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Figure 1. Our method accelerates 3D Gaussian Splatting (3DGS) [23] reconstruction by replacing the ADAM optimizer with a tailored
Levenberg-Marquardt. Left: starting from the same initialization, our method converges faster on the Tanks&Temples TRAIN scene.
Right: after the same amount of time, our method produces higher quality renderings (e.g., better brightness and contrast).

Abstract

We present 3DGS-LM, a new method that accelerates the re-
construction of 3D Gaussian Splatting (3DGS) by replacing
its ADAM optimizer with a tailored Levenberg-Marquardt
(LM). Existing methods reduce the optimization time by de-
creasing the number of Gaussians or by improving the im-
plementation of the differentiable rasterizer. However, they
still rely on the ADAM optimizer to fit Gaussian parame-
ters of a scene in thousands of iterations, which can take
up to an hour. To this end, we change the optimizer to
LM that runs in conjunction with the 3DGS differentiable
rasterizer. For efficient GPU parallelization, we propose a
caching data structure for intermediate gradients that al-
lows us to efficiently calculate Jacobian-vector products in
custom CUDA kernels. In every LM iteration, we calculate
update directions from multiple image subsets using these
kernels and combine them in a weighted mean. Overall,
our method is 20% faster than the original 3DGS while ob-
taining the same reconstruction quality. Our optimization is
also agnostic to other methods that accelerate 3DGS, thus
enabling even faster speedups compared to vanilla 3DGS.

1. Introduction

Novel View Synthesis (NVS) is the task of rendering a
scene from new viewpoints, given a set of images as in-
put. NVS can be employed in Virtual Reality applications to
achieve photo-realistic immersion and to freely explore cap-
tured scenes. To facilitate this, different 3D scene represen-
tations have been developed [2, 3, 23, 33, 35, 42]. Among
those, 3DGS [23] (3D Gaussian-Splatting) is a point-based
representation that parameterizes the scene as a set of 3D
Gaussians. It offers real-time rendering and high-quality
image synthesis, while being optimized from a set of posed
images through a differentiable rasterizer.

3DGS is optimized from a set of posed input images that
densely capture the scene. The optimization can take up
to an hour to converge on high-resolution real-world scene
datasets with a lot of images [49]. It is desirable to re-
duce the optimization runtime which enables faster usage
of the reconstruction for downstream applications. Exist-
ing methods reduce this runtime by improving the opti-
mization along different axes. First, methods accelerate the
rendering speed of the tile-based, differentiable rasterizer
or the backward-pass that is specifically tailored for opti-
mization with gradient descent [12, 15, 32, 48]. For ex-
ample, Durvasula et al. [12] employ warp reductions for a
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more efficient sum of rendering gradients, while Mallick et
al. [32] utilizes a splat-parallelization for backpropagation.
Second, in 3DGS the number of Gaussians is gradually
grown during optimization, which is known as densifica-
tion. Recently, GS-MCMC [25], Taming-3DGS [32], Mini-
Splatting [14], and Revising-3DGS [5] propose novel densi-
fication schemes that reduce the number of required Gaus-
sians to represent the scene. This makes the optimization
more stable and also faster, since fewer Gaussians must be
optimized and rendered in every iteration.

Despite these improvements, the optimization still takes
significant resources, requiring thousands of gradient de-
scent iterations to converge. To this end, we aim to reduce
the runtime by improving the underlying optimization dur-
ing 3DGS reconstruction. More specifically, we propose
to replace the widely used ADAM [26] optimizer with a
tailored Levenberg-Marquardt (LM) [34]. LM is known to
drastically reduce the number of iterations by approximat-
ing second-order updates through solving the normal equa-
tions (Tab. 4). This allows us to accelerate 3DGS recon-
struction (Fig. 1 left) by over 20% on average. Concretely,
we propose a highly efficient GPU parallelization scheme
for the preconditioned conjugate gradient (PCG) algorithm
within the inner LM loop in order to obtain the respective
update directions. To this end, we extend the differentiable
3DGS rasterizer with custom CUDA kernels that compute
Jacobian-vector products. Our proposed caching data struc-
ture for intermediate gradients (Fig. 3) then allows us to per-
form these calculations fast and efficiently in a data-parallel
fashion. In order to scale caching to high-resolution image
datasets, we calculate update directions from multiple im-
age subsets and combine them in a weighted mean. Over-
all, this allows us to improve reconstruction time by 20%
compared to state-of-the-art 3DGS baselines while achiev-
ing the same reconstruction quality (Fig. 1 right).

