple datasets while reducing computation time by

98%, maintaining the speed of the lightweight backbone.

3. We conduct an extensive analysis of the common PCK

metric and complement it with object part segmentation

evaluation on PascalParts. Our method effectively sep-

arates parts, indicating that it learns meaningful, dense

feature representations.

Our implementation will be instrumental for researchers in-

terested in downstream tasks of geometry-aware encoders.

2. Related Work

Deep features Self-supervised and unsupervised methods

have gained popularity [3–5, 17, 20, 23, 24, 42], but if

trained on image-level objectives [3–5, 20, 24] often fail

to capture fine spatial details [1, 54]. Patch-based meth-

ods like DINOv2 [42], inspired by [66], learn effective fea-

ture representations for tasks like clustering and matching.

Diffusion models [14, 47] have become powerful gener-

ative models, with (Clean-)DIFT [49, 51] enabling dense

feature extraction for vision tasks. While DINOv1, DI-

NOv2 [4, 42], and DIFT [51] work well for zero-shot

tasks [1, 19, 21, 25, 54], including semantic correspondence

finding, they often struggle with geometric awareness, es-

pecially left-right distinctions [7, 16], potentially due to

image-flipping augmentations [42]. Stable Diffusion (SD)

features [14] encode more geometry than DINOv1 [4], but

still lack left-right distinction, exposing limitations in spa-

tial understanding, which can cause problems in 3D recon-

struction [31, 35, 39].

Geometry-aware matching Several methods adress key-

point matching for rigid objects, such as SuperPoint [13]

and SuperGlue [48], which use homography supervision.

LOFTR [50] improves upon this with dense optimal trans-

port matching. These approaches rely on (cross-)attention
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and learnable optimal transport layers for sparse labels. Re-

cent methods like DUST3R, MAST3R, Fast3R [33, 57, 62]

assume rigid motion, limiting their applicability to more

complex cases. Our method, GECO, focuses on learning

features rather than matching and handles deformable ob-

jects and complex geometries. Deformable objects compli-

cate training, as constraints (e.g. epipolar) are not available.

Improving matching of deformable objects, CATs++ [9]

uses attention layers, LCorrSan [27] estimates dense flow

via correlation layers, [8] uses functional maps, and [34, 53]

optimize dense probabilities. These methods focus on cor-

respondence estimation. Our approach prioritizes feature

learning, not matching.

Geometry-aware representation Recent work [56, 58,

60, 63] uses rigid inter-instance supervision for learn-

ing features with geometric awareness. Others focus on

geometry-aware deformable intra-instance representation

learning: Using 3D supervision, concurrent work [18, 32,

45] achieve good results on the geometric-aware match-

ing task and a similar speedup as our method. Unlike our

focus on speed and efficiency, [61] targets matching per-

formance using additional correspondence supervision and

Diffusion Features. However, the need for extra signals

and lack of real-time capability limit its practical applica-

bility. Earlier works like AnchorNet [40] use category-

level supervision for geometry-aware features. DHF [36]

fine-tunes diffusion features for semantic matching with

a sparse contrastive loss on keypoints. Unsup [52] and

Sphere [37] map to spherical coordinates with category and

viewpoint supervision, while [15] also uses the spherical

geometric prior without supervision. Completely unsuper-

vised, SCOPS [28] enforces equivariance for co-part seg-

mentation, while [10] uses contrastive learning for part dis-

covery. We consider Geo [64] the most closely related work

to ours. It uses a sparse contrastive loss with keypoint anno-

tations and a soft argmax operator for feature enhancement.

However, its reliance on SD features results in slower in-

ference, category annotation dependency, and larger model

size. Additionally, the extra parameters introduced by their

head are significant, increasing the potential for overfitting.

Training with sparse correspondences To leverage

sparse correspondence during training, a common approach

applies an argmax operator [36, 64] with a sparse con-

trastive loss [29, 46]. While effective in some domains,

this method, when used with keypoint annotations [36],

provides a learning signal to only a small subset of anno-

tated patches visible in both images, resulting in subopti-

mal feature representations [64]. We leverage optimal trans-

port (OT) [11, 12] not as a matching module, but to de-

fine a structured soft assignment loss. Specifically, we em-

ploy the Sinkhorn algorithm [11, 12, 43], a differentiable

OT solver that produces dense supervision across all image

patches [2, 30, 59] by minimizing the cost to transport mass

between distributions. Unlike prior work [48, 50], our for-

mulation requires no additional trainable parameters, result-

ing in more broadly applicablel and task-agnostic features.

