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Figure 1. Overview. Our main contributions are twofold: First, we constructed a large-scale synthetic dexterous grasping dataset called
DexGraspNet3.0, which contains grasp poses with captions describing the grasped part and style. Second, we trained a language-instructed
grasp pose prediction model using the DexGraspNet3.0 dataset, called DexVLG. This model can generate language-aligned and generaliz-
able grasping poses for different objects in real-world experiments.

Abstract mainly focused on controlling simple gripper end-effectors.
There is little research on functional grasping with large
models for human-like dexterous hands. In this paper, we
introduce DexVLG, a large Vision-Language-Grasp model
for Dexterous grasp pose prediction aligned with language

As large models gain traction, vision-language models are
enabling robots to tackle increasingly complex tasks. How-
ever, limited by the difficulty of data collection, progress has
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instructions using single-view RGBD input. To accomplish
this, we generate a dataset of 170 million dexterous grasp
poses mapped to semantic parts across 174,000 objects in
simulation, paired with detailed part-level captions. This
large-scale dataset, named DexGraspNet 3.0, is used to
train a VLM with a flow-matching-based pose head produc-
ing instruction-aligned grasp poses for tabletop objects. To
evaluate DexVLG’s performance, we create benchmarks in
simulations and conduct real-world experiments. Extensive
experiments demonstrate DexVLG’s strong zero-shot gener-
alization capabilities, achieving an over 76% zero-shot exe-
cution success rate and state-of-the-art part-grasp accuracy
in simulation, as well as successful part-aligned grasps on
physical objects in real-world scenarios.

1. Introduction

To unleash the potential of intelligent abilities for a robot,
recent advances in large vision-language-action (VLA)
models [3, 18, 40] have shown a promising way. They
have demonstrated strong generalizability on many com-
plex robotic tasks across diverse scenarios in the real world.
The key reason for their success is the large model capacity
and training dataset: their model typically has billion-level
parameters and is trained on billion-level robotic datasets.

However, those large VLA models are currently limited
to parallel grippers and cannot control a dexterous hand.
The main reason is the lack of data for dexterous grasping.
Some works retarget from human motion [26, 48, 54] and
teleoperate a real robot [35, 45] to collect data, but they all
require significant human effort. Some works [6, 46, 57] use
analytic-based methods to quickly synthesize a large-scale
dexterous grasp dataset, but they are semantic-unaware
and thus cannot perform functional grasps like humans do.
For example, humans usually hold a hammer by the han-
dle to use it, but grip the metal part when handing it to
someone else. Recent research on functional dexterous
grasp [14, 16, 49] can only use small-scale datasets, greatly
limiting the model capacity and generalizability.

To address the data challenge, in this work, we propose
a large-scale part-aware functional dexterous grasp dataset,
named DexGraspNet 3.0. Our dataset contains 170M dex-
terous grasp poses on 174k objects from the Objaverse [9]
dataset. Each grasp pose is validated in a physics-based
simulation and paired with captions describing the grasped
part name and grasp style. To build this, we follow the Dex-
GraspNet series of works [46, 57] for efficient grasp synthe-
sis, and introduce part-aware energies to make each grasp
semantically distinguishable. We also leverage state-of-the-
art object part understanding models like SAMesh [38] and
GPT-4o0 for part segmentation and captioning.

Powered by DexGraspNet 3.0, we developed DexVLG,
a large vision-language-grasp model. DexVLG takes a lan-

guage instruction and a single-view colored point cloud
of tabletop objects as input and generates dexterous grasp
poses based on the instruction. DexVLG leverages multiple
pre-trained foundation models to extract vision-language
features and employs a flow-matching denoising paradigm
to predict grasp poses. With billions of parameters, the
model is fine-tuned end-to-end on our large-scale dataset.
To evaluate the performance of DexVLG, we perform
experiments in both simulation and the real world. We
first build a benchmark for part-aware dexterous grasping in

Isaac Gym [29], with novel metrics that evaluate the part-

alignment of dexterous grasp poses. Several baselines are

compared to show the superiority of our model. DexVLG
outperforms baselines on all benchmarks and achieves over

76% grasp success rate. We also demonstrate successful

real-world executions predicted by DexVLG.

