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Abstract

Low-light conditions significantly degrade the performance
of high-level vision tasks. Existing approaches either en-
hance low-light images without considering normal illumi-
nation scenarios, leading to poor generalization, or are
tailored to specific tasks. We propose TorchAdapt, a real-
time adaptive feature enhancement framework that general-
izes robustly across varying illumination conditions without
degrading performance in well-lit scenarios. TorchAdapt
consists of two complementary modules: the Torch mod-
ule enhances semantic features beneficial for downstream
tasks, while the Adapt module dynamically modulates these
enhancements based on input content. Leveraging a novel
light-agnostic learning strategy, TorchAdapt aligns feature
representations of enhanced and well-lit images to produce
powerful illumination-invariant features. Extensive experi-
ments on multiple high-level vision tasks, including object
detection, face detection, instance segmentation, semantic
segmentation, and video object detection, demonstrate that
TorchAdapt consistently outperforms state-of-the-art low-
light enhancement and task-specific methods in both low-
light and light-agnostic settings. TorchAdapt thus provides a
unified, flexible solution for robust visual perception across
diverse lighting conditions.

1. Introduction
Recent advances in visual perception tasks [13, 31, 77, 82]
are highly effective at extracting features for complex tasks
when provided with high-quality inputs. However, repli-
cating this performance is challenging when data is scarce,
noisy, or expensive to obtain. A common issue is varying
illumination, particularly low-light conditions, which hin-
ders the robustness and reliability of safety-critical visual
perception systems [1, 3, 7, 63].

A common strategy to improve low-light performance
involves pre-processing images with Low-Light Image En-
hancement (LLIE) methods [17, 24, 33, 44, 50, 51, 71,
84, 85] before feeding them into high-level vision mod-

Figure 1. Prior downstream methods in low-light vision assume
that all samples belong to low-light conditions as shown in (a),
leading to underperformance in varying illumination environments,
depicted in (b). TorchAdapt alleviates this bottleneck via learning
powerful illumination-invariant features and achieves consistent
gains across low-light and light-agnostic settings on Object De-
tection (OD), Face Detection (FD), Instance Segmentation (IS),
Semantic Segmentation (SS), and Video Object Detection (VOD).
Best viewed on the screen.

els. However, this simple integration often leads to weaker
gains [16, 26], as these arts conform to human visual per-
ception (optimized on pixel-level objectives like L1 or MSE
losses [4]) instead of machine visual perception. Moreover,
applying these enhancement methods indiscriminately can
degrade the performance on images/videos captured under
standard lighting conditions, as alterations intended for low-
light scenarios [47, 60, 80, 81] may be unnecessary or even
detrimental in well-lit environments [15, 40, 58, 78].

To address low-light vision tasks, recent methods employ
transfer learning [16, 59, 72] and domain adaptation tech-
niques [20, 32, 48]. Despite improvements, these efforts are
carefully designed for a single high-level vision task, such

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5645



as object detection [16] or semantic segmentation [59, 72],
and require cumbersome multi-stage training to adapt to
each dense task [20, 32, 48]. Moreover, they often assume
consistently low-light data, leading to performance degrada-
tion on well-lit images and videos, sometimes worse than
baselines (see Table 2). In practical applications with un-
predictable lighting—such as autonomous driving [7, 37] at
different times of the day, surveillance systems [63] moni-
toring both indoor and outdoor environments or robots [3]
operating between well-lit and low-lit areas—these limita-
tions become critical. This highlights the need for high-level
vision models to be light-agnostic—capable of maintain-
ing high performance across varying lighting conditions, as
visualized in Fig. 1(b).

In this work, we propose TorchAdapt, a real-time, light-
agnostic adaptive feature enhancement framework designed
to improve the performance of any high-level vision task
under varying illumination. TorchAdapt comprises two pri-
mary modules: Torch and Adapt, illustrated in Fig. 2. The
Torch module is a lightweight feature enhancement network
that enriches semantic representations favorable for down-
stream vision tasks. The Adapt module learns to modulate
this feature enhancement dynamically based on input data,
amplifying or reducing the effect of the Torch module.

TorchAdapt builds on the consensus [26, 38] that low-to-
normal light adaptation lacks a physical model, leading to
unexpected artifacts during optimization when transforming
images in pixel space. Therefore, aligning representations
in the feature space is a more practical approach for high-
level vision tasks [48, 65]. We optimize TorchAdapt using a
non-contrastive self-supervised learning objective [12, 23]
to align representations from low-light and well-lit images.
However, unlike prior works operating in a similar direc-
tion [16, 48, 65], TorchAdapt also learns not to adversely
affect representations of well-lit images. As illustrated in
Fig. 3, we take a well-lit image V1 and its synthetically gener-
ated low-light counterpart V2, pass them through TorchAdapt
to obtain enhanced images V̂1 and V̂2, and feed them along
with V1 into a pre-trained frozen visual encoder [19, 27, 55]
to generate representations. Since the encoder is frozen, only
TorchAdapt is optimized to help the encoder produce well-lit
representations (like V1) for V̂1 and V̂2.