Our positioning Our method builds on a lightweight and

efficient DINOv2-B backbone, fine-tuned using LoRA [26]

to improve both computational efficiency and memory us-

age. To address the core challenges of sparse annotations

and (dis-)occlusions in loss design, we introduce a soft op-

timal transport layer. This layer delivers a learning signal to

all patches, effectively utilizing the full set of available an-

notations and enabling the learning of robust and discrimi-

native feature representations.

3. Background

Argmax matching Considering a source image S and tar-

get one T , both equipped with a set of patches represented

by their indices I := {i1, ..., il} and J := {j1, ..., jm} and

their d-dimensional features X
s ∈ R

l×d and X
t ∈ R

m×d

respectively. Given a query location i, the corresponding ĵ
on the target can be received by:

ĵ = argmax
j

〈
X

s
i ,X

t
j

〉
. (1)

While simple, argmax matching suffers from several

drawbacks. It introduces ambiguity, as multiple geomet-

rically distinct source locations can map to the same target

point (e.g., left and right eyes both matching to one eye).

It does not account for occlusions, often resulting in in-

correct assignments with low similarity. Moreover, it im-

poses hard, one-hot assignments that assume equal mass per

patch across images, limiting its ability to handle scale dif-

ferences or partial matches. Crucially, it ignores the global

structure of the assignment, focusing only on local maxima,

which leads to sparse gradients and hinders effective train-

ing. We instead formulate matching as an optimal transport

problem. To handle occlusions, we introduce a dustbin en-

try in the assignment matrix, and employ a soft, iterative

solver [11, 12] that provides meaningful gradients for all

features, improving training stability and convergence.

Optimal Transport formulation Suppose we have pairs

of patches (i, j) ∈ I × J . We solve for an assignment

between two images [42, 48] by using the cosine similarity

of the features as score matrix C with

Ci,j =
〈
X

s
i ,X

t
j

〉
∈ [−1, 1]. (2)

In order to model occlusions properly, we augment the vec-

tors with a dustbin at l′ = l + 1 and m′ = m + 1, which

gets assigned a threshold parameter z ∈ R:

Cil′ ,im′
= Cil′ ,j

= Ci,im′
= z ∀i, j ∈ I × J . (3)
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We then solve for an assignment matrix P ∈ U(a,b),
where

U(a,b) :=
{
P ∈ R

il′×im′

+ |P1im′
= a,PT

1il′
= b

}
,

(4)

a ∈ Σil′
, and b ∈ Σim′

, i.e. the marginalizations

of P (see supplementary) are in the respective simplex

Σn := {x ∈ R
n
+ : xT

1n = 1}. The assignment can be ob-

tained by solving the OT problem

P̂ = arg max
P∈U(a,b)

⟨P,C⟩ . (5)

To provide gradients for all input features during training,

we use a regularized OT, which yields a smooth and differ-

entiable assignment

P̂
λ = arg max

P∈U(a,b)
⟨P,C⟩+ λH(P), (6)

with H(P) = −
∑

i,j Pij logPij being the entropy of the

assignment matrix. For λ > 0 the entropy regularization

promotes smoother, less sparse assignments, resulting in

a differentiable soft assignment P̂λ that provides a gradi-

ent signal for all input features. Furthermore, changing

the problem to an unbalanced OT problem, using addition-

ally the KL-divergence as a regularizer [44], helps in the

case of unbalanced marginals a and b, meaning, that the

amount of mass that needs to be assigned is not equal for

both marginals

P̂
λ,α,β =arg max

P∈R
i
l′

×i
m′

+

⟨P,C⟩+ λH(P)

− αKL
(
P1im′

||a
)
− βKL

(
P

T
1il′

||b
)
. (7)

In general, for formulating the OT problem, we need to

know the distributions of a and b. However, using the

unbalanced OT problem, we can relax the requirement of

knowing the marginals, which is crucial for our application,

as we do not have access to the ground truth marginals, but

only estimates.