To summarize, our contributions are as follows:

* We introduce DexGraspNet3.0, a large-scale dataset con-
taining 170M part-aligned dexterous grasp poses on 174k
objects, each annotated with semantic captions.

* We propose a VLM named DexVLG to generate
language-instructed dexterous grasp poses end-to-end.

* We curate benchmarks and conduct extensive experi-
ments to assess DexVLG in simulation and real world.

2. Related Work
2.1. 3D Part Segmentation

3D part segmentation splits a 3D object into distinct com-
ponents. Early methods [27, 60] rely on human-annotated
small datasets and struggle to generalize beyond the train-
ing distribution. The PartSLIP series [24, 63] pioneers the
application of 2D VLMs to 3D part segmentation. More
recent works [28, 55] pretrain 3D VLMs on the huge Obja-
verse [9] dataset and demonstrate much stronger generaliz-
ability. SAMesh [38] is a zero-shot geometric part segmen-
tation method on mesh, combining traditional shape geo-
metric features and learning-based SAM. In this paper, we
utilize the geometric SAMesh method to generate separated
parts and VLMs [30, 39] to assign semantics to parts.

2.2. Dexterous Grasp Synthesis

Many recent works on dexterous grasping are semantic-
unaware. Some analytic-based synthesis works [5-7, 19,
25, 41, 42] study the efficient generation of grasps by opti-
mizing a differentiable grasp quality metric, given the ob-
ject mesh. These methods enable the generation of million-
level dexterous grasp datasets like DexGraspNet 1.0 [46]
and 2.0 [57].Others [8, 17, 51, 52, 59] study to perform
supervised learning on grasping datasets, using conditional
generative models like CVAE, diffusion model and normal-
izing flows. Reinforcement learning [43, 56] is another hot
topic for dexterous grasping, but up to now, most results are
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Data Source | Dataset Hand Object Grasp Caption Simulation Check Semantics Part
OaklInk [54] MANO 100 50k None Vv Vv
Real-World | DexGYSNet [48] Shadow 1800 50k 50k Vv
SemGrasp [21] MANO 1800 50k 280k Vv Vv
Grasp’D [42] Shadow,Allegro 2408 1M None Vv
DexGraspNet [46] Shadow 5355 1.32M None Vv
Simulation DexGraspNet 2.0 [57] Leap 88 45.04M None N4
BoDex [6] Shadow 2397 7.17TM None Vv
Ours Shadow 174k 170M 170M N Vv Vv

Table 1. Comparison of DexGraspNet 3.0 with existing dexterous grasping datasets. All of our grasp poses are validated in Isaac-

Gym [29] and paired with part annotation and language captions.

only presented in simulation. A few works study semantic-
aware dexterous grasping [2, 14, 16, 21, 48, 49], but their
studied object instances and categories are limited in scale.
Our work, in contrast, introduces the semantic-aware en-
ergy to the advanced analytic-based method [5, 6, 57], syn-
thesizing a large-scale functional dexterous grasp dataset.

2.3. Vision-Language models for Robotic Action

Using vision-language models (VLM) to control robot ac-
tion is an emerging research area. One way to achieve this is
to decompose robot manipulation into a series of VQA tasks
and execute 6D waypoints planned by a VLM [23, 44]. This
is infeasible for dexterous grasping because a 6D end effec-
tor pose cannot fully characterize high-dimensional dexter-
ous hand states. Another way is to learn generalizable ac-
tion priors from large-scale robot trajectory datasets, which
produces vision-language-action(VLA) models [4, 18, 40,
58]. Existing dexterous grasp datasets are limited in scale
and cannot support learning a VLA. The most relevant work
to this paper is MultiGraspLLM [20], which fine-tunes a
VLM to predict dexterous hand pose tokens end-to-end.
However, the generated grasp poses are not diverse enough.