Thanks to the conceptual simplicity, TorchAdapt en-
joys two benefits. 1 It can be trained with a simple self-
supervised loss on a general-purpose dataset like Ima-
geNet [18], circumventing large-scale real-world low-light
datasets. 2 The training of TorchAdapt is independent of the
high-level vision task and needs to be done only once to align
with the backbone networks [6, 19, 27]. Later, TorchAdapt
can be plugged into any downstream tasks in a light-agnostic
manner. We demonstrate the effectiveness of TorchAdapt
on five representative visual perception tasks, including ob-
ject detection [21, 47], face detection [78, 80], semantic

segmentation [15, 60], instance segmentation [10, 40], and
video object detection [58, 81] under both low-light and
light-agnostic settings. For all tasks, TorchAdapt brings
consistent and significant gains over baselines under both
low-light and light-agnostic settings, outperforming previous
state-of-the-art task-specific and LLIE methods (see Fig. 1).
Moreover, TorchAdapt accomplishes all this with negligible
computational overhead (see Table 6).
Contributions. Method: We propose TorchAdapt, a real-
time, light-agnostic adaptive feature enhancement frame-
work that improves the performance of any high-level vi-
sion task under varying illumination without compromising
accuracy in well-lit conditions. Simplicity: Thanks to its
architectural innovations and self-supervised objective, Tor-
chAdapt significantly simplifies the training strategy for any
high-level vision task pipeline, circumventing corresponding
paired images/videos, as shown in Fig 3. Flexibility: Tor-
chAdapt is independent of vision encoders and downstream
task architectures, demonstrating model-agnostic generality.
(see § 5). Any zero-reference LLIE method [24, 33, 50, 67]
can serve as the Torch module in our framework to achieve
light-agnostic performance (see Fig. 5). Results: We con-
duct extensive experiments on five visual perception tasks
involving images and videos under both low-light and light-
agnostic settings using curated datasets. TorchAdapt outper-
forms state-of-the-art task-specific and LLIE methods across
all settings when integrated with the same baselines (see
Fig. 1).

2. Related Work

2.1. Enhancing Low-Light Images

Low-light Image Enhancement (LLIE) aims to improve the
visual quality of images captured under insufficient lighting
conditions. Modern learning-based approaches have become
prevalent, thanks to the emergence of low-light datasets [5,
8, 25, 43, 70]. Supervised methods [70, 73, 74, 84, 86]
leverage these datasets to design effective networks trained
to predict normal-light images from low-light ones. Unsu-
pervised LLIE approaches [30, 34, 79] employ adversarial
learning from unpaired supervision to relax the requirement
of paired normal-low light data. However, all of these works
still rely on specific training data, which limits their general-
izability to unseen scenarios. Another line of work known
as zero-reference methods [24, 33, 44, 50, 67] get rid of
both paired and unpaired data to enhance low-light images.
These arts design enhancement networks that optimize on a
set of non-reference loss functions. Since these works are
mainly designed to conform to human visual perception, they
bring sub-optimal gains for machine visual perception tasks.
Furthermore, they are not light-agnostic (capable of han-
dling both normal and low-light images). This work bridges
this gap by complementing these zero-reference methods,
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Figure 2. TorchAdapt architectural overview. The Torch module enhances feature representation by applying 3×3 convolutions and
element-wise operations (Eq. 1). The Adapt module performs adaptive modulation, creating a content-aware response based on the input I
(Eq. 2). Both modules are fused via Adaptive Fusion, integrating feature enhancements from Torch and contextual adaptations from Adapt.
This adaptive fusion produces illumination-invariant features, improving robustness across varying lighting conditions. Adaptive Fusion is
explained in Eq. 4.

where they can be employed as a Torch in our TorchAdapt
framework to improve light-agnostic visual perception.

2.2. Low-Light Visual Perception

This direction of work considers machine perception as the
criteria for success while enhancing low-light images.
Low-light Object Detection (LLOD). Object detection, as a
fundamental problem in computer vision, has also been well-
explored in low-light vision [16, 20, 39, 51, 61, 62, 64–66].
Based on the dataset, objects vary and can be generic [47, 52]
or specific like pedestrians [53], and human faces [80]. One
category of LLOD methods [51, 56, 62, 65] jointly learns
the enhancement and detection task in an end-to-end fash-
ion to improve the overall detection performance. Other
approaches involve learning a low-light detector through fus-
ing multiple models [61] or resorting to domain adaptation
frameworks [16, 20, 64], minimizing the distribution vari-
ance between normal and low-light images. Most of these
works are specifically designed to tackle the dark object de-
tection task. Furthermore, when these methods are optimized
for LLOD, they underperform on normal-light images. In
contrast, TorchAdapt is fully task-agnostic for any high-level
vision task, and it does not worsen the performance of the
detector on normal-light data.
Low-light Tasks-Agnostic Methods. Recently, various
low-light task-agnostic methods [20, 26, 32, 48, 65] have
emerged in the literature. Unlike prior approaches, they are
more flexible and can be integrated to improve any down-
stream task under low-light vision. Our work follows the
same spirit and offers similar flexibility. FeatEnHancer [26],
as one of the representative works, learns to enhance the hier-
archical features suitable for downstream tasks. Other semi-
nal attempts [20, 32, 48] treat low-light perception tasks as
domain adaption (DA) learning. They exploit well-lit source
domain data [40, 78] and learn to adapt to low-light target do-
main data [47, 80]. Although flexible, the DA methods rely
on multi-stage training frameworks for each task [48]. In
contrast, our TorchAdapt is pre-trained with the frozen back-