4. Method

We now describe our approach, including the feature learn-

ing module and the differentiable OT layer without learn-

able parameters, which processes the cosine similarity of

patches. Finally, we introduce a loss function that encour-

ages higher output probabilities for positive and bin pairs

and lower probabilities for negative pairs.

Architecture Our architecture is simple, efficient, and in-

terpretable (see Fig. 2). We use a pre-trained DINOv2-B

model [42], kept frozen during training, and adapt it with a

LoRA adapter [26] of rank 10.

Differentiable OT layer We compute the cosine similar-

ity of all features from S and T , including the background,

obtaining a cosine similarity matrix. We augment this ma-

trix with an additional row and column, setting a bin thresh-

old of z = 0.3, and obtaining the score Matrix C.

Next, we pass C to a differentiable optimal transport

(OT) layer, which computes the optimal transport plan be-

tween the features of S and T . Unlike previous works [48,

50], which enforce hard constraints on the boundaries a and

b, we adopt a KL-regularized soft assignment (Eq. (7)), al-

lowing greater flexibility. Additionally, the OT layer has

no learnable parameters and contributes to the loss function

rather than being part of the model itself.

The marginals a and b of the multivariate probability

matrix P̂ are estimated using mask annotation and a method

to determine the amount of the visible mass of the shape.

Details on this are provided in the supplementary material.

The Sinkhorn-Knopp algorithm runs for 10 iterations, pro-

ducing a probability matrix P̂
λ,α,β with the same dimen-

sions as the score matrix C. The hyperparameters of the

OT layer are λ = 0.1, α = 10, and β = 10.

Binary cross entropy loss As we do not have access to

the ground truth matrix P, which assigns all features of S
to all features of T , but only to the sets of positive, nega-

tive, and bin correspondences M+,M−,M0 ⊂ I × J ,

we formulate our loss only on these sets. Using a binary

cross-entropy loss, we train the model to predict the correct

values at some sparse entries of the assignment matrix P by

L = −
∑

(i,j)∈M+∪M0

log P̂λ,α,β
i,j −

∑

(i,j)∈M−

log(1−P̂
λ,α,β
i,j ).

(8)

We additionally add matches between foreground and back-

ground features to the set M−, which are not part of the

ground truth, to enforce the model to learn to distinguish

between the two.

5. Experiments

In this section we extensively evaluate our method com-

pared to baselines, analyzing their capability of understand-

ing geometry. First, in Sec. 5.1, we utilize the established

PCK metric on different datasets, where we show that we

are on par and better than the previous state-of-the-art. We

also provide a detailed analysis of the limitations of PCK,

and propose new metrics to inspect geometric knowledge

of the features. In Sec. 5.2, we show that our method, us-

ing centroid clustering, also performs well on the pixel-level

classification task without additional training, relying on

a simple supervised classifier. This indicates that our ap-

proach effectively learns meaningful features.
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Figure 2. Architecture and Training. At training time, our method takes a pair of images composed of a source S and targets one T ,

and obtains features through a DINOv2 [42] frozen model complemented with a LoRA adapter [26]. The features are used to compute the

matching by cosine similarity associations between all patches. For visualization purposes, we show the matrix for the landmarks (grey

dots). We pass the obtained matrix to a differentiable Optimal Transport Layer that, in a few iterations, obtains the predicted assignment.

We compare this with the ground truth, and we use this as a supervision signal for our method. Our training objective also provides

supervision signals on negative keypoint pairs and, thanks to the “bin” category, on keypoints that do not even have a visible counterpart in

one of the two images.

1

0
Bird Aero Bike Boat Bott Bus Car

(n10+n1x)/n n11/n

CUB
[55]

Spair
[38]

QQuery

QGT visible(1)

Qsymvisible(0)

QQuery

QGT visible(1)

Qsymvisible(1)

Figure 3. PGCK Dataset imbalance. We report keypoint pairs

grouping under our PGCK subdivision. n11 counts only the pairs

for which a geometric mismatch is possible. Other keypoint pairs

(having no geom. counterpart/ with occluded geom. counterpart)

are counted in (n10 + n1x). Due to the high category imbalance,

geometric error modes impact the overall PCK differently.