3. Notations and Task Specification

We formulate the task of language-instructed dexterous
grasp generation as follows: The input is a single-view
colored point cloud P of the object placed on a table, ac-
companied by a language instruction 7 that specifies the
semantic object part S; to be grasped and the grasping style.
The details of language instructions are elaborated in §4.4.

The output is a dexterous hand pose that correctly grasps
the desired object part with the desired grasping style, as
described in the input language instructions. A grasp is rep-
resented as g = (T, R, 0), where T € R3 and R € SO(3) de-
fine the wrist pose, and 8 € R? specifies the joint angles of
the hand. We use the Shadow Hand, for which d = 22.

4. DexGraspNet 3.0 Dataset
4.1. Dataset Statistics

Table 1 summarizes the key characteristics of the Dex-
GraspNet 3.0 dataset. DexGraspNet 3.0 comprises 170 mil-

lion dexterous grasps across 174k objects, making it the
largest dexterous grasp dataset to date in terms of both
grasp pose and object number. Each grasp is validated us-
ing the physics-based simulator IsaacGym [29] and paired
with semantic captions and part-level annotations, result-
ing in 170M pose-caption pairs designed for training VLG
models. The dataset visualization is shown in Fig. 2.

4.2. Object Preparation and Part Segmentation

Objects are sourced from the Objaverse [9] dataset and fil-
tered using GPT-4o [1], following [34]. The assets are then
processed with ManifoldPlus [15] and CoACD [47] to gen-
erate collision meshes, yielding 229K valid objects. For
each valid object, GPT-40 [1] estimates a reasonable size,
and normalization is performed accordingly (see Appendix
Sec. B for details). We use SAMesh [38] to perform zero-
shot geometry-based part segmentation on colorless colli-
sion meshes. Fig. 2 presents visualizations of the segmen-
tation results, providing sufficient functional priors. The
part-segmented objects are rendered from multiple views,
and part names are automatically labeled using set-of-mark
prompting [53] with GPT-4o.

4.3. Part-aware Dexterous Grasp Generation

Our grasp synthesis pipeline is shown in Fig. 3. It is built
upon the advanced analytic-based method [6, 57], which
uses cuRobo [37] to support massive parallelization on
GPUs. To adjust the previous semantic-unaware pipeline
for us, we propose a part-aware hand pose initialization
strategy and several energy functions, as introduced below.

4.3.1. Part-Aware Hand Pose Initialization

The initial hand pose is regarded as greatly affecting the
result of gradient-based optimization, as observed in Dex-
GraspNet [46]. Although that work proposes an initializa-
tion method, it is not suitable to our scenario, which requires
grasping a specific part. As shown in Fig. 3, we first gener-
ate the oriented bounding boxes (OBB) of object parts and
sample grasp points from certain areas on the part surface.
Then, we set the palm pose and initial joint angles using
rules that rely on the geometric cues indicated by the OBB.
The wrist pose is further randomly jittered to obtain a di-
verse distribution. More details are in the Appendix.
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Figure 2. Visualization of part-aware dexterous grasp poses in DexGraspNet3.0. The left columns visualize sample objects together
with part segmentation generated by SAMesh [38] and captioned by GPT-40 [30]. On the right are part-aligned grasp poses generated by
our optimization pipeline. Each grasp makes contact with a single object part and naturally aligns with the way humans grasp objects.
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Figure 3. Grasp pose generation pipeline. Given a watertight colorless mesh of an object, we perform part segmentation with
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4.3.2. Objectives for Gradient-based Optimization vergence between the hand and the desired part, We follow

In this section, we formulate the physics-based energy func- the collision detection algorithm in the IPC simulator [22]

tions used for gradient-based optimization. and define a truncated barrier function Ep,, that repulses
LP-based differentiable force closure energy Epc. fingertips from object surfaces outside the target part:

Many recent works [6, 19, 25, 57] propose different kinds 5

of differentiable force closure metrics to evaluate the grasp Epar = Z Zb(d (X0, 0j) s drir) (1)

quality. We adopt the variant proposed in DexGraspNet n=1 j#i

2.0 [57] to balance the speed and performance. On the

one hand, our LP-based energy uses linear programming — (d_dthr>2ln ( d ) , 0<d<dy,