bone on the domain-independent data like ImageNet [18].
Moreover, it is important to recognize the efforts of recent
real low-light datasets [10, 35, 60, 68, 75, 81] that enable the
increasing research on several downstream tasks in low-light
vision.

2.3. Learning Equivariant Representations in Low-
Light Vision with Self-Supervised Objectives

Annotating low-light vision datasets is a much more dif-
ficult task than annotating well-lit datasets. Hence, it is a
common practice to apply self-supervised learning to learn
illumination-invariant features [16, 65] or aligning well-lit
and low-light data distributions [38, 48, 66]. MAET [16]
adopts the autoencoding transformation [83] to decode
illumination-degrading parameters and detection predic-
tions. SACC [65] merges the pretext tasks of rotation pre-
diction [22] and jigsaw puzzling [54] to learn illumination
enhancement from low-light images. Most related to our
work is SimMinMax [48], which adopts the BYOL [23]
framework to learn model-level adaptation by maximizing
the similarity of features between images at night and day-
time. However, since SimMinMax [48] learns to adapt
from daytime to nighttime images, it needs to be trained
for each high-level vision task, requiring the corresponding
daytime labeled dataset. In contrast, TorchAdapt leverages
self-supervised objectives to align backbone features dur-
ing the pretext task. Furthermore, it can be trained on any
general-purpose dataset. This significantly simplifies the
training procedure of TorchAdapt, as compared to SimMin-
Max, on any high-level vision task. TorchAdapt is also
unique to prior works in its ability to handle light-agnostic
data.

3. TorchAdapt

This section formally introduces TorchAdapt, explaining
the proposed Torch in § 3.1 and Adapt in § 3.2 modules,
followed by the light-agnostic learning in § 3.3.
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Figure 3. Light-Agnostic learning pipeline. D(.) is a darkening
function applied to the well-lit image V1 to synthesize the low-light
view V2. Both V1 and V2 are processed by TorchAdapt and then
fed into a frozen pre-trained vision encoder f . A cosine similarity
loss optimizes TorchAdapt to produce well-lit representations for
both V1 and V2, enabling it to learn illumination-invariant features.
The TorchAdapt(.) function integrates Eq. 1 and Eq. 4. Refer
to § 3.3 for a complete explanation of each symbol.

3.1. Torch

The Torch module in our TorchAdapt framework serves as an
enhancement network as in Low-light Image Enhancement
(LLIE) approaches [24, 33, 50]. However, unlike these meth-
ods—which focus on improving visual quality for human
perception—our Torch module aims to boost semantic repre-
sentations favorable for downstream vision tasks under vary-
ing lighting conditions. Given an input image I ∈ RH×W×3,
the Torch module computes an enhancement map Hθ(I), pa-
rameterized by network weights θ. The transformed image
T is obtained by:

T = I⊙ (1+Hθ(I)), where Hθ(I) = tanh (F(I; θ)) (1)

where ⊙ denotes element-wise multiplication. The tanh(·)
activation ensures that the adjustment values are in the range
[−1, 1], allowing the model to both amplify (positive values)
and attenuate (negative values) features. This formulation
enables the model to adapt to the image’s content effectively.
Torch network. The Torch network F(I; θ) is a lightweight
convolutional network composed of an initial feature ex-
traction layer followed by a residual block, as illustrated in
Fig. 2. The residual learning enables the Torch module to
focus on learning the necessary adjustments to improve the
input image rather than reconstructing it entirely. Enhancing
semantically important features while preserving original
content makes the Torch module crucial in maintaining and
improving performance in downstream vision tasks. Notably,
thanks to the formulation explained in Eq 1, our Torch mod-
ule only has 11,075 trainable parameters and requires 0.712
GFLOPs for I of size 256 × 256 × 3, making it suitable
for real-time high-level vision tasks under varying lighting
conditions.

3.2. Adapt
While the Torch module enhances the input image I to pro-
duce T, applying this enhancement uniformly may not be
optimal. Different regions within an image require varying
degrees of enhancement based on content (low/well-lit im-
ages) and context (downstream task). To address this, we in-
troduce the Adapt module, which learns a content-adaptive
modulation matrix in the feature space. This allows the
model to selectively amplify or suppress the enhancements
produced by the Torch module, improving their effective-
ness for downstream vision tasks in varying illumination
scenarios, effectively making it light-agnostic.

