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Abstract

Large vision-language models such as CLIP have made
significant strides in zero-shot anomaly detection through
prompt engineering. However, most existing methods typ-
ically process each test image individually, ignoring the
practical rarity of abnormal patches in real-world scenar-
ios. Although some batch-based approaches exploit the rar-
ity by processing multiple samples concurrently, they gener-
ally introduce unacceptable latency for real-time applica-
tions. To mitigate these limitations, we propose RareCLIP,
a novel online zero-shot anomaly detection framework that
enables sequential image processing in real-time without
requiring prior knowledge of the target domain. RareCLIP
capitalizes on the zero-shot capabilities of CLIP and inte-
grates a dynamic test-time rarity estimation mechanism. A
key innovation of our framework is the introduction of a pro-
totype patch feature memory bank, which aggregates repre-
sentative features from historical observations and contin-
uously updates their corresponding rarity measures. For
each incoming image patch, RareCLIP computes a rar-
ity score by aggregating the rarity measures of its near-
est neighbors within the memory bank. Moreover, we in-
troduce a prototype sampling strategy based on dissimi-
larity to enhance computational efficiency, as well as a
similarity calibration strategy to enhance the robustness of
rarity estimation. Extensive experiments demonstrate that
RareCLIP attains state-of-the-art performance with 98.2%
image-level AUROC on MVTec AD and 94.4% on VisA,
while achieving a latency of 59.4 ms. Code is available at
https://github.com/hjf02/RareCLIP.

1. Introduction

Industrial anomaly detection (AD) plays a critical role in
intelligent manufacturing by enabling robust quality con-
trol and efficient production. Traditional unsupervised AD

*Corresponding authors.

methods (also known as full-shot methods) [7, 27, 31, 35,
38, 40] have achieved strong performance by training on
large datasets of normal images. However, recent research
has shifted toward reducing data dependency. Few-shot AD
approaches [13, 14, 23, 33, 37] tackle this challenge by
requiring only a limited number of normal samples. Ex-
tending this trend, zero-shot AD methods [3, 6, 16, 20, 41]
eliminate the need for any prior domain-specific training,
enabling direct deployment on previously unseen products.

Most zero-shot AD methods use large vision-language
models [17, 26, 30] and compare test images against prede-
fined or learned textual prompts. However, by processing
each test image in isolation, they overlook inter-image rela-
tionships. We refer to these as vanilla or offline zero-shot
AD (Figure. la). They suffer from two major limitations:
(1) They do not exploit the inherent rarity of anomalies in
industrial environments, where defects are sparse compared
to normal patterns; (2) Their isolated processing neglects
the temporal continuity inherent in real-world production
lines, where images are captured sequentially.

To overcome these limitations, recent work has explored
batch zero-shot AD [18, 22], which models the distribution
of an entire test dataset (Figure. 1b). However, these meth-
ods often rely on computationally expensive pairwise com-
parisons across all images to achieve high performance, re-
sulting in prohibitive latency for time-sensitive applications.

In this paper, we introduce a novel paradigm: online
zero-shot AD, where test images are processed sequentially
in real-time (Figure. Ic). This setting introduces three key
challenges: (1) Online Modeling: Rapid adaptation to data
streams without prior domain knowledge. (2) Single-Pass
Efficiency: Maximizing information extraction from im-
ages that are observed only once. (3) Real-Time Perfor-
mance: Achieving low-latency and memory-efficient infer-
ence without compromising accuracy.

To address these challenges, we propose RareCLIP,
the first online zero-shot AD framework that integrates the
zero-shot capabilities of CLIP [30] with dynamic rarity
modeling. Our key insight is that normal patches main-

24478



(......-)

Model

|

ﬂ"'ﬂ

T Input/
output
= Update

(a) Vanilla/offline zero-shot AD

(b) Batch zero-shot AD

(c) Online zero-shot AD (Ours)

Figure 1. Illustration of zero-shot AD paradigms during testing. (a) Vanilla/Offline zero-shot AD processes each test image individually. (b)
Batch zero-shot AD requires simultaneous input of test images. (c) Our proposed online zero-shot AD processes test images sequentially.

tain consistent appearances over time, whereas abnormal
patches are rare and variable. We formalize this observa-
tion through the notion of patch-image similarity—defined
as the maximum similarity between a given patch and all
patches within an image. A patch is deemed normal if it
exhibits high similarity to a sufficient fraction of historical
images; otherwise, it is flagged as abnormal.