(LP) to adjust the contact forces, relaxing the assumption b(d,dn) = thr

of equal contact force in the original DFC metric [25, 46]. 0, d > dy,

On the other hand, our energy assumes no friction, which 2)

avoids the heavy computation of quadratic programming as Where {xn}f’l:1 are the fingertips, p; are point clouds

in BODex [6]. More details are in the Appendix. sampled from object surface outside the target part s;. Ep,,
Part-contact energy To encourage a better contact con- goes to infinity when any of the fingers make contact with
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an object outside part s;, hence strictly enforces part align-
ment when the stepsize is small enough.

Distance energy We minimize the distance between fin-
gertips and the object to ensure contact and encourage the
palm contact points to keep a distance dyp = lcm from the
object.

Eyis = Z d(xm 0) + wpalm|d<xpalma 0) - dO‘ 3)
i=1

Besides, we implement several regularization energies,
aggregated as E,., to prevent hand-object collision, hand
self-collision and encourage the contact points to align with
the front side of fingers. The complete energy function is

“4)

E = 0pcErc + OparEpar + OyisEgis + OregEreg

4.4. Grasp Validation and Captioning

To obtain a high-quality dataset free of undesirable poses af-
ter optimization is complete, we validate all the final poses
with a physics-based simulator IsaacGym [29]. We eval-
uate grasp poses based on four criteria, considering only
those that meet all of them as valid: 1) No penetration be-
tween the hand and object; 2) No self-penetration within the
hand; 3) Stability against gravity in all six axis-aligned di-
rections during simulation; 4) Part alignment, ensuring any
hand link in contact with the object is closer to the intended
part than to any other part.

We caption each grasp pose with the template “Grasp
the {part} of the {object} object, with contacts on
{fingers}”, where {part} and {object} are the part name
and object name inferred by GPT-40. The part-alignment
condition ensures that each grasp pose has a meaningful
part name in correspondence. {fingers} lists the names of
all fingers in contact with the object part, which is checked

in simulation. Each caption contains rich semantic and con-
tact information for the model to learn.

4.5. Table-top Scene Generation and Rendering

The above grasping poses are generated for floating ob-
jects, but the object is often placed on a table in the real
world. Therefore, we also need to generate diverse poses
for objects being stably placed on a table. Following
Open6DOR [10], we uniformly sample N=1000 initial ro-
tations from SO(3) and drop the object from a height of
10cm onto the ground. We simulate for 5 seconds and all
stabilized poses are collected and deduplicated. Then we
transform the grasp poses using the generated object poses
and filter out those grasps that have collisions with the table.
Each scene is rendered from eight views using a RealSense
D415 RGBD camera in Blender. The camera poses are vi-
sualized in the Appendix.

5. DexVLG Model

We propose a large vision-language-grasp model, called
DexVLG, to tackle the task of language-instructed dexter-
ous grasping. As illustrated in Fig. 4, DexVLG tasks a
single-view point cloud observation and a language instruc-
tion as input, and outputs a grasp pose that satisfies the lan-
guage instruction.

5.1. Point Cloud (PC) Encoder

The PC encoder takes colored point clouds from a sin-
gle view as input. There are lots of foundational PC en-
coders [11, 31-33] from pretraining. We adopt the pre-
trained Uni3D [62] backbone, which has a ViT [12]-based
architecture scaled from small (23M) to large (307M).
Uni3D [62] is pretrained to align point cloud features with
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CLIP [36] features via contrastive learning [62], therefore
has the ability to extract semantic information from raw
point clouds. The point cloud is downsampled into a fixed
number 7, = 10000 with furthest point sampling before be-
ing given to the encoder. The encoded 3D features are then
fed into an MLP projector to align the PC features with pre-
trained large language models.

5.2. Language Foundation Model

We adopt the LLM base model and language tokenizer from
Florence-2 [50], which varies in model parameter size from
Base (232M) to Large (771M). We concatenate PC features
with language embeddings to create the input for the large
language model. Following Transfusion [61] and 7 [3], the
LLM will share the cross-attention with the flow-matching-
based pose prediction head.