5.1. Analysis with (and of) PCK

Percentage of correct keypoints (PCK) The percentage

of correct keypoints (PCK) is a widely used metric for eval-

uating the performance of correspondence estimation meth-

ods. We take an image pair, where keypoint matches are

annotated, and evaluate how many query points Q are cor-

rectly reprojected into the second view (see Fig. 5). A re-

projection is labeled as correct if the distance ϵ between pre-

dicted and annotated location QGT is less than a threshold

αimg of the image size or αbbox of the bounding box size.

Following the evaluation protocol of previous work [51],

we use argmax matching for building assignments and re-

projection only in one direction. In this work, we consider

the PCKpoint@αimg version of it, where the percentage

of correct keypoint reprojections per point is n̂/n, the frac-

tion of the sum of correctly reprojected points n̂ across all

image pairs to all annotated point pairs n. It is interesting

to note that PCK considers only keypoint pairs in which the

query keypoint is visible in the target image. Hence, it does

not evaluate a model’s performance when the reprojection

is not visible in the target image, but its symmetric counter-

part is (see Fig. 5, first four rows). To address this, we also

report performance using qualitative results.

Percentage of geometry-aware correct keypoints

(PGCK) Although PCK has played an important role in

evaluating matching methods, we believe it is insufficient

to depict the methods’ understanding of geometry. We

propose to break down the proportion between the correct

reprojections n̂ and the total number of keypoints n into

different sets. Specifically, we separate the evaluation of

query points that have a visible symmetric counterpart

in the target image (n11, an example in Fig. 3, second

row) from those that have a symmetric counterpart but are

occluded in the target, and those for which a symmetric

counterpart does not exist (n10 and n1x respectively;

example of the first in Fig. 3, first row). PCK can then be

divided in:

PCKpoint =
n̂

n
(9)

=
n̂10 + n̂11 + n̂1x

n10 + n11 + n1x
(10)

=
n̂10

n10

n10

n︸ ︷︷ ︸
QGT✓

QSymm✗

+
n̂11

n11

n11

n︸ ︷︷ ︸
QGT✓

QSymm✓

PGCK

+
n̂1x

n1x

n1x

n︸ ︷︷ ︸
QGT✓

QSymm-

, (11)
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( , ) ∈ M ( , ) ∈ M̃ ( , ) ∈ M

Source S Target T n̂

n̂1x + n̂10 n̂11

n11 ñ11 n11

Figure 4. Geometric Ambiguity of PGCK. In the case of sym-

metric correspondences, the PCK metric does not account for am-

biguous assignments of true positive correspondences. The Green

dot around the annotated match will collect an assignment that

results in a true positive match, the Red dot collects symmetric

mismatches. In cases where the symmetric counterpart keypoint

is sufficiently close, the circles overlap. These points can not be

unambiguously assigned to either keypoint. The PCK metric still

counts them as true positives. Points falling into the ambiguous set

area are collected in M̃ and make up around 50% of the prediction

for all investigated methods.

where the number of keypoint pairs n = n10+n11+n1x and

number of correct reprojections n̂ = n̂10 + n̂11 + n̂1x. Al-

though PCK comprehends all these quantities, we see that

evaluation on n10 and n1x is less informative than those on

set n11, where actually the method could get confused by

the presence of a symmetric element. For evaluating the

geometric reasoning, we are interested only in the number

n̂11, where the model correctly matches the query keypoint

when the symmetric counterpart is also visible in the target

image. We can see its relevance by measuring the distri-

bution of the annotated point pairs for the CUB and SPair

datasets in the three categories. We report the counting in

Fig. 3. In the CUB dataset, n1x/n = 78% of the keypoint

pairs have no symmetric counterpart. For the remaining

22% of the keypoint pairs, in only 11% of the keypoint

pairs, the symmetric counterpart is also visible in the sec-

ond view. The SPair dataset has a high variation between

the categories, with the highest value for the bottle cate-

gory (97%) and the lowest for the bird category (23%). In

the following, we report both evaluations using PCK metric

and our proposed split. We call such division Percentage of

geometry-aware correct keypoints (PGCK).