To summarize, our contributions are:
• we propose a tailored 3DGS optimization based on

Levenberg-Marquardt that improves reconstruction time
by 20% and which is agnostic to other 3DGS accelera-
tion methods.

• we propose a highly-efficient GPU parallelization scheme
for the PCG algorithm for 3DGS in custom CUDA ker-
nels with a caching data structure to facilitate efficient
Jacobian-vector products.

2. Related Work
2.1. Novel-View-Synthesis
Novel-View-Synthesis is widely explored in recent years
[2, 3, 19, 23, 33, 35, 42]. NeRF [33] achieves highly photo-
realistic image synthesis results through differentiable volu-
metric rendering. It was combined with explicit representa-
tions to accelerate optimization runtime [7, 16, 35, 41, 47].

3D Gaussian Splatting (3DGS) [23] extends this idea by
representing the scene as a set of 3D Gaussians, that are
rasterized into 2D splats and then α-blended into pixel col-
ors. The approach gained popularity, due to the ability to
render high quality images in real-time. Since its inception,
3DGS was improved along several axes. Recent methods
improve the image quality by increasing or regularizing the
capacity of primitives [18, 20, 22, 31, 50]. Others increase
rendering efficiency [36, 40], obtain better surface recon-
structions [17, 21], reduce the memory requirements [37],
and enable large-scale reconstruction [24, 53]. We simi-
larly adopt 3DGS as our scene representation and focus on
improving the per-scene optimization runtime.

2.2. Speed-Up Gaussian Splatting Optimization

Obtaining a 3DGS scene reconstruction can be acceler-
ated in several ways. One line of work reduces the num-
ber of Gaussians by changing the densification heuristics
[5, 14, 25, 30–32]. Other methods focus on sparse-view re-
construction and train a neural network as data prior, that
outputs Gaussians in a single forward pass [6, 8, 9, 13, 29,
46, 54]. In contrast, we focus on the dense-view and per-
scene optimization setting, i.e., we are not limited to sparse-
view reconstruction. Most related are methods that improve
the implementation of the underlying differentiable raster-
izer. In [12, 48] the gradient descent backward pass is ac-
celerated through warp-reductions, while [32] improves its
parallelization pattern and [15] accelerates the rendering. In
contrast, we completely replace the gradient descent opti-
mization with LM through a novel and tailored GPU paral-
lelization scheme. We demonstrate that we are compatible
with those existing methods, i.e., we further reduce runtime
by plugging our optimizer into their scene initializations.

2.3. Optimizers For 3D Reconstruction Tasks

NeRF and 3DGS are typically optimized with stochas-
tic gradient descent (SGD) optimizers like ADAM [26]
for thousands of iterations. In contrast, many works in
RGB-D fusion employ the Gauss-Newton (or Levenberg-
Marquardt) algorithms to optimize objectives for 3D recon-
struction tasks [10, 11, 43, 44, 55, 56]. By doing so, these
methods can quickly converge in an order of magnitude
fewer iterations than SGD. Motivated by this, we aim to
accelerate 3DGS optimization by adopting the Levenberg-
Marquardt algorithm as our optimizer. Rasmuson et al. [39]
implemented the Gauss-Newton algorithm for reconstruct-
ing low-resolution NeRFs based on dense voxel grids. In
contrast, we exploit the explicit Gaussian primitives of
3DGS to perform highly-efficient Jacobian-vector products
in a data-parallel fashion. This allows us to achieve state-
of-the-art rendering quality, while significantly accelerating
the optimization in comparison to ADAM-based methods.
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Figure 2. Method Overview. We accelerate 3DGS optimization
by framing it in two stages. First, we use the original ADAM
optimizer and densification scheme to arrive at an initialization
for all Gaussians. Second, we employ the Levenberg-Marquardt
algorithm to finish optimization.