Specifically, the Adapt module computes an Adaptive
Matrix M ∈ RH×W , where H and W are the spatial di-
mensions of I. The purpose of the Adaptive Matrix M is
to modulate the feature enhancements from Torch T before
they are applied to I. M is computed as:

M = σ (Gϕ(I)) , (2)

where Gϕ is a lightweight convolutional network parameter-
ized by weights ϕ, and σ(·) denotes the sigmoid activation
function ensuring that the values of M are in the range [0, 1].
We feed the input image I into the Adapt module to compute
M, ensuring that the image content directly influences the
modulation.
Adapt network. As shown in Fig. 2, the convolutional
network Gϕ in the Adapt module is designed to extract hi-
erarchical features, which are proven to be beneficial for
high-level vision tasks such as object detection and semantic
segmentation [26, 45, 46]. To capture multi-scale contextual
information, the network consists of three 3 × 3 convolu-
tional layers with increasing channel dimensions C1, C2,
and C3, respectively. Each layer is followed by a batch
normalization [29] and a ReLU activation function. This ar-
chitecture allows the network to learn a hierarchy of features
from low-level edges and textures to high-level semantic
information. Finally, an additional 3× 3 convolutional layer
maps the features from C3 to a single channel and applies a
sigmoid activation function to generate the Adaptive Matrix
M ∈ [0, 1]H×W . This design balances expressiveness and
computational efficiency, enabling the Adapt module to ad-
just enhancements based on both local and global features,
which is crucial for content-adaptive modulation.
Illumination-aware scaling. We introduce a scale factor
γ to ensure that the enhancement adapts appropriately to
different illumination levels. This scale factor modulates the
M globally based on the image’s overall brightness, allowing
the model to apply stronger enhancements to darker images
and milder adjustments to well-lit images, maintaining visual
consistency and preventing artifacts. We compute γ as a
function of the average luminance L(I) of the input image:

γ =
κ

1 + exp (k (L(I)− L0))
, (3)
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where κ is the maximum scale factor (empirically set to 3
unless stated otherwise). k controls the slope of the sig-
moid function, and L0 is the luminance value at the sig-
moid’s midpoint. The average luminance L(I) is computed
following the standard luminance calculation in color sci-
ence [2, 42, 87].
Adaptive Fusion. The final enhanced image E is then ob-
tained by modulating the enhancement from the Torch mod-
ule with the illumination-aware scaled Adaptive Matrix:

E = I+ ((γ ·M)⊙T) . (4)

where ⊙ denotes element-wise multiplication, and T is ob-
tained from Eq. (1). This formulation in Eq. 4 integrates both
content-based modulation (through M) and illumination-
based scaling (through γ), enabling the model to adaptively
enhance images under varying lighting conditions.

3.3. Light-Agnostic Learning
Achieving robust performance across varying lighting con-
ditions requires our model to learn representations invari-
ant to illumination changes. Collecting labeled data under
all possible lighting conditions is impractical. Hence, we
adopt a self-supervised learning (SSL) strategy inspired by
BYOL [23] to learn illumination-invariant features. Unlike
prior works that design cumbersome pipelines to incorporate
SSL into each high-level vision task [16, 48, 65], we lever-
age SSL to pre-train our TorchAdapt module with a pretext
task that aligns backbone representations [19, 27] regard-
less of illumination. This approach eliminates the need for
task-specific labeled data or low-light data, allowing training
on general-purpose datasets like ImageNet [18]. Figure 3
illustrates the pre-training pipeline of TorchAdapt.
Objective Function. Given a well-lit image V1, we gener-
ate its low-light counterpart V2 = D(V1) using a darkening
function D(·), which can be a gamma transformation, an
illumination-degradation pipeline [16], or a darkening mod-
ule from [48]. Let f denote the frozen pre-trained backbone
network (e.g., ResNet [27], ViT [19]). We pass V1 and V2

through the TorchAdapt module to obtain enhanced images
V̂1 and V̂2, respectively. The enhanced images are processed
by the backbone f and a projector network g to obtain fea-
ture representations: z′1 = g(f(V̂1)) and z2 = g(f(V̂2)).
The target representation is obtained by passing the original
well-lit image V1 through f ′ and g′: y1 = g′(f ′(V1)). Our
training objective minimizes the cosine similarity loss Dcos
between the enhanced image representations and the well-lit
target representation:

L =

(
1− z′1

⊤
y1

∥z′1∥2∥y1∥2

)
+

(
1− z⊤2 y1

∥z2∥2∥y1∥2

)
, (5)

where ∥ · ∥2 denotes the ℓ2 norm of a vector. Since we
employ identical, frozen backbone networks f , the loss func-
tion guides TorchAdapt to enhance the low-light image V̂2

Light-Agnostic
Input

TorchAdapt
Downstream Vision Task 2

Downstream Vision Task 1

Downstream Vision Task   

 