A direct implementation, RareCLIP-d, computes simi-
larities against all historical images, which incurs substan-
tial memory and computational overhead. To alleviate this,
our proposed RareCLIP framework incorporates a proto-
type patch feature memory bank that continuously accumu-
lates representative patch features while dynamically up-
dating their rarity measures via a patch-image similarity
memory bank. For each test patch, RareCLIP estimates
its patch-image similarity by aggregating the patch-image
similarities of its nearest neighbors within the patch fea-
ture memory bank. To efficiently identify representative
patch features, we introduce a dissimilarity-based sampling
strategy—Sequential Coreset Sampling—which effectively
prunes redundant pairs from the memory bank. In addition,
we propose a similarity calibration strategy, Loose Similar-
ity, to mitigate estimation errors and enhance the robustness
of rarity scoring.

Our main contributions are summarized as follows:

* We introduce online zero-shot AD, a novel and practical
setting that addresses the limitations of offline and batch
zero-shot paradigms in industrial anomaly detection.

* We propose RareCLIP, a pioneering framework that com-
bines CLIP’s zero-shot capability with dynamic rarity
modeling. Key innovations include Sequential Coreset
Sampling for efficient memory management and Loose
Similarity for robust anomaly scoring.

» Extensive experiments on the MVTec AD and VisA
datasets demonstrate that RareCLIP significantly outper-
forms existing methods.

2. Related Work

Industrial Anomaly Detection. Recent advances in
anomaly detection have predominantly focused on unsu-

pervised methods, also known as full-shot methods [,
5,7, 8, 11, 32, 38, 39], which rely on large collections
of normal images during training. For example, Patch-
Core [31] builds a highly representative memory bank of
normal patch features using a greedy coreset sampling strat-
egy to minimize redundancy, thus reducing both storage re-
quirements and inference time. In contrast, few-shot AD
methods [13, 14, 23, 33, 37] address the challenge of limited
normal data. GraphCore [37], for example, leverages graph
neural networks to capture isometric invariant features, en-
abling the construction of a compact feature memory bank
that performs effectively with only a few normal images.

Zero-shot Industrial Anomaly Detection. Leveraging
the strong generalization capabilities of large pre-trained
vision-language models [17, 26, 30], zero-shot AD methods
have emerged that bypass the need for any normal reference
images. Most zero-shot AD methods [4, 6, 12, 16, 41] use
text prompts to compare against test images. WinCLIP [16]
pioneered this direction by introducing a prompt ensem-
ble strategy combined with multiple window-based forward
passes across image patches. Subsequent works [4, 6, 12,
41] have primarily focused on improving the alignment be-
tween patch features and text prompts. We refer to these as
vanilla or offline zero-shot AD methods since they typically
process each test image individually. On the other hand, ap-
proaches such as ACR [18] and MuSc [22] explore batch
zero-shot AD by jointly evaluating a collection of test im-
ages, although the high performance comes at the cost of
increased latency that may hinder real-time application. In
this paper, we propose OnlineAD, a framework for online
zero-shot AD that leverages visual information from histor-
ical images in real-time.

Online Industrial Anomaly Detection. Online AD has at-
tracted attention due to its closer alignment with industrial
realities. Unlike incremental AD methods [25, 34], which
iteratively refine models across multiple categories to en-
hance multi-class adaptability, online AD focuses on dy-
namically updating intra-class representations as new sam-
ples are acquired. For example, LeMO [10] supports on-
line training using normal samples, making it well-suited
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Figure 2. Overview of the proposed RareCLIP framework. RareCLIP mainly comprises two branches: the Text Prompt Branch (TPB,
Section 3.1) and the Patch-level Rarity Branch. The latter includes the Direct Patch-level Rarity Branch (DPRB, Section 3.2.1) and the
Indirect Patch-level Rarity Branch (IPRB, Section 3.2.2), where DPRB is an intermediate variant of IPRB. The right portion illustrates the
IPRB update process, where S:2r and S aq2: denote the patch-image similarities between test patches and historical images, and between

memorized patches and the test image, respectively.

for streaming industrial data. FOADS [36] advances online
few-shot AD by constructing a normal feature bank from a
limited number of normal samples and boost performance
during online testing, while O-InReach [28] mitigates re-
liance on normal samples by delaying predictions until mul-
tiple samples have been observed. In contrast, our proposed
online zero-shot AD framework can make predictions even
in the absence of historical images.