3. Method
Our pipeline is visualized in Fig. 2. First, we obtain
an initialization of the Gaussians from a set of posed im-
ages and their SfM point cloud as input by running the
standard 3DGS optimization (Sec. 3.1). In this stage the
Gaussians are densified, but remain unconverged. After-
wards, we finish the optimization with our novel optimizer.
Concretely, we optimize the sum of squares objective with
the Levenberg-Marquardt (LM) [34] algorithm (Sec. 3.2),
which we implement in efficient CUDA kernels (Sec. 3.3).
This two-stage approach accelerates the optimization com-
pared to only using first-order optimizers.

3.1. Review Of Gaussian-Splatting
3D Gaussian Splatting (3DGS) [23] models a scene as a set
of 3D Gaussians, each of which is parameterized by a po-
sition, rotation, scaling, and opacity. The view-dependent
color is modeled by Spherical Harmonics coefficients of or-
der 3. To render an image of the scene from a given view-
point, all Gaussians are first projected into 2D Gaussian
splats with a tile-based differentiable rasterizer. Afterwards,
they are α-blended along a ray to obtain the pixel color c:

c =
∑
i∈N

ciαiTi, with Ti =

i−1∏
j=1

(1− αj) (1)

where ci is the color of the i-th splat along the ray, αi is
given by evaluating the 2D Gaussian multiplied with its
opacity, and Ti is the transmittance. To fit all Gaussian pa-
rameters x ∈ RM to posed image observations, a rendering

loss is minimized with the ADAM [26] optimizer:

L(x)= 1

N

N∑
i=1

(λ1|ci−Ci|+λ2(1−SSIM(ci, Ci))) (2)

where λ1=0.8, λ2=0.2, and Ci the ground-truth for one
pixel. Typically, 3DGS uses a batch size of 1 by sampling
a random image per update step. The Gaussians are ini-
tialized from the SfM points and their number is gradually
grown during the first half of the optimization, which is
known as densification [23].

3.2. Levenberg-Marquardt Optimization For 3DGS
We employ the LM algorithm for optimization of the Gaus-
sians by reformulating the rendering loss as a sum of
squares energy function:

E(x)=

N∑
i=1

√
λ1|ci−Ci|

2
+
√

λ2(1−SSIM(ci, Ci))
2

(3)

where we have two separate residuals rabs
i =

√
λ1|ci−Ci|

and rSSIM
i =

√
λ2(1−SSIM(ci, Ci)) per color channel of

each pixel. We take the square root of each loss term, to
convert Eq. (2) into the required form for the LM algorithm.
In other words, we use the identical objective, but a different
optimizer. In contrast to ADAM, the LM algorithm requires
a large batch size (ideally all images) for every update step
to achieve stable convergence [34]. In practice, we select
large enough subsets of all images to ensure reliable update
steps (see Sec. 3.3 for more details).
Obtaining Update Directions In every iteration of our op-
timization we obtain the update direction ∆ ∈ RM for all
M Gaussian parameters by solving the normal equations:

(JTJ+ λregdiag(JTJ))∆ = −JTF(x) (4)

where F(x)=[rabs
1 , ..., rabs

N , rSSIM
1 , ..., rSSIM

N ]∈R2N is the
residual vector corresponding to Eq. (3) and J∈R2N×M the
corresponding Jacobian matrix.

In a typical dense capture setup, we optimize over mil-
lions of Gaussians and have hundreds of high-resolution im-
ages [4, 19, 27]. Even though J is a sparse matrix (each row
only contains non-zero values for the Gaussians that con-
tribute to the color of that pixel), it is therefore not possible
to materialize J in memory. Instead, we employ the pre-
conditioned conjugate gradient (PCG) algorithm, to solve
Eq. (4) in a matrix-free fashion. We implement PCG in cus-
tom CUDA kernels, see Sec. 3.3 for more details.
Apply Parameter Update After we obtained the solution
∆, we run a line search to find the best scaling factor γ∈R
for updating the Gaussian parameters:

min
γ

E(xk + γ∆) (5)
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In practice, we run the line search on a 30% subset of all
images, which is enough to get a reasonable estimate for γ,
but requires fewer rendering passes. Afterwards, we update
the Gaussian parameters as: xk+1=xk+γ∆. Similar to the
implementation of LM in CERES [1], we adjust the regu-
larization strength λreg∈R after every iteration based on the
quality of the update step. Concretely, we calculate

ρ =
||F(x)||2 − ||F(x+ γ∆)||2

||F(x)||2 − ||Jγ∆+ F(x)||2
(6)

and only keep the update if ρ>1e−5, in which case we re-
duce the regularization strength as λreg∗=1−(2ρ−1)3. Oth-
erwise, we revert the update and double λreg.