5.3. Flow Matching-based Grasp Generation

We use the flow matching-based pose denoising module to
generate the dexterous grasp pose, which is learned by min-
imizing the mean square objective:

) d
mvlnE(t,X(),Xl)"Y I aXt —v(X;,1) H2 )

where X; = ¢(Xo,X;,?) is any time-differentiable inter-
polation between ground truth grasp pose X; and a sam-
ple Xy from noise distribution, with $X; = 9,¢(Xo,X1,1).
The denoising process is conditioned on the LLM’s hidden
states, with the denoise module sharing transformer archi-
tecture with the LLM. An MLP serves as the pose decoder,
generating the grasp pose by determining the hand base’s
translation and rotation along with the joint angles of each
finger.

6. Experiments

We evaluate Dex VLG against baseline models to answer the
following questions:

Does DexVLG zero-shot generate high-quality dex-
terous grasp poses on a variety of objects and seman-
tic parts? How well do DexVLG-predicted grasp poses
align with language instructions? We define metrics that
evaluate the quality of grasp poses and how well the poses
align with language instruction, and test DexVLG in diverse
benchmarks in simulation.

Is it necessary to use large vision-language models to
address the task of instruction-aligned dexterous grasp
generation? We compare DexVLG against baselines im-
plemented with small model, and analyze the benefits of
leveraging large vision-language model.

6.1. Training Details

The entire DexVLG model undergoes single-stage full-
parameter fine-tuning, with only the language tokenizer

frozen and all other modules updated from end-to-end fine-
tuning. The learning rate is set to 6 x 107>, with a warm-
up strategy applied for the first 3 epochs. Weight decay is
1 x 107*. The Adam optimizer is used for training over 230
epochs on 64 NVIDIA RTX 4090 GPUs. Here, we define
an epoch as sampling a grasp pose for a single part.

6.2. Evaluation Metrics

The following metrics are used to evaluate the quality and
instruction alignment accuracy of grasp poses generated
by different models in simulation.

Simulation Success Rate (Suc) represents the percent-
age of successful grasp executions in simulation, defined as
lifting the object up 3cm from the table and holding for 1s.
Our implementation follows the protocol in [57].

Part Touch Accuracy (PTA) represents the percentage
of grasp poses that touch the target semantic part, evaluated
by checking whether at least one finger in the predicted pose
is less than lcm away from the part and is closer to the
desired part than any other part.

Part Grasp Accuracy (PGA) represents the percentage
of grasp poses that form a grasping pose at the target part,
evaluated by checking whether at least three fingers in the
predicted pose are less than 1cm away from the part and are
closer to the desired part than any other part.

6.3. Simulation Benchmark Result

We compare DexVLG against DexGraspNet2.0 [46], a
diffusion-based small model for dexterous grasp genera-
tion in tabletop scenes. We retrain DGN2.0 on DexGrasp-
Net3.0 dataset, dubbed DGN2.0*. To further equip DGN2.0
with language understanding ability, we concatenate the
CLIP [36] embedding of text instructions with point cloud
features, and supervise with part-specific ground truth la-
bels. We dub this augmented baseline DGN2.0*+CLIP.

. . | DGN2.0*
Benchmark | Metric | DGN2.0 +CLIP Ours
Suct 70.8 67.8 87.7
LVIS-Seen | PTA?T 54.0 55.2 70.7
PGA?T 38.5 40.5 62.1
Suct 57.7 56.0 79.1
Unseen PTAT 63.9 64.7 68.2
PGAt 25.3 26.1 36.3
Suct 56.8 55.1 76.3
SamPart3D | PTAT 49.2 50.8 66.0
PGA?T 38.8 394 52.0

Table 2. Result on simulation benchmarks.