3. Method

Problem Setting. Figure. 1(c) illustrates the formal set-
ting for our proposed online zero-shot AD. Given an unla-
beled stream of test images D,, = {I1, Is, - - - } from a sin-
gle category without any prior domain-specific knowledge,
the model is required to output the detection result for the
t-th test image I, before the next image ;4 arrives.

Overview. Figure. 2 provides an overview of the pro-
posed RareCLIP framework, which consists of two main
branches: the Text Prompt Branch (TPB) and the Patch-
level Rarity Branch. The Patch-level Rarity Branch is fur-
ther divided into Direct Patch-level Rarity Branch (DPRB,
corresponding to RareCLIP-d) and Indirect Patch-level Rar-
ity Branch (IPRB, corresponding to RareCLIP), where
DPRB serves as an ablation to highlight IPRB’s reduced
computational overhead while maintaining comparable per-
formance. Each input test image is first encoded to generate
patch features Fyoop = {f/%, | m € [1,M]} € RM*C,
where M is the number of patches and C'is the feature di-

mension, and a global image feature Fy,.;%°

3.1. Text Prompt Branch

The Text Prompt Branch (TPB) forms the foundational
component of RareCLIP, endowing it with initial zero-shot
anomaly detection capabilities. In TPB, lightweight learn-
able projection layers adapt local patch features, denoted
as Fi.q, to align effectively with text features Fy.,; that
encode normal and abnormal semantic information from
fixed text prompt ensemble. The patch-level anomaly map
is computed as:

-Atea:t = SOftmaX(<ﬁtest7 Ftewt>)a (1)

where (-, -) denotes cosine similarity. Similarly, the global
image feature F,..;?¢ is compared with Fy.,; to yield an

image-level anomaly score:

image
Ftest

) Ftewt> ) - (2)

We observe that TPB tends to assign low anomaly scores
in regions with missing components since background areas
are generally learned as normal. To mitigate potential false
negatives in such cases, we compute the cumulative average
of Ay in the online setting, denoted as Ayert, and then
refine the result by taking the element-wise maximum:

Atext = maX(Atezta vzlte:r:t)~ (3)

Training Loss of TPB. To align local patch features with
the semantics of normal and abnormal text prompts, we em-
ploy lightweight learnable projection layers. During train-
ing, the adapted patch features F are optimized using a com-
bination of focal loss [24] and Dice loss [21] against the

Ctext = sOftmax((
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corresponding text features. To further mitigate overfitting,
we also enforce alignment between F' and the global image
feature—which is already well-aligned with text. The final
loss is formulated as:

Loss = Focal(-Atemty Atruth) + Dice(Atewta Atruth)

- “)
+ MSE((F, Fimase) 1),

where Ay, denotes the ground-truth anomaly mask and
MSE represents the Mean Squared Error.

3.2. Patch-level Rarity Branch

The TPB provides semantic-aware anomaly priors, which
are further refined by the Patch-level Rarity Branch through
cross-sample pattern analysis.

3.2.1. Direct Patch-level Rarity Branch (RareCLIP-d)

To capture the rarity of each test patch, we introduce the
Direct Patch-level Rarity Branch (DPRB), the direct imple-
mentation of rarity mechanism. In DPRB, patch features
from N7 historical images are stored along with information
about their source images to compute patch-image similar-
ities. To manage memory usage, only patch features from
the latest N7 max historical images are retained.
Patch-image Similarity Computation. For each test patch
fi2s;» we compute a patch-image similarity vector:

i€}, )

Sm = { max <f$st7 .fhis>
his€ }Lis

where Fi . denotes the patch features from the i-th histori-
cal image.
Rarity Score Computation. A patch is considered non-
rare if a sufficient proportion (exceeding rarity threshold
X %) of its patch-image similarities yield high value. Given
the patch-image similarity vector s € R™7, we select the top
X% of values, denoted as §, and define the rarity (anomaly)
score as:

Rarity(s) = 1 — mean(s). (6)

Accordingly, the patch-level anomaly map is given by:
Avare = { Ravity(s,) [m e LM]}. (D)

Sequential Coreset Sampling. To reduce both memory
and computational costs, we propose Sequential Coreset
Sampling (SCS), which eliminates redundant features in the
memory bank. The key idea is that if two features are highly
similar, the latter can be removed with minimal loss of rep-
resentativeness. This approach ensures that the remaining
features are dissimilar from each other and cover the fea-
ture space with minimal redundancy.