3.3. Efficient Parallelization Scheme For PCG
The PCG algorithm obtains the solution to the least squares
problem of Eq. (4) in multiple iterations. We run the al-
gorithm for up to niters=8 iterations and implement it with
custom CUDA kernels. We summarize it in Algorithm 1.

Algorithm 1: We run the PCG algorithm with cus-
tom CUDA kernels (blue) in every LM iteration.

Input : Gaussians and cameras G, F, λreg
Output: Update direction ∆

1 b, C = buildCache(G,F) // b=− JTF
2 C = sortCacheByGaussians(C)
3 M−1 = 1/diagJTJ(G, C)
4 x0 = M−1b
5 u0 = applyJ(sortX(x0),G, C) // u0=Jx0

6 g0 = applyJT(u0,G, C) // g0=JTu0

7 r0 = b− (g0+λregMx0)
8 z0 = M−1r0
9 p0 = z0

10 for i = 0 to niters do
11 ui = applyJ(sortX(pi),G, C) // ui=Jpi

12 gi = applyJT(ui,G, C) // gi=JTui

13 gi += λregMpi

14 αi =
rTi zi

pT
i gi

15 xi+1=xi+αipi

16 ri+1=ri−αigi

17 zi+1=M−1ri+1

18 βi =
rTi+1zi+1

rTi zi

19 pi+1 = zi+1 + βipi

20 if ||ri+1||2 < 0.01||b||2 then
21 break
22 end if
23 end for
24 return xi+1

Most of the work in every PCG iteration is consumed
by calculating the matrix-vector product gi=JTJpi. We

compute it by first calculating ui=Jpi and then gi=JTui.
Calculating the non-zero values of J requires backpropa-
gating from the residuals through the α-blending (Eq. (1))
and splat projection steps to the Gaussian parameters. The
tile-based rasterizer of 3DGS [23] performs this calculation
using a per-pixel parallelization. That is, every thread han-
dles one ray, stepping backwards along all splats that this
ray hit. We found that this parallelization is too slow for an
efficient PCG implementation. The reason is the repetition
of the ray marching: per PCG iteration we do it once for ui

and once for gi. As a consequence, the same intermediate
α-blending states (i.e., Ts, ∂c

∂αs
, ∂c
∂cs

for every splat s along
the ray) are re-calculated multiple (up to 18) times.
Cache-driven parallelization We propose to change
the parallelization to per-pixel-per-splat (summarized in
Fig. 3). That is, one thread handles all residuals of one ray
for one splat. Each entry of J is the gradient from a residual
r (either of the L1 or SSIM terms) to a Gaussian parameter
xi. Conceptually, this can be computed in three stages:

∂r

∂xi
=

∂r

∂c

∂c

∂s

∂s

∂xi
(7)

where ∂r
∂c denotes the gradient from the residual to the ren-

dered color, ∂c
∂s from the color to the projected splat, and

∂s
∂xi

from the splat to the Gaussian parameter. The first and
last factors of Eq. (7) can be computed independently for
each residual and splat respectively, which allows for an ef-
ficient parallelization. Similarly, we can calculate ∂c

∂s inde-
pendently, if we have access to Ts and ∂c

∂αs
. Instead of loop-

ing over all splats along a ray multiple times, we cache these
quantities once (Fig. 3 left). When calculating ui or gi, we
then read these values from the cache (Fig. 3 right). This al-
lows us to parallelize over all splats in all pixels, which dras-
tically accelerates the runtime. The cache size is controlled
by how many images (rays) we process in each PCG itera-
tion and how many splats contribute to the final color along
each ray. We propose an efficient subsampling scheme that
limits the cache size to the available budget.