To evaluate the models, we curate three benchmarks in
simulation. In each benchmark, we manually select well-

14253



battery pack, drill shade, lamp base, lamp

handle, mug

chuck, drill neck, guitar

a4

jar, blender

cap, bottle

handle, axe

body, bottle grip, pistol

earcup, headphones barrel, pistol flower, potted flower

Figure 5. Visualization of grasp poses predicted by DexVLG in simulation. The object mesh is drawn only for visualization. The model
input is a single-view point cloud, the color present in this figure is painted only for visualization. Each grasp is instructed with ”Grasp the

[PART] part of [OBJECT] object”.

Method | Suct Part Graspt CMA?
DGN2.0*+CLIP | 68.2 35.2 21.8
+ contact label 72.3 33.8 23.0
Ours 73.0 33.9 27.0
+ contact label 76.1 48.1 29.8

Table 3. Result of contact mode learning on LVIS-Seen bench-
mark in simulation. The contact mode accuracy (CMA) metric
refers to contact mode accuracy, which reflects the rate of grasp
poses that match the instructed contact mode, allowing differences
with at most one finger contact.

segmented objects and filter their poses on table such that

the target parts for grasping are not occluded by the table.

* The LVIS-Seen benchmark consists of 40 seen objects in
the Objaverse-LVIS split.

* The Unseen benchmark consists of 84 Objaverse objects
unseen in the training process.

e The SamPart3D benchmark consists of 56 Objaverse
objects segmented and semantically annotated by Sam-
Part3D [55] using methods different from our work.

6.3.1. Part-conditioned Grasp Generation

In this experiment, we train and infer with input language
instruction “Grasp the {part} part of the {object} ob-
ject”. The quantitative results are shown in Tab. 2. Our
DexVLG outperforms DGN2.0+CLIP in terms of both sim-
ulation success rate and part accuracy in all benchmarks,
demonstrating superior performance. DexVLG robustly
generalizes to grasping unseen objects and retains 79% suc-
cess rate and 36% part grasp accuracy. It also general-
izes with respect to part segmentation methods and retains
a 76% success rate and a 52% part grasp accuracy in the
SamPart3D benchmark. The qualitative results are shown
in Fig. 5.

It is worth noting that even though the Florence-2 LLM
backbone [50] is not pretrained on object part understand-

ing tasks and haven’t learned about the novel part names
of objects in Unseen benchmark through finetuning, the
DexVLG model still learns to follow instruction of grasp-
ing these parts and achieve substantially higher part grasp
accuracy than baselines. This result demonstrates the strong
generalizability of VLMs in learning language-aligned dex-
terous grasping tasks.

Interestingly, we find that augmenting the DGN2.0 base-
line with CLIP features enhances its language alignment
ability at the cost of harming the quality of generated poses,
reflected in a drop in simulation success rate. This trade-off
behavior indicates small models are limited in capacity,
which hinders them from learning complex tasks such
as generating instruction-aligned dexterous grasps. On
the other hand, Tab. 4 shows training with language con-
dition enhances the performance of DexVLG, which indi-
cates the large capacity of VLM is necessary for learning
instruction-aligned dexterous grasp generation.

6.3.2. Contact Mode-conditioned Grasp Generation

In this experiment, we benchmark different models on
a more complex instruction following task: inference
with language instruction “Grasp the {part} part of
the {object} object with contact on {fingers}”, where
{fingers} are the names of fingers that we want to make
contact with the object. We compare models trained with
(dubbed “+contact label’’) and without contact mode la-
bels on the LVIS-Seen benchmark. The quantitative re-
sults are shown in Tab. 3. Models trained without a contact
mode label are confused by this extra instruction and de-
generate in performance. On the other hand, when trained
with contact mode annotation, DexVLG effectively learn
to follow the extra instruction and improves performance.
This experiment demonstrates large VLMs are capable of
learning more complex instruction-following grasp gen-
eration tasks, which small model struggles to learn.
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Figure 6. real-world experiment setting.