SCS takes as input a feature set F and a target sample
count Nygpmpie. For each feature F;, we compute:

0, i =1,
2X<]:i7]:.7'>> i > 1,

S; —

®)

J

Figure 3. A simple example of Sequential Coreset Sampling.
Numbers represent the sequence of features in the memory.

and then select the features with the smallest s; values:

Foutur = {F;

NS(Lm e
55 < S(Neurgie) ) € RV rXC - (9)

where s(n,,,.,...) 18 the Nsampie-th smallest value. A simple
example of SCS is shown in Figure. 3.

Within DPRB, we apply SCS to the patch features of
each historical image, updating Eq. 5 as:

Sm = { max fosts Fhi
" fmsESCS(F}'uS,aM)<ft85t7 This)

ie [1,N,}},

(10)
where « is the sampling ratio.

3.2.2. Indirect Patch-level Rarity Branch (RareCLIP)

Although SCS reduces the number of features stored in

DPRB, redundancy may still exist across different historical

images. To address this, we propose the Indirect Patch-level

Rarity Branch (IPRB) that employs dual memory banks:

e Patch Feature Memory Bank My € RN7*C which
stores diversity-preserving patch features via SCS.

e Patch-image Similarity Memory Bank Mg € RN#>*Ni,
which records the corresponding patch-image similarities
of these memorized patch features.

The patch-image similarity for a test patch is then indi-

rectly estimated by aggregating the similarities of its nearest

neighbors in M x with their corresponding values in M.

Update of the Patch Feature Memory Bank. After pro-

cessing a test image, its patch features F,.,; are appended

to M x. To maintain a fixed bank size, we apply SCS on the
concatenated features:

My =SCS ( Concat(My, Frewr), Ne ), (1)

where M F is the updated memory bank and Ny controls
its size. Notably, SCS tends to preserve earlier features,
ensuring minimal changes in M and, consequently, re-
ducing the frequency of estimated updates needed for the
associated similarity bank M s. This stability enhances the
robustness of the patch-image similarity estimation.
Update of the Patch-image Similarity Memory Bank.
The patch-image similarity memory bank Mg € RN#* Nt
stores the similarity between each feature in Mz and the
Ny historical images. Its update can be divided into two
components:
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o Memorized-to-Test Similarity Sy2: € RNF: For each
patch in M ~, we compute its patch-image similarity with
the test image:

Snze = { | max (fig, frest) | Fl € Mz} (12)

ftest€EFtest

o Test-to-Historical Similarity S;or € RM>N1: Since full
historical images are unavailable in IPRB, we estimate
Si2m indirectly. For each test patch f[7,,, we first retrieve
its K nearest neighbors {¢}5_| from M and compute
their similarities:

Siam = { (it 01) [m € L M), k€ [1, K]} € RV

(13)
Then, for each test patch, we estimate its patch-image
similarities to historical images by aggregating:

K
Searr = {3 Stk Ms(of) | m e 1001}, 19)
k=1

where ng,t is the similarity between f/”,, and its k-th
neighbor ¢}, and Ms(¢7) € RN is the corresponding
patch-image similarity vector of ¢;".

Using Sy2p7, the patch-level anomaly map can be obtained:

Arare = {Rarity(sm) ’sm € StgH}. (15)

After computing S yq2; and S 7, the similarity memory
bank is preliminarily updated as:

Ms  Spao

c R(NF+I\/I)><(N1+1)7 16
St 1 (10

i |

where 1 is a vector of ones. When SCS is applied to
Mz, the corresponding rows in MY associated with re-
moved features are also deleted, resulting in an updated
bank Mg € RNr*(N1+1) - Ag before, we only retain patch-
image similarities for the latest N7 max historical images.
Loose Similarity. Multiplying similarity measures to es-
timate patch-image similarity in Eq. 14 can introduce er-
ror. Assuming that the test patch and its neighbor are both
similar to the same patch in a historical image, this can
be simplified to estimating cosf ¢ as cosfap - cosblpc,
where 6 4¢ is the angle between vectors A and C. The error
cos 0 — cosBap - cosOpc is bounded by

++/(1 —cos20,5)(1 — cos2Opc),

which decreases as either cos@4p or cos o approaches
1. However, subtle differences among different images of-
ten prevent normal patches from achieving a similarity of
1, thus gradually reducing their estimated similarity after
multiple multiplicative estimations.