3DGS uses the structural similarity index measure
(SSIM) as loss term during optimization (Eq. (2)). In SSIM,
the local neighborhood of every pixel gets convolved with
Gaussian kernels to obtain the final per-pixel score [45]. We
calculate ∂r

∂c for the SSIM residuals by backpropagating the
per-pixel scores to the center pixels (ignoring the contribu-
tion to other pixels in the local neighborhood). This allows
us to keep rays independent of each other thereby allowing
for an efficient parallelization. We implement it following
the derivation of Zhao et al. [52].
Mapping of PCG to CUDA kernels We cache all gra-
dients ∂c

∂s using the buildCache operation. Follow-
ing the implementation of the differentiable rasterizer in
3DGS [23], it uses the per-pixel parallelization and calcu-
lates the gradient update b= − JTF. For coalesced read
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Figure 3. Parallelization Strategy And Caching Scheme. We implement the PCG algorithm with efficient CUDA kernels, that use
a gradient cache to calculate Jacobian-vector products. Left: before PCG starts, we create the gradient cache following the per-pixel
parallelization of 3DGS [23]. Afterwards, we sort the cache by Gaussians to ensure coalesced read accesses. Right: the cache decouples
splats along rays, which allows us to parallelize per-pixel-per-splat when computing u = Jp and g = JTu during PCG.

and write accesses, we first store the cache sorted by pix-
els (Fig. 3 left). Afterwards, we re-sort it by Gaussians us-
ing the sortCacheByGaussians kernel. We use the
Jacobi preconditioner M−1=1/diag(JTJ) and calculate
it once using the per-pixel-per-splat parallelization in the
diagJTJ kernel. The inner PCG loop involves two kernels
that are accelerated by our novel parallelization scheme.
First, applyJ computes u=Jp, which we implement as
a per-pixel sum aggregation. Afterwards, applyJT com-
putes g=JTu. This per-Gaussian sum can be efficiently ag-
gregated using warp reductions. We compute the remaining
vector-vector terms of Algorithm 1 directly in PyTorch [38].
We refer to the supplementary material for more details.
Image Subsampling Scheme Our cache consumes addi-
tional GPU memory. For high resolution images in a dense
reconstruction setup, the number of rays and thus the cache
size can grow too large. To this end, we split the images
into batches and solve the normal equations independently,
following Eq. (4). This allows us to store the cache only for
one batch at a time. Concretely, for nb batches, we obtain nb
update vectors and combine them in a weighted mean:

∆ =

nb∑
i=1

Mi∆i∑n
k=1 Mk

(8)

where we use the inverse of the PCG preconditioner
Mi=diag(JT

i Ji) as the weights. We refer to the supple-
mentary material for a derivation of the weights. These
weights balance the importance of update vectors across
batches based on how much each Gaussian parameter con-
tributed to the rendered colors in the respective images.
This subsampling scheme allows us to control the cache size
relative to the number of images in a batch. In practice, we
choose batch sizes of 25-70 images and up to nb=4 batches
per LM iteration. We either select the images at random

or, if the scene was captured along a smooth trajectory, in a
strided fashion to maximize scene coverage in all batches.

3.4. 3DGS Optimization In Two Stages
Our pipeline utilizes the LM optimizer in the second stage
of 3DGS optimization (see Fig. 2). Before that, we run the
ADAM optimizer to obtain an initialization of the Gaus-
sian parameters. We compare this against running our LM
optimizer directly on the Gaussian initialization obtained
from the SfM point cloud (following [23]). Fig. 4 shows,
that our LM converges faster for better initialized Gaussians
and eventually beats pure ADAM. In contrast, running it di-
rectly on the SfM initialization is slower. This demonstrates
that quasi second-order solvers like ours are well-known to
be more sensitive to initialization. In other words, gradient
descent makes rapid progress in the beginning, but needs
more time to converge to final Gaussian parameters. The
additional compute overhead of our LM optimization is es-
pecially helpful to converge more quickly. This motivates
us to split the method in two stages. It also allows us to com-
plete the densification of the Gaussians before employing
the LM optimizer, which simplifies the implementation.