Figure 4. TorchAdapt’s downstream integration pipeline. Tor-
chAdapt works as a plug-and-play, backbone-agnostic feature en-
hancement module, seamlessly integrating into various downstream
vision tasks. Given any image or video input across diverse light-
ing conditions, TorchAdapt produces illumination-invariant repre-
sentations, significantly boosting performance without requiring
task-specific modifications.

so its representation aligns with that of the well-lit image
V1. Simultaneously, it discourages over-enhancement of
the already well-lit image V̂1, as its representation should
remain consistent with V1. This training strategy enables
TorchAdapt to effectively enhance low-light images while
preserving well-lit ones, promoting illumination invariance
in the learned representations.
Training Details. The training of TorchAdapt is fast and
efficient due to its lightweight architecture and the absence of
gradient propagation through the frozen backbone network.
We train TorchAdapt for 5 epochs on the ImageNet [18]
dataset using a single GPU, with a learning rate of 0.0001
and a batch size of 256. Since the backbone networks are
pre-trained and we aim for consistent views, we apply only
color jitter and random horizontal flip as data augmentations.
Pre-training TorchAdapt with a ResNet-50 backbone takes
∼ 6 hours on a single A100 GPU. Once trained, TorchAdapt
can be seamlessly integrated into any downstream vision
task, as illustrated in Fig. 4.

Dataset Task #Cls #Train #Val
Low-light (LL)
ExDark [47] Object detection 12 5891 1472
DARK FACE [80] Face detection 1 5400 600
ACDC [60] Semantic segmentation 19 400 106
LIS [10] Instance segmentation 8 1561 669
DarkVision [81] Video object detection 4 26* 6*
Light-Agnostic (LA)
COCO [21] ∩ ExDark [47] Object detection 12 92357 5156
WIDER FACE [78] ∩ DARK FACE [80] Face detection 1 18280 3822
CityScapes [15] ∩ ACDC [60] Semantic segmentation 19 3375 606
COCO [40] ∩ LIS [10] Instance segmentation 8 44321 2550
ImageNet VID [58] ∩ DarkVision [81] Video object detection 2 401* 51*

Table 1. Datasets Statistics. *: video samples. Light-Agnostic
datasets are obtained through Eq. 6

.
4. Experiments
We conduct extensive experiments on several representative
visual tasks to demonstrate the superiority of TorchAdapt
in both low-light and light-agnostic settings. These tasks
include object detection [40, 47, 52], face detection [78, 80],
instance segmentation [10, 40], semantic segmentation [15,
60], and video object detection [58, 81]. This section first
presents the experimental settings, comparing TorchAdapt
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Tasks → Object Det. Face Det. Instance Seg. Semantic Seg. Video Object Det.

Light Settings → LL LA LL LA LL LA LL LA LL LA

Methods mAP50 mAP mAP50 mAP AP50 AP AP50 AP mAP SegAP mAP SegAP mIoU mIoU mAP mAP

Baseline 78.8 44.2 62.4 33.1 47.3 19.9 52.6 28.0 54.0 46.0 41.5 33.9 49.6 75.5 32.8 51.3

Enhancement
Zero-DCE [24] 76.2 42.7 57.6 29.5 47.4 20.1 47.6 22.9 51.5 43.5 39.2 32.1 42.5 59.4 7.83 28.3
SCI [84] 75.5 42.2 57.9 29.7 45.1 19.3 45.4 21.7 52.3 44.2 35.1 28.3 42.1 57.4 6.71 25.7
URetinexNet [71] 74.6 42.0 57.3 29.2 44.7 18.3 46.6 22.3 59.5 43.1 37.4 29.7 41.2 58.8 6.68 25.1
IAT [17] 74.1 41.0 52.4 30.5 42.1 15.9 37.1 17.4 49.7 42.3 36.4 30.1 41.7 56.2 6.24 24.5

Task-specific
Zero-DCE [24]‡ 79.1 44.4 62.9 33.2 50.4 21.1 50.1 23.5 59.1 52.7 44.4 35.7 44.7 61.0 34.1 51.5
SCI [50]‡ 79.2 44.2 63.0 33.4 51.6 22.2 54.7 29.9 58.4 51.0 43.7 34.9 43.5 59.9 32.9 50.7
MAET [16]‡ 79.2 44.3 57.3 27.3 44.3 18.7 47.9 23.1 - - - - - - - -
Xue et al. [76] - - - - 46.1 17.7 44.2 21.0 - - - - 42.1 69.7 - -
FeatEnHancer [26]‡ 79.2 44.8 62.9 33.3 47.2 19.9 51.6 24.5 59.6 52.4 44.9 36.1 50.1 76.1 34.6 52.7
TorchAdapt 80.1 45.4 64.0 34.1 53.7 23.1 59.0 32.5 61.1 53.6 45.2 36.6 50.8 76.3 39.1 59.1
vs. prev. SoTA +0.9 +0.6 +1.0 +0.7 +2.1 +0.9 +4.3 +2.6 +1.5 +0.9 +0.3 +0.5 +0.7 +0.2 +4.5 +6.4