To alleviate this issue and enhance the robustness of rar-
ity estimation, we propose a Loose Similarity (LS) strat-
egy that loosens the requirement for similarities to reach 1.
Given a set of similarities s = {s1, 82, - , S, }, we identify
the Y %-th largest value s(,,.}, where py = [n x Y%] and
Y controls the loose degree. We then divide all values by

S[py] and cap the results at 1:

LS(s) = min( ,1). (17)

Slpy]
We apply LS to both Spqe¢ (Eq. 12) and S;ong (Eq. 13),
ensuring symmetric error compensation:

Samze = LS(Smae),  Siom = LS(Siam)- (18)

3.3. Anomaly Detection

Image-level Rarity Branch. To better detect large abnor-
mal regions, we introduce an Image-level Rarity Branch
(IRB). In IRB, a local-aggregated image level feature F'%*f
is calculated to assess image-level rarity. Since TPB tends
to yield low anomaly scores in monotonous areas, we
use Ageqs to roughly identify the most noticeable regions.
Specifically, F'*f is obtained by averaging the top half of
the patch features corresponding to the highest values in
Aqert. The similarity between the test image and each his-
torical image is then computed as:

son = {(Fed ) |ie vt} a9)

where F,fg;f and Filaif are the local-aggregated features for
the test image and the ¢-th historical image, respectively.
The image-level rarity (anomaly) score is then computed as
Crare = Rarity(siap), and combined with the patch-level
anomaly map:

Avare = Arare + Crare - (1 +n0rmalize01(./_ltwt)) . (20)

Pixel-level Anomaly Detection. We fuse the refined
anomaly maps from TPB and the rarity branch to obtain
the final anomaly map:

Atest = )\teztlzltezt + )\rarevzlrarey (21)

where A¢err and Apqpe are weighting factors. The anomaly
map Ases: € RM is reshaped to a /M x /M grid and
upsampled to the original image resolution. A Gaussian fil-
ter is then applied to smooth the final pixel-level anomaly
detection result.

Image-level Anomaly Detection. For image-level detec-
tion, we first compute a preliminary anomaly score cics¢
by taking the maximum value from the pixel-level anomaly
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map and adding cyey¢. Inspired by MuSc [22], we fur-
ther refine this score via an Image-level Re-scoring strat-
egy. The underlying assumption is that visually similar im-
ages should exhibit consistent anomaly statuses. We iden-
tify the B most similar historical images based on the aver-
age similarity of their image-level features (including both
Fimage and F'eif). Let s, denotes the similarity between
the test image and the b-th similar historical image, and ¢y
its preliminary anomaly score, for b = 1,..., B. The re-
fined image-level anomaly score is computed as:

€T - Crest + Zszl e+
er + Zszl e+

- Cp

; (22)

Ctest =

where 7 is a temperature hyper-parameter.

4. Experiments

Dataset. We conduct experiments on the widely-used in-
dustrial image datasets, MVTec AD [2] and VisA [42]. Both
datasets contain multiple subsets, each with only one cate-
gory per subset. MVTec AD includes 10 object categories
and 5 texture categories with high-resolution images (from
700 x 700 to 1024 x 1024). VisA consists of 12 object cat-
egories with high-resolution images (1000 x 1500). We use
the official test splits of both datasets, which include normal
and abnormal images.

Evaluation Metrics. In line with common practice, we
report three metrics for image-level anomaly detection:
image-level Area Under Receiver Operator Characteristic
curve (I-AUC), image-level Fl-score at the optimal thresh-
old (I-F1-max), and image-level Average Precision (I-AP).
Additionally, we report four metrics for pixel-level anomaly
detection: pixel-level Area Under Receiver Operator Char-
acteristic curve (P-AUC), pixel-level Fl-score at the op-
timal threshold (P-F1-max), pixel-level Average Precision
(P-AP), and Per-Region Overlap (PRO).