4. Results

Baselines We compare our LM optimizer against ADAM in
multiple reference implementations of 3DGS. This shows,
that our method is compatible with other runtime improve-
ments. In other words, we can swap out the optimizer and
retain everything else. Concretely, we compare against the
original 3DGS [23], its reimplementation “gsplat” [48], and
DISTWAR [12]. Additionally, we compare against Taming-
3DGS [32] by utilizing their “budgeted” approach as the
fastest baseline in terms of runtime. We run all baselines
for 30K iterations with their default hyperparameters.
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Figure 4. Comparison of initialization iterations. In our first
stage, we initialize the Gaussians with gradient descent for K iter-
ations, before finetuning with our LM optimizer. After K=6000
or K=8000 iterations, our method converges faster than the base-
line. With less iterations, pure LM is slower, which highlights the
importance of our two stage approach. Results reported on the
GARDEN scene from MipNeRF360 [33] without densification.

Datasets / Metrics We benchmark our runtime improve-
ments on three established datasets: Tanks&Temples [27],
Deep Blending [19], and MipNeRF360 [4]. These datasets
contain in total 13 scenes that cover bounded indoor and un-
bounded outdoor environments. We fit all scenes for every
method on the same NVIDIA A100 GPU using the train/test
split as proposed in the original 3DGS [23] publication. To
measure the quality of the reconstruction, we report peak
signal-to-noise ratio (PSNR), structural similarity (SSIM),
and perceptual similarity (LPIPS) [51] averaged over all test
images. Additionally, we report the optimization runtime
and the maximum amount of consumed GPU memory.
Implementation Details For our main results, we run the
first stage for 20K iterations with the default hyperparam-
eters of the respective baseline. The densification is com-
pleted after 15K iterations. Afterwards, we only have to run
5 LM iterations with 8 PCG iterations each to converge on
all scenes. This showcases the efficiency of our optimizer.
Since the image resolutions are different for every dataset,
we select the batch-size and number of batches such that
the consumed memory for caching is similar. We select 25
images in 4 batches for MipNeRF360 [4], 25 images in 3
batches for Deep Blending [19], and 70 images in 3 batches
for Tanks&Temples [27]. We constrain the value range of
λreg for stable updates. We define it in [1e−4, 1e4] for Deep
Blending [19] and Tanks&Temples [27] and in the interval
[1e−4, 1e−2] for MipNeRF360 [4].

4.1. Comparison To Baselines
We report our main quantitative results in Tab. 1. Our LM
optimizer can be added to all baseline implementations and
accelerates the optimization runtime by 20% on average.

The reconstructions show similar quality across all metrics
and datasets, highlighting that our method arrives at simi-
lar local minima, just faster. We also provide a per-scene
breakdown of these results in the supplementary material.
On average our method consumes 53 GB of GPU memory
on all datasets. In contrast, the baselines do not use an extra
cache and only require between 6-11 GB of memory. This
showcases the runtime-memory tradeoff of our approach.

We visualize sample images from the test set in Fig. 5 for
both indoor and outdoor scenarios. After the same amount
of optimization runtime, our method is already converged
whereas the baselines still need to run longer. As a result,
the baselines still contain suboptimal Gaussians, which re-
sults in visible artifacts in rendered images. In comparison,
our rendered images more closely resemble the ground truth
with more accurate brightness / contrast and texture details.

4.2. Ablations

Is the L1/SSIM objective important? We utilize the same
objective in our LM optimizer as in the original 3DGS im-
plementation, namely the L1 and SSIM loss terms (Eq. (2)).
Since LM energy terms are defined as a sum of squares, we
adopt the square root formulation of these loss terms to ar-
rive at an identical objective (Eq. (3)). We compare this
choice against fitting the Gaussians with only an L2 loss,
that does not require taking a square root. Concretely, we
compare the achieved quality and runtime of LM against
ADAM for both the L2 loss and the L1 and SSIM losses.
As can be seen in Tab. 2, we achieve faster convergence
and similar quality in both cases. However, the achieved
quality is inferior for both LM and ADAM when only using
the L2 loss. This highlights the importance of the L1 and
SSIM loss terms and why we adopt them in our method as
well. We show in the supplementary material, that comput-
ing these loss terms instead of the simpler L2 residuals does
not negatively impact the efficiency of our CUDA kernels.
How many images per batch are necessary? The key hy-
perparameters in our model are the number of images in
a batch and how many batches to choose for every LM it-
eration (Sec. 3.3). This controls the runtime of one itera-
tion and how much GPU memory our optimizer consumes.
We compare different numbers of images in Tab. 3 on the
NeRF-Synthetic [33] dataset in a single batch per LM it-
eration, i.e., nb=1. Using the full dataset (100 images)
produces the best results. Decreasing the number of im-
ages in a batch results in only slightly worse quality, but
also yields faster convergence and reduces GPU memory
consumption linearly down to 15GB for 40 images. This
demonstrates that subsampling images does not negatively
impact the convergence of the LM optimizer in our task.
Are we better than multi-view ADAM? Our method con-
verges with fewer iterations than baselines. Concretely, we
require only 5-10 additional LM iterations after the initial-
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Method MipNeRF-360 [4] Tanks&Temples [27] Deep Blending [19]