Table 2. Quantitative comparison across five tasks under both Low-Light (LL) and Light-Agnostic (LA) settings. ‡: all these methods
are reproduced by us with their official codebase and trained end-to-end for each task. The rest of the results are obtained from their official
checkpoints. - indicates that the method is not applicable. TorchAdapt outperforms prior SOTA across all five tasks in LL and LA settings.

with baselines, existing low-light image enhancement (LLIE)
methods, and state-of-the-art task-specific approaches. We
then examine critical design choices for TorchAdapt through
ablation studies. Finally, we validate the generalizability
of TorchAdapt by comparing it with recent state-of-the-art
domain adaptation methods [20, 32, 48].
Experimental Settings. We perform experiments under two
settings for each task:
1)- Low-Light (LL) Setting: Following prior works [16, 26,
76], we utilize publicly available low-light benchmarks spe-
cific to each task. These benchmarks consist exclusively of
images captured under low-light conditions.
2)- Light-Agnostic (LA) Setting: To introduce a more chal-
lenging and realistic evaluation, we curate datasets that en-
compass both well-lit and low-light images. We achieve
this by selecting classes common to both well-lit and low-
light datasets. Mathematically, for a given task, let CWL and
CLL denote the sets of classes in the well-lit and low-light
datasets, respectively. We define the set of common classes
as Ccom = CWL∩CLL. The LA dataset is then formed by com-
bining all images from both datasets that belong to classes
in Ccom:

DLA =
{
(x, y)

∣∣ (x, y) ∈ DWL ∪ DLL, y ∈ Ccom
}
, (6)

Where DWL and DLL are the well-lit and low-light datasets,
respectively, and (x, y) represents an image and its label. We
summarize the key statistics of the employed benchmarks
for both settings in Table 1. We provide complete implemen-
tation details for each experiment in Appendix A.
Comparisons with State-of-the-Arts. We directly compare
our approach with several LLIE methods, including Zero-
DCE [24], IAT [17], SCI [50], and URetinexNet [71]. Fol-
lowing common practice [16, 26, 76], we use their released
checkpoints to enhance all images before feeding them into

the detector for performance evaluation. Notably, due to
their zero-reference nature requiring no paired images, some
of these LLIE methods [24, 50] can be trained end-to-end on
downstream vision tasks. Therefore, besides evaluating their
conventional enhancement results, we integrate them into
each task and report their performance, similar to low-light
task-specific works like MAET [16] and FeatEnHancer [26]
(indicated with ‡ in Table 2). Our findings reveal that end-
to-end training of such LLIE works [24, 50]1 significantly
improves their performance on downstream vision tasks in
both LL and LA settings. Concurrent to our work, we no-
tice that two new methods [28, 38] appear in the literature
on improving low-light object detection. However, since
their code and checkpoints were not released by the time of
the submission, we could not draw direct comparisons with
them. Next, we discuss experiments on each task.

4.1. Object Detection

Settings. Following common practice [16] in LL object
detection, we adopt YOLOV3 [57] as the baseline detector.
For the LL setting, COCO [40] pre-trained weights are uti-
lized to fine-tune YOLOV3 on the ExDark dataset [47]. We
train the model from scratch in the LA setting, as COCO
images are also included in the training data (see Table. 1).
Results. As shown in Table 2, TorchAdapt achieves a su-
perior mAP50 of 80.1 in LL and 64.1 in LA, compared to
the baseline’s 78.8 and 62.4. End-to-end training boosts the
performance of enhancement methods like Zero-DCE [33]
and SCI [50]; however, TorchAdapt still surpasses them, and
the low-light object detection method FeatEnHancer [26] by
+0.9 and +1.1 in LL and LA settings, respectively. These
results affirm the efficacy of TorchAdapt for object detec-

1We select these works due to their efficiency and reproducibility. Ex-
periments with more methods are in Appendix C.
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tion across varying illumination conditions. We provide a
qualitative comparison in Appendix B.

4.2. Face Detection
Settings. For face detection, we choose a different detector
and adopt RetinaNet [41] to report results on the DARK
FACE dataset [69, 80] in the LL setting and a combination
of the DARK FACE and WIDER FACE [78] datasets in the
LA setting. Following prior works [26], we resize images
to a resolution of 1500 × 1000 pixels and follow the 1×
schedule in MMDetection [9].
Results. Results in Table 2 reveal that TorchAdapt demon-
strates superior performance on face detection under both
LL and LA settings, outperforming the previous best method
(SCI‡ [50]) by +2.1 and +4.3 in mAP 50, respectively. The
significant gains, especially in the challenging LA setting,
highlight TorchAdapt’s capacity to handle diverse illumi-
nation scenarios by adaptively modulating features based
on content and illumination, thereby improving the robust-
ness and accuracy of the baseline. We also compare Tor-
chAdapt with recent domain adaptation methods [20, 48]
using DSFD [36] in Sec. 4.7.