Implementation Details. In accordance with prior stud-
ies [0, 41], we adopt CLIP [30] with the ViT-L-14-336 [9]
backbone implemented via OpenCLIP [15] and resize all
input images to 518 x 518. For the text prompt branch,
features are extracted from the 12th, 16th, 20th, and 24th
layers of ViT which contain rich semantic information, and
the associated linear layers are trained on one dataset when
testing on another. In the rarity branch, features from the
6th, 12th, 18th, and 24th layers are used, with multi-scale
patch features obtained via 1 x 1 and 3 x 3 neighborhood
average pooling to enhance visual representation. The rar-
ity threshold X % is set to 30%, and Nt max is fixed at 200
by default. In the Direct Patch-level Rarity Branch (DPRB),
the sampling ratio « is set to % In the Indirect Patch-level
Rarity Branch (IPRB), the patch feature memory bank size
N is set to 4107, K is fixed at 3 for K-NN, and the loose
degree Y % is set to 1%. All experiments are performed on

a single NVIDIA GeForce RTX 3090. Further implementa-
tion details are provided in the supplemental material.
Offline and Online Modes. RareCLIP can operate in both
offline and online modes. In offline mode, all memory
banks are frozen and cumulative updates are halted, en-
suring that detection results are independent of the test se-
quence. In online mode, the model dynamically updates its
memory banks, and performance may be influenced by the
sequence of test images. To ensure reproducibility of online
mode, we use the official test split as fixed initial sequence,
then report the average performance over five different ran-
dom shuffles (using seeds 0, 1, 2, 3, and 4).

Baselines. We compare the proposed RareCLIP with other
state-of-the-art zero-shot AD methods, including: (1) of-
fline zero-shot AD methods WinCLIP [16], April-GAN [6],
and AnomalyCLIP [41], FiLo [12], AdaCLIP [4] and VCP-
CLIP [29]; (2) batch zero-shot AD methods ACR [18] and
MuSc [22]; (3) pseudo online (online-) zero-shot AD meth-
ods O-InReach [28] and MuSc*, which only make predic-
tion starting from the second image, and MuSc* is a repro-
duced online version of MuSc [22] that only utilizes histor-
ical information from previous test images.

4.1. Comparison with Zero-shot Methods

Table. 1 presents the performance comparison between
RareCLIP and other zero-shot AD methods. Our key ob-
servations are: (1) In offline mode, RareCLIP achieves
competitive results compared to existing offline zero-shot
methods; (2) In online mode, RareCLIP exhibits signifi-
cant improvements across all metrics, even outperforming
batch zero-shot AD methods; (3) RareCLIP attains higher
image-level performance than RareCLIP-d (which incurs
higher memory and computation costs) while only incur-
ring a slight decrease in pixel-level performance. These
results underscore the effectiveness and practicality of the
proposed RareCLIP.

4.2. Comparison with Few-/Full-shot Methods

Table. 2 compares RareCLIP against state-of-the-art few-
shot and full-shot AD methods [6, 16, 19, 23, 31, 35, 36,
40]. We also extend RareCLIP to a few-shot AD setting
(details are provided in the supplemental material). Com-
pared to state-of-the-art few-shot methods, RareCLIP in of-
fline mode achieves more than a 1% improvement in both
I-AUC and P-AUC on both datasets. Moreover, RareCLIP
in online mode attains competitive performance with full-
shot AD methods.

4.3. Offline Performance vs. Online Adaptation

To analyze the evolution of the model’s performance as
it processes more images, we update the model using the
first N images of the test set and then evaluate its perfor-
mance on the entire test set in offline mode. This sim-
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Image-level

Pixel-level

Dataset  Method Public Mode

I-AUC I-F1-max I-AP P-AUC P-F1-max P-AP PRO

WinCLIP [16] CVPR23 offline 91.8 92.9 96.5 85.1 31.7 - 64.6

April-GAN [6] CVPR23 WS  offline 86.1 90.5 93.5 87.6 43.3 40.8 44.0

AnomalyCLIP [41] ICLR24 offline 91.6 92.7 96.4 91.1 39.1 34.5 81.4

FiLo [12] ACM MM24  offline 91.2 - - 92.3 - - -

AdaCLIP [4] ECCV24 offline 90.0 92.3 95.7 89.9 439 41.6 44.1

MVTec VCP-CLIP [29] ECCV24 offline 92.1 91.8 96.9 92.0 49.3 49.4 87.3

AD RareCLIP - offline 91.5 92.9 96.6 91.5 475 46.1 86.2
O-InReach [28] ECCV24 online- 87.1+0.9  91.14+04  94.0+0.5 93.540.1 439404  37.74£03  83.0+04
MuSc* [22] ICLR24 online- 96.04+04  96.2403  98.0+0.3 97.0+02  57.84+0.5 559409  93.340.1
RareCLIP-d - online  97.940.2 974402 99.1+0.2 97.840.1  62.9405 64.2+1.1 93.440.1
RareCLIP - online  98.240.2  97.6+0.1  99.3+0.1 97.74+02  64.1+£0.7 66.1+£1.0 93.510.1