Geometric Ambiguity Although n̂11/n11 show informa-

tiveness about geometric knowledge of models, to complete

our analysis, we also highlight a special set that is worth fur-

ther investigation. Specifically, the set M̃ with |M̃ | = ñ11

contains point pairs where the predicted location is close

(with a distance smaller than the defined radius) to QGT and

QSymm as shown in Fig. 4.

Therefore, success in these cases does not directly mea-

sure geometric knowledge, as it “cheats” the metric by pre-

Unambiguous

Correct Pred.

ambiguous Unambiguous

Wrong Pred.
n11

n11
↑ ñ11

n11

n11

n11
↓

DINO [4] 17.0 38.8 16.0

DIFTad [51] 25.2 43.8 8.4

DINOv2-S [42] 25.1 50.9 13.8

DINOv2-B [42] 24.5 51.8 16.0

Geo [64] 36.2 53.1 2.9

GECO (Ours) 40.0 53.2 2.3

Table 1. Geometric ambiguity Analysis of PGCK on APK [64].

We outperform previous work in the unambiguous geom. correct

matching (left) by 3.8 %, while our method disregards more of

the unambiguously wrong pairs (right). The best scores are high-

lighted in bold.

dicting points in the middle of the two. To compensate for

this, it is possible to derive two further measures. First, the

unambiguous true positives U-TP n11/n11, which mea-

sures the cardinality |M | = n11 of the subset, which con-

tains correctly matched keypoint pairs, where QSymm is far

enough away from the predicted position. Second, the false

correspondences n11/n11, which measures the cardinality

|M | = n11 of the subset, which contains wrongly matched

keypoint pairs, where QGT is far enough away from QSymm

to be considered as a completely wrong match. As we will

see later, the high number of keypoint pairs ñ11 indicates

that the commonly used radius αimg = 0.1 is too big for the

PCK metric. A further analysis of how the subsets behave

for other values of αimg is provided in the supplementary

material.

5.1.1. Evaluation

Data In this experiment, we evaluate our method on

datasets with pairwise keypoint annotations. Specifically,

we use the CUB dataset [55], selecting 10,000 image pairs

of at random, as well as SPair [38], PFPascal [22], and

APK [64], which provide predefined image pairs. Since PF-

Pascal lacks symmetric counterpart annotations, we assess

only the standard PCK metric on this dataset.

Results The quantitative PCK analysis on PFPascal,

APK, and Spair is shown in Tab. 2. Our method surpasses

previous state-of-the-art by 6.0% on PFPascal, 6.2% on

APK, and 4.1% on CUB, while being nearly two orders of

magnitude faster. Notably, Geo, using DINOv2-B and Sta-

ble Diffusion features, generalizes less well on CUB than

DINOv2-S. In fact, the only dataset where Geo outperforms

our method is Spair, indicating that is not a general pur-

pose model. Detailed PCK results for PFPascal, APK, and

Spair appear in the supplementary material. We provide

an in-depth APK evaluation in Tab. 1, where our method

improves across all n11 splits and consistently outperforms

Geo in three of four cases (see supplementary).
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PFPascal [22] APK [64] Spair [38] CUB [55]

PCK↑ time[ms]↓ PCK↑ time[ms]↓ PCK↑ time[ms]↓ PCK↑ time[ms]↓

DINO [4] 65.3 26 51.8 22 48.4 25 75.6 26

DIFTad [51] 72.5 221 60.4 228 59.3 222 84.2 222

DINOv2-S [42] 85.5 14 71.7 14 66.3 15 92.4 17

DINOv2-B [42] 86.0 45 73.0 40 67.1 38 92.8 43

Geo [64] 86.1 2141 80.5 2127 90.1 2159 88.4 2274

Sphere [37] 88.5 2152 75.2 2144 74.5 2164 92.1 2151

GECO (Ours) 92.1 45 86.7 40 85.2 38 92.5 43

Table 2. Quantitative evaluation of PCK on PFPascal [22] (Left), APK [64] (Middle), Spair [38] (Middle), and CUB [55] (Right).