4.3. Instance Segmentation
Settings. For the instance segmentation task, we adopt
RTMDet-Ins-tiny [49]2 as our baseline model and resize im-
ages to 640× 640 pixels for training. Following Section 4.1,
we use the COCO pre-trained weights of RTMDet-Ins-tiny
for the LL setting and train the model from scratch for the
LA setting (see Table 1).
Results. As summarized in Table 2), TorchAdapt achieves
SOTA SegAP performance in both low-light (LL) and
light-agnostic (LA) settings. Under LL conditions, Tor-
chAdapt attains a SegAP of 53.6, surpassing the previous
best (FeatEnHancer‡) by +1.2. In the LA setting, it achieves
a SegAP of 36.6, slightly improving over FeatEnHancer‡ by
+0.5. These results demonstrate TorchAdapt’s effectiveness
in enhancing instance segmentation across varying illumina-
tion by producing illumination-invariant features.

4.4. Semantic Segmentation
Settings. Consistent with prior works [26, 76], we adopt
DeepLabV3+[11] as our baseline model and follow [26, 76]
for the LL setting. For the LA evaluation (Table 1), we train
DeepLabV3+ from scratch using MMSegmentation [14].
Results. As shown in Table 2, TorchAdapt achieves an
mIoU of 50.8 in the LL setting, surpassing the previous
best (FeatEnHancer‡) by +0.7, and an mIoU of 76.3 in the
LA setting, improving over FeatEnHancer‡ by +0.2. These
results highlight TorchAdapt’s effectiveness for semantic
segmentation under varying illumination conditions.

2https : / / github . com / open - mmlab / mmdetection /
blob/main/configs/rtmdet/

# Torch(§ 3.1) Adapt(§ 3.2) Scaling(§ 3.2) Object Det. Instance Seg.
LL LA LL LA

1 × × × 78.8 62.4 46.0 33.9
2 ✓ × × 79.1 62.9 51.1 34.8
3 ✓ ✓ × 79.9 63.5 53.3 36.2
4 ✓ × ✓ 79.5 62.7 51.4 34.1
5 ✓ ✓ ✓ 80.1 64.0 53.6 36.6

Table 3. Contribution of each component. Highlighted settings
are set as default.

Scale factor (κ) OD SS
LL LA LL LA

2 79.9 63.7 53.4 36.4
3 80.1 64.0 53.6 36.6
4 79.9 63.3 53.2 36.2
5 79.5 61.1 53.3 34.5

(a) Scale factor (κ) in Eq. 3.

D(I)
OD SS

LL LA LL LA
ISP [16] 79.4 61.7 47.6 29.9

D(I) in [48] 79.6 63.1 53.2 36.3
Gamma curve 80.1 64.0 53.6 36.6

(b) D(I) in § 3.3 and Fig. 3.

Table 4. Ablating design choices in TorchAdapt. Highlighted
settings are set as default. OD and SS are object detection and
semantic segmentation, respectively.

4.5. Video Object Detection
Settings. In addition to image-based tasks, we evaluate the
generalizability of TorchAdapt on video data. We present
the dataset details in Table 1. Other experimental settings
follow [26], with additional implementation details provided
in Appendix A.
Results. We report the results of the challenging video
object detection task in Table 2. While all LLIE methods
perform poorly on this task, end-to-end training significantly
boosts the performance of zero-reference methods [24, 50].
TorchAdapt, however, outperforms all methods under both
LL and LA settings, achieving substantial gains of +4.5 and
+6.4, respectively. These improvements affirm TorchAdapt’s
robustness and effectiveness for video object detection across
both low-light and light-agnostic settings.

4.6. Ablation Studies
We ablate the components and design choices of TorchAdapt
in object detection (OD) and instance segmentation (IS) tasks
under (Low-light) LL and (Light-Agnostic) LA settings, fol-
lowing the same implementation details in § 4.1 and § 4.3,
respectively. We provide more ablations in Appendix C.
Contribution of Each Component. Table 3 evaluates the
impact of the Torch module, the Adapt module, and Illu-
mination Scaling. Adding the Torch module alone (row 2)
improves performance over the baseline with +0.3% in LL
OD and +5.1% in LL IS, highlighting the benefit of feature
enhancement in low-light vision. Introducing the Adapt mod-
ule alongside Torch (row 3) yields significant improvements
(+0.8%/+0.6% in LL/LA OD; +2.2%/+1.4% in LL/LA IS),
underscoring the importance of content-adaptive modula-
tion. Employing scaling without the Adapt module (Row
4) offers minor gains in LL settings. However, it is detri-
mental in LA settings (-0.2%/-0.7% in OD/IS), indicating
that content-based adaptation is more impactful than global
scaling alone. The full TorchAdapt configuration, combining
all three components (row 5), achieves the best results with
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Figure 5. Visualizing backbone features with SCI [50] on LA
object detection using YOLOV3. (a) SCI’s official checkpoint as an
enhancer. (b) SCI† trained end-to-end. (c) SCI integrated into our
TorchAdapt framework as a Torch. SCI with TorchAdapt extracts
more representative features in both low and well-lit images.