ACR [18] NIPS23 batch 85.8 91.3 92.9 92.5 44.2 38.9 72.7

MuSc [22] ICLR24 batch 97.7 97.5 99.1 97.1 62.2 62.3 934

WinCLIP [16] CVPR23 offline 78.1 79.0 81.2 79.6 14.8 - 56.8

April-GAN [6] CVPR23 WS  offline 78.0 78.7 81.4 94.2 323 25.7 86.8

AnomalyCLIP [41] ICLR24 offline 82.0 80.4 85.3 95.5 28.3 21.3 86.7

FiLo [12] ACM MM24  offline 83.9 - - 95.9 - - -

AdaCLIP [4] ECCV24 offline 85.8 83.1 88.5 95.5 37.7 31.5 51.3

VisA VCP-CLIP [29] ECCV24 offline 83.8 81.4 87.6 95.7 29.8 30.1 90.7

RareCLIP - offline 86.1 83.1 89.0 95.7 33.5 27.0 90.2
O-InReach [28] ECCV24 online-  78.04+0.2  79.4403  82.3403  95.740.1 314409  25.54+1.1  75.74+06
MuSc* [22] ICLR24 online-  90.0+0.5 87.1+£0.7 90.54+03 98.64+0.0  48.5+02 449403 92.440.1
RareCLIP-d - online  93.540.2 90.2403  94.14+0.5 98.9+0.0 48.1+04 442405 93.240.1
RareCLIP - online 94.4+0.3 90.84+-0.4 95.34+0.2 98.84+0.0 50.9+0.3 47.5+0.3 93.54-0.1

MuSc [22] ICLR24 batch 92.6 89.1 93.3 98.7 48.9 454 924

Table 1. Comparison of image-level and pixel-level zero-shot anomaly detection on the MVTec AD and VisA datasets. We compare the
proposed RareCLIP with other state-of-the-art zero-shot methods. MuSc* denotes a reproduced online version of MuSc [22], and the
evaluations of methods in “online-” mode exclude the first image since they predict result starting from the second image. Bold indicates
the best performance, while underline denotes the second-best result. Methods under the batch setting are highlighted in gray as they
concurrently utilize all test images for anomaly detection. All metrics are in %.

Method Setting Mode MVTec AD VisA
I-AUC P-AUC [-AUC P-AUC

WinCLIP+ [16]  4-shot offline 95.2 96.2 87.3 97.2
April-GAN [6] 4-shot offline 92.8 95.9 92.6 96.2
PromptAD [23]  4-shot offline 96.6 96.5 89.1 97.4
FOADS [36] 10-shot online 87.3 95.1 - -
RareCLIP 0-shot online 98.2 97.7 94.4 98.8
RareCLIP 4-shot offline 97.7 98.1 94.6 98.8
RareCLIP 4-shot online 98.7 98.2 95.5 98.8
CutPaste [19] full-shot  offline 96.1 96.0 - -
PatchCore [31] full-shot  offline 99.1 98.1 94.8 98.5
RD++ [35] full-shot  offline 994 98.3 95.9 98.7
RealNet [40] full-shot  offline 99.6 99.0 97.8 98.8

Table 2. Comparison with state-of-the-art few-shot and full-shot
methods in image-level and pixel-level AUC on the MVTec AD
and VisA datasets.

ulates placing each test image at time step N + 1 and
allows us to observe how performance evolves with the
amount of historical data. As shown in Figure. 3, we ob-
serve that: (1) Performance steadily improves as N in-
creases, stabilizing after approximately N = 24 images; (2)
RareCLIP achieves slightly higher image-level performance

but marginally lower pixel-level performance compared to
RareCLIP-d; (3) RareCLIP outperforms MuSc* especially
when N is small, demonstrating its stronger adaptability in
online setting.

4.4. Ablation Study

Sampling Strategy. We compared SCS with other sam-
pling strategies, including Random Sampling (RS), K-
means Clustering Sampling (KCS), and Greedy Coreset
Sampling (GCS). We use the implementation of GCS from
Patchcore [31]. The results in Table. 3 indicate that: (1)
KCS yields performance similar to RS but requires signif-
icantly more memory and time; (2) GCS achieves higher
image-level performance than RS, though at the cost of in-
creased computational time; (3) SCS offers optimal perfor-
mance with minimal additional memory and time overhead
by maintaining minimal changes in memory banks.