6.4. Real-World Experiments

Our real-world experiments utilize a ShadowHand mounted
on UR10e robotic arm. An Intel RealSense D415 cam-
era is mounted at the wrist and captures static single-view
colored point cloud from a 45-degree lookdown perspec-
tive. During the experiment, we prompt DexVLG with lan-
guage instruction specifying desired parts, such as “grasp
the neck of the bottle”. The generated poses are filtered
against safety constraints and executed with motion plan-
ning. We report Grasp Success Rate as the rate of success-
fully lifting up, and report Part Accuracy by human exam-
ination. DexVLG achieves 80% success rate and 75% part
accuracy with these simple objects. Limited by hardware
workspace and safety concerns, we do not report real-world
results with more complex objects.

6.5. Ablation Study

We conduct ablation studies on model architecture, data
scale, and input information. As shown in Table 5, training
data scale plays a crucial role in performance, with a 10%
to 100% increase significantly improving success rate (Suc)
and part grasp accuracy (PGA) across all datasets. The
most substantial gains occur in unseen objects and 3D part
recognition, emphasizing the importance of larger datasets
for better generalization. Our model size study (Table 6)
shows that increasing parameters from 255M to 1B provides
only marginal improvements in success rate, with inconsis-
tent effects on part accuracy. The 320M model performs
best for part accuracy on LVIS-Seen and Unseen, while
the 1B model excels in overall success rate, especially for
SamPart3D. This suggests that larger models do not always
enhance part-level understanding, and a mid-sized model
(320M) balances efficiency and performance. Our input in-
formation study (Table 7) reveals that adding color to point
clouds (PC w/ color) significantly improves both success
rate and part grasp accuracy. The biggest gains appear in
LVIS-Seen (Suc: +27.7, Part G: +23.5) and SamPart3D
(Suc: +19.8, Part G: +13.1). These findings highlight the
critical role of color in enhancing both object-level and part-

level understanding in 3D.

LVIS-Seen Unseen SamPart3D
Suct PGAT | Suct PGAT | Suct PGA?T

87.7 62.1 79.1 36.3 76.3 52.0
84.4 - 64.5 - 70.2 -

Data ‘

with instruction
no instruction

Table 4. Ablation study for input language instruction.

LVIS-Seen Unseen SamPart3D
Suct PGAT | Suct PGAT | Suct PGAT

10% 49.7 12.5 323 7.9 28.4 11.7
20% 75.3 39.1 54.0 18.3 534 270
100% | 87.7  62.1 79.1 36.6 76.3 520

Data ‘

Table 5. Ablation study on training data scaling. We explore
the data efficiency from 10% (about 17k objects) to 100%.

LVIS-Seen Unseen SamPart3D
Suct PGA?T | Suct PGAT | Suct PGAT

255M | 748  35.6 | 552 164 | 476 265
320M | 723 416 | 53.7 205 500 228
1B 753  39.1 54.0 18.3 534  27.0

Param ‘

Table 6. Ablation study for model size. The 225M model uses
Florence-2-base and Uni3D-small, 320M for Florence-2-base and
Uni3D-base, and 1B for Florence-2-large and Uni3D-large.

‘ LVIS-Seen Unseen SamPart3D
Input

Suct PGAT | Suct PGAT | Suct PGA?T

47.6 15.6 35.0 10.4 33.6 13.9
75.3 39.1 54.0 18.3 534 270

PC w/o color
PC w/ color

Table 7. Ablation study on input information. We compare the
impact of using colored point clouds.

7. Limitations and Conclusions

In this paper, we present DexVLG, an end-to-end language-
aligned dexterous grasp generation model that leverages the
capacity of large VLMs, trained with our synthesized large-
scale DexGraspNet3.0 dataset. DexVLG achieves state-of-
the-art performance in both grasp success and part accuracy
in simulation, and achieves 80% success rate in grasping
simple objects in the real world. Nonetheless, our work
has several limitations. As training poses in the DexGrasp-
Net3.0 dataset is synthesized with floating hands without
considering the hand-arm workspace, many poses sampled
by DexVLG are unsafe to execute in real-world. As another
limitation, our method does not support effective ranking of
generated grasp poses. Ranking large batches of samples
by likelihood score [13], as done in [57], is infeasible for
VLM-based models as retaining gradients with respect to
VLM parameters costs huge GPU memory. We leave de-
veloping effective sample ranking methods as future work.
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