SSIM↑ PSNR↑ LPIPS↓ Time (s) SSIM↑ PSNR↑ LPIPS↓ Time (s) SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [23] 0.813 27.40 0.218 1271 0.844 23.68 0.178 736 0.900 29.51 0.247 1222
+ Ours 0.813 27.39 0.221 972 0.845 23.73 0.182 663 0.903 29.72 0.247 951

DISTWAR [12] 0.813 27.42 0.217 966 0.844 23.67 0.178 601 0.899 29.47 0.247 841
+ Ours 0.814 27.42 0.221 764 0.844 23.67 0.183 537 0.902 29.60 0.248 672

gsplat [48] 0.814 27.42 0.217 1064 0.846 23.50 0.179 646 0.904 29.52 0.247 919
+ Ours 0.814 27.42 0.221 818 0.844 23.68 0.183 414 0.902 29.58 0.249 716

Taming-3DGS [32] 0.793 27.14 0.260 566 0.833 23.76 0.209 366 0.900 29.84 0.274 447
+ Ours 0.791 27.13 0.260 453 0.832 23.72 0.209 310 0.901 29.91 0.275 347

Table 1. Quantitative comparison of our method and baselines. By adding our method to baselines, we accelerate the optimization time
by 20% on average while achieving the same quality. We can combine our method with others, that improve runtime along different axes.
This demonstrates that our method offers an orthogonal improvement, i.e., the LM optimizer can be plugged into many existing methods.

3DGS [23] after 814s 3DGS + Ours after 794s Ground-Truth Images

Taming-3DGS [32] after 328s Taming-3DGS + Ours after 324s Ground-Truth Images

gsplat [48] after 453s gsplat + Ours after 447s Ground-Truth Images

DISTWAR [12] after 978s DISTWAR + Ours after 971s Ground-Truth Images

Figure 5. Qualitative comparison of our method and baselines. We compare rendered test images after similar optimization time. All
baselines converge faster when using our LM optimizer, which shows in images with fewer artifacts and more accurate brightness / contrast.

ization, whereas ADAM runs for another 10K iterations.
We increase the batch-size (number of images) for the base-
lines, such that the same number of multi-view constraints
are observed for the respective update steps. However, as
can be seen in Tab. 4, the achieved quality is worse for
ADAM after the same number of iterations. When running
for more iterations, ADAM eventually converges to similar
quality, but needs more time. This highlights the efficiency
of our optimizer: since we solve the normal equations in
Eq. (3), one LM iteration makes a higher quality update step
than ADAM which only uses the gradient direction.

4.3. Runtime Analysis

We analyze the runtime of our LM optimizer across multi-
ple iterations in Fig. 6. The runtime is dominated by solv-
ing Eq. (4) with PCG and building the cache (Sec. 3.3).
Sorting the cache, rendering the selected images, and the
line search (Eq. (5)) are comparatively faster. During PCG,
we run the applyJ and applyJT kernels up to 9 times,
parallelizing per-pixel-per-splat. In contrast, we run the
buildCache kernel once, parallelizing per-pixel, which
is only marginally faster. This shows the advantage of our
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Method SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [23] (L1/SSIM) 0.862 27.23 0.108 1573
3DGS + Ours (L1/SSIM) 0.863 27.29 0.110 1175

3DGS [23] (L2) 0.854 27.31 0.117 1528
3DGS + Ours (L2) 0.857 27.48 0.114 1131

Table 2. Ablation of objective. We compare using the L1/SSIM
losses against the L2 loss. For both, 3DGS [23] optimized with
ADAM and combined with ours, we achieve better results with the
L1/SSIM objective. In both cases, our method accelerates the con-
vergence. Results on the GARDEN scene from MipNeRF360 [4].