Impact of Ny 4, on Memory and Time Cost. Table. 4
illustrates the effect of varying Ny . on GPU memory and
computation time. We observe that: (1) Both MuSc* and
RareCLIP-d exhibit a significant increase in time and GPU
memory usage as N7 max increases due to their reliance on
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Figure 4. Offline performance as a function of the number of pro-
cessed test images (V) on the MVTec AD and VisA datasets.

Sampling MVTec AD VisA GPU Time
LAUC P-AUC TLAUC pauc MB) (s
RS 88.13 9321 7538 9347 4296  57.0
KCS 88.05  93.10 7538 9335 4870 42808
GCS 97.18  93.17  87.80 8846 4468  2197.6
SCS 98.19 9770 9440  98.80 4352  59.4

Table 3. Ablation study of different sampling strategies on the
MVTec AD and VisA datasets. RS, KCS, GCS and SCS respec-
tively denote Random Sampling, K-means Clustering Sampling,
Greedy Coreset Sampling and Sequential Coreset Sampling.

MuSc* [22]
NI,maac GPU

RareCLIP-d RareCLIP

Time GPU Time GPU  Time
(MB) (ms) (MB) (ms) (MB)  (ms)

50 4697 455.0 4696 71.6 4298  59.0
200 7293 983.7 6018 1062 4352 594
1000 19857 4054.7 19586 310.8 4520 61.2

Table 4. Comparison of time and GPU memory consumption for
MuSc* [22], and RareCLIP(-d) under different values of N7 max-

storing extensive patch features from historical images; (2)
RareCLIP maintains low time and memory requirements
across varying values of Ny ma.x , highlighting its compu-
tational efficiency.

Impact of Loose Degree Y. Table. 5 presents an ablation
study on the hyper-parameter Y, which controls the loose
degree in LS. Our observations include: (1) Without LS
or with Y = 0 (i.e., using the maximum similarity), per-

MVTec AD VisA

Y (%)
LLAUC P-AUC LAUC P-AUC
wlo 97.00 9675 9324 9832
0 9740  97.02 9373  98.49
0.5 98.14  97.63 9445  98.78
1 98.19 9770 9440  98.80
2 98.15 9775 9425  98.79
3 9812  97.78 9412  98.78
5 98.00 9779 9392  98.76

Table 5. Ablation study of loose degree Y on the MVTec AD and
VisA datasets. ”w/0” indicates that LS is not applied.

X(%) MVTec AD VisA
I-AUC  P-AUC I-AUC P-AUC
5 97.24 96.68 93.57 98.82
10 97.60 96.88 94.08 98.83
20 98.15 97.31 94.36 98.81
30 98.19 97.70 94.40 98.80
40 97.98 97.80 94.12 98.76
50 97.63 97.78 93.90 98.74
60 97.26 97.76 93.62 98.71

Table 6. Ablation study of rarity threshold X on the MVTec AD
and VisA datasets.

formance is lower compared to using other Y values; (2)
There is little difference in performance between Y = 0.5
and Y = 2; (3) As Y increases further, [-AUC performance
tends to decrease due to more weak abnormal regions being
misclassified as normal.

Impact of Rarity Threshold X . Table. 6 shows how vary-
ing the rarity threshold X affects performance. The results
indicate that both excessively high and low values of X lead
to degraded performance, while a moderate value yields the
best results.

5. Conclusion

To tackle the novel online zero-shot AD task, we proposed
RareCLIP, a rarity-aware method that leverages the zero-
shot capabilities of CLIP and integrates a dynamic test-time
rarity estimation mechanism. RareCLIP contains a proto-
type patch feature memory bank, which aggregates repre-
sentative features from historical observations and contin-
uously updates their rarity measures. For each test patch,
RareCLIP computes a rarity score by aggregating the rarity
measures of its nearest neighbors within the memory bank.
Furthermore, we introduced a dissimilarity-based prototype
sampling strategy—Sequential Coreset Sampling—to im-
prove computational efficiency, along with a similarity cali-
bration mechanism, Loose Similarity, to enhance the robust-
ness of rarity estimation. Experimental results on bench-
mark datasets demonstrate that RareCLIP achieves state-of-
the-art performance with low latency.
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