Method mAP (%)

DSFD [36] 16.1
CICony [32] 18.4
SimMinMax [48] 25.7
DAI-Net [20] ‡ 28.0
DAI-Net+TorchAdapt 31.9+3.9

Table 5. Zero-shot performance comparison of TorchAdapt
with state-of-the-art domain adaptation methods on DARK
FACE [80] using DSFD [36]. Results with ‡ are reproduced using
the original codebase. TorchAdapt enhances prior SOTA [20] by
+3.9 mAP, demonstrating its effectiveness in zero-shot domain
adaptation.

+1.3%/+1.6% in LL/LA OD and +7.6%/+2.5% in LL/LA
IS over the baseline, confirming that these components com-
plement each other and synergistically enhance performance
in both LL and LA settings.
Design Choices in TorchAdapt. Table 4 ablates important
design choices in TorchAdapt. As shown in Table 4a, we
empirically establish that when the scale factor γ in Eq. 3
is computed with κ = 3, it produces optimal performance.
Results in Table 4b reveal that employing the Gamma Curve
in D(I) to generate V2 in § 3.3 brings the biggest boost in
performance across both LL and LA settings.

4.7. Comparison with Domain-Adaptation Methods
We evaluate TorchAdapt’s effectiveness for zero-shot domain
adaptative face detection on the DARK FACE dataset [80].
Following settings from [20], we train the detector only
on the WIDER FACE dataset [78]. As shown in Table 5,
TorchAdapt integrated with DAI-Net [20], the current best-
performing method, achieves a significant improvement of
+3.9% mAP, demonstrating its effectiveness in enabling ro-
bust zero-shot adaptation under diverse illumination condi-
tions.

5. Exploring TorchAdapt’s Properties
Model-Agnostic Generality. Experiments in § 4 confirm
that TorchAdapt is a general-purpose module that can be inte-
grated into any high-level vision task. Moreover, TorchAdapt
as a framework is highly flexible: any zero-reference (unsu-

Figure 6. Illustrating low-light image Enhancement as an emer-
gent property of TorchAdapt on the DARK FACE validation set.
More results can be found in Appendix B.

Method mAP50(LL) mAP50(LA) #Params.(M) Latency (ms)
Baseline [57] 78.8 62.4 65.2 21.9
+TorchAdapt 80.1 (+1.3) 64.0 (+1.6) 65.3 (+0.1) 23.7 (+1.8)

Table 6. Computational analysis. With YOLOV3 [57], Tor-
chAdapt introduces minimal computational overhead while bring-
ing stronger gains across both LL and LA settings.

pervised) LLIE methods [33, 50, 85] can serve as the Torch
component to improve performance under varying illumina-
tions. To verify this, we adopt SCI [50] as the Torch module
in TorchAdapt and visualize the learned backbone features
in Fig.5(c). Using SCI within TorchAdapt yields highly
representative backbone features for both low-light and well-
lit images. Appendix C provides additional examples and
quantitative analyses.
Enhancement as an Emergent Property. Although Tor-
chAdapt is designed to produce illumination-invariant fea-
tures for high-level vision tasks without employing any ex-
plicit enhancement loss functions during training, we ob-
serve that it inherently enhances low-light images. We il-
lustrate this effect in Fig. 6. This emergent behavior likely
results from the pre-training objective of aligning represen-
tations between well-lit and low-light images (see § 3.3),
which encourages the network to implicitly adjust low-light
images toward well-lit representations.
Computational Analysis. We assess the computational effi-
ciency of TorchAdapt using YOLOV3 [57] on the object de-
tection task. As shown in Table 6, integrating TorchAdapt in-
curs minimal additional computational cost while delivering
significant performance improvements. This demonstrates
that TorchAdapt is compatible with lightweight models and
suitable for real-time applications.

6. Conclusions

In this work, we introduce TorchAdapt, a real-time, general-
purpose, light-agnostic adaptive feature enhancement frame-
work that boosts the performance of high-level vision tasks
under varying illumination conditions. By integrating its
modules with light-agnostic learning, TorchAdapt produces
powerful semantic representations for both low-light and
well-lit data. Extensive experiments on five representative
visual perception tasks involving images and videos confirm
its effectiveness.
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[53] Lukáš Neumann, Michelle Karg, Shanshan Zhang, Chris-
tian Scharfenberger, Eric Piegert, Sarah Mistr, Olga Proko-
fyeva, Robert Thiel, Andrea Vedaldi, Andrew Zisserman,
et al. Nightowls: A pedestrians at night dataset. In Computer
Vision–ACCV 2018: 14th Asian Conference on Computer Vi-
sion, Perth, Australia, December 2–6, 2018, Revised Selected
Papers, Part I 14, pages 691–705. Springer, 2019. 3

[54] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In European
conference on computer vision, pages 69–84. Springer, 2016.
3

[55] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo,
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