Batch Size SSIM↑ PSNR↑ LPIPS↓ Time (s) Mem (Gb)

100 0.969 33.77 0.030 242 32.5
80 0.969 33.73 0.031 233 29.8
60 0.968 33.69 0.031 223 22.6
40 0.967 33.51 0.032 212 15.4

Table 3. Ablation of batch-size. Selecting fewer images per LM
iteration reduces runtime and consumed GPU memory, while only
slightly impacting quality. This demonstrates that image subsam-
pling (Sec. 3.3) is compatible with LM in our task. Results ob-
tained after initialization with 3DGS [23] and with nb=1.
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Figure 6. Runtime Analysis. One iteration of our LM optimizer
is dominated by solving PCG and building the cache. Measured
on the GARDEN scene from Mip-NeRF360 [4] after densification.

proposed parallelization scheme: the same Jacobian-vector
product runs much faster. We also provide a detailed profil-
ing analysis of our kernels in the supplementary material.

4.4. Limitations
By replacing ADAM with our LM scheme, we accelerate
the 3DGS convergence speed by 20% on average for all
datasets and baselines. However, some drawbacks remain.
First, our approach requires more GPU memory than base-
lines, due to our gradient cache (Sec. 3.3). Depending on
the number and resolution of images, this might require ad-

Method Iterations Batch-Size Time (s) PSNR↑
3DGS [23] 10,000 1 1222 29.51
3DGS [23] 50 75 962 29.54
3DGS [23] 130 75 1193 29.68
+ Ours 5 75 951 29.72

DISTWAR [12] 10,000 1 841 29.47
DISTWAR [12] 50 75 681 29.49
DISTWAR [12] 130 75 814 29.58
+ Ours 5 75 672 29.60

gsplat [48] 10,000 1 919 29.52
gsplat [48] 50 75 724 29.53
gsplat [48] 130 75 892 29.56
+ Ours 5 75 716 29.58

Taming-3DGS [32] 10,000 1 447 29.84
Taming-3DGS [32] 50 75 328 29.86
Taming-3DGS [32] 130 75 391 29.91
+ Ours 5 75 347 29.91

Table 4. Analysis of multi-view constraints. We obtain higher
quality update steps from our LM optimization and need fewer
iterations to converge. Using equally many images in a batch,
baselines using ADAM still require more iterations and runtime
to reach similar quality. Results averaged on DeepBlending [19].

ditional CPU offloading of cache parts to run our method on
smaller GPUs. Following Mallick et al. [32], one can fur-
ther reduce the cache size by storing the gradients ∂c

∂s only
for every 32nd splat along a ray and re-doing the α-blending
in these local windows. Second, our two-stage approach re-
lies on ADAM for the densification. 3DGS [23] densifies
Gaussians up to 140 times, which is not easily transferable
to the granularity of only 5-10 LM iterations. Instead, one
could explore and integrate recent alternatives [5, 25, 30].

5. Conclusion

We have presented 3DGS-LM, a method that accelerates the
reconstruction of 3D Gaussian-Splatting [23] by replacing
the ADAM optimizer with a tailored Levenberg-Marquardt
(LM) (Sec. 3.2). We show that with our data parallelization
scheme we can efficiently solve the normal equations with
PCG in custom CUDA kernels (Sec. 3.3). Employed in a
two-stage approach (Sec. 3.4), this leads to a 20% runtime
acceleration compared to baselines. We further demonstrate
that our approach is agnostic to other methods [12, 32, 48],
which further improves the optimization runtime; i.e., we
can easily combine our proposed optimizer with faster
3DGS methods. Overall, we believe that the ability of faster
3DGS reconstructions with our method will open up further
research avenues like [28] and make 3DGS more practical
across a wide range of real-world applications.
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