We report the PCK@α = 0.1 for four different datasets on the test split. Our method outperforms competitors in three out of four datasets

by 6.0% on PFPascal, 6.2% on APK, and 4.1% on CUB, while ∼2 orders of magnitude faster. In contrast, does not generalize well to

CUB, where it lags behind DINOv2-S. Both Geo and our method are trained on PFPascal [22], APK [64], and Spair [38], while Sphere is

trained solely on Spair. The best scores are highlighted in bold. Methods are considered to be on par if their performance difference is less

than 0.5%. We mark CUB [55] in blue to highlight that it has not been seen at training time.

5.2. Feature Space Segmentation

The PCK metric evaluates correspondence accuracy based

on a limited set of keypoints. While effective at those

points, it does not assess the dense feature space, which

is crucial since methods are trained on these annotations.

We propose evaluating the feature space by partitioning it

into semantically meaningful parts using only Euclidean

distance to part-specific representation vectors. This indi-

cates whether the learned features capture meaningful, con-

sistent structures within the image.

5.2.1. Evaluation

Centroid Clustering To analyze the feature-space struc-

ture, we compute centroids for each annotated object part,

assessing whether the model can separate parts using only

Euclidean distance to these centroids. We first gather sets

of feature vectors corresponding to each annotated part and

then compute their median as the part representations. On

the test set, each patch is assigned to the nearest centroid

based on Euclidean distance, evaluating the model’s ability

to discriminate parts purely from the learned features.

Data We evaluate dense features using part annotations

from PascalParts [6], which offer consistent, category-

specific labels for assessment.

Results Our learned feature representations reliably dis-

tinguish semantically similar parts with distinct geometric

properties. Figure 6 shows qualitative examples where our

method accurately separates challenging regions such as

left/right eyes, wings, and ears. In contrast, the foundation

model often exhibits artifacts, marked by red arrows and cir-

cles in the figure. Geo [64], which uses Gaussian sampling

around keypoints during training, tends to assign overly

broad regions to the eyes. Quantitative and qualitative con-

fusion matrix analyses in the supplementary highlight ge-

ometric ambiguities in foundation models. Our method

achieves geometrical awareness comparable to Geo [64]

and shows greater consistency on non-geometric parts.

5.3. Runtime

Procedure We measure inference time by running a for-

ward pass (excluding image loading) on 1,000 images per

dataset using an RTX A4000 GPU, averaging the results.

All models are evaluated with a batch size of 1.

Results Our timing results can be found in Tab. 2. For

DINOv2 our measurements are consistent with those re-

ported in the NVIDIA NCG catalog [41], falling within

the same order of magnitude. The addition of our “light-

speed” adapter introduces minimal overhead, contributing

less than 0.5 ms to DINOv2-B’s baseline runtime of approx-

imately 40 ms. Importantly, the performance of the original

DINOv2 on the geometric matching task is not as strong.

On the other hand, Geo’s [64] geometrically aware features,

which rely on diffusion models, result in much longer infer-

ence times exceeding 2 seconds. Furthermore, in contrast

to Geo [64], our method benefits from lower memory re-

quirements, enabling efficient batch processing at inference

time, which would further amplify the speed performance

gap, making our method significantly faster and more scal-

able for practical applications.

6. Conclusion

We present a fast and efficient representation learning

method based on optimal transport loss, achieving state-of-

the-art PCK performance and improved geometric under-

standing. Our structured analysis highlights underexplored

aspects of feature learning using PCK subdivisions and cen-

troid clustering. While our method is lightweight and gen-

eralizes well, it relies on sparse keypoint supervision and is

currently limited to categories with available annotations.
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Source S Target T DINOv2-B

[42]

Geo [64] GECO

(Ours)

Figure 5. Qualitative results on correspondence estimation for

APK [64], PFPascal [22], and CUB [55]. (Top two rows) The

model accurately locates the ground truth correspondence, becom-

ing visible with slight movement, while ignoring symmetric coun-

terparts. (Third, Fourth row) When the symmetric counterpart is

occluded, attention is uniformly low across the image. (Bottom

row) CUB samples confirm that our method preserves the pre-

trained foundation model’s generalization.

Input DINOv2-B
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Geo [64] GECO
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Figure 6. Clustering of the feature space based on Euclidean

distance to a part representation vector for PascalParts [6].

Our learned representation effectively separates even challenging

parts, such as left and right eyes, wings, and ears, while also being

similarly time and memory efficient as the DINOv2v2-B backbone

and much more time efficient than Geo.
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