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Figure 1. FVP is a novel 3D point cloud representation learning pipeline for robotic manipulation. Different from prior works in Contrastive
Learning and Masked Signal Modeling, FVP trains 3D visual representations by leveraging the preceding frame point cloud and employing
a diffusion model to predict the point cloud of the current frame.

Abstract

General visual representations learned from web-scale
datasets for robotics have achieved great success in re-
cent years, enabling data-efficient robot learning on ma-
nipulation tasks; yet these pre-trained representations are
mostly on 2D images, neglecting the inherent 3D nature of
the world. However, due to the scarcity of large-scale 3D
data, it is still hard to extract a universal 3D representa-
tion from web datasets. Instead, we are seeking a general
visual pre-training framework that could improve all 3D
representations as an alternative. Our framework, called
FVP, is a novel 4D Visual Pre-training framework for real-
world robot learning. FVP frames the visual pre-training
objective as a next-point-cloud-prediction problem, models
the prediction model as a diffusion model, and pre-trains
the model on the larger public datasets directly. Across

twelve real-world manipulation tasks, FVP boosts the av-
erage success rate of 3D Diffusion Policy (DP3) for these
tasks by 28%. The FVP pre-trained DP3 achieves state-
of-the-art performance across imitation learning methods.
Moreover, the efficacy of FVP adapts across various point
cloud encoders and datasets. Finally, we apply FVP to the
RDT-1B, a larger Vision-Language-Action robotic model,
enhancing its performance on various robot tasks. Our
project page is available at: https://4d-visual-
pretraining.github.io/.

1. Introduction

Learning generalizable visual representations from large-
scale datasets is crucial for robotic tasks [22, 30, 31, 49, 54].
Currently, robot representation learning is predominantly
pre-trained with large-scale 2D images [19, 22, 31, 49].
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However, using 3D point clouds instead of 2D images
as visual sources for robotic manipulation has shown ef-
ficiency and generalization abilities on real-world robotic
tasks [9, 10, 37, 44, 55, 57]. Thus, we ask: how can we
pre-train for 3D inputs and extract useful representations
for robots?

Unlike the abundance of 2D images available on the In-
ternet, 3D point clouds are difficult to obtain from the open
web. Consequently, rather than training a singular visual
representation to address multiple robotic tasks, we propose
a self-supervised 3D pre-training methodology that is suit-
able for diverse neural encoders, aimed at enhancing the
performance of 3D manipulation tasks. Due to applying the
diffusion model to learn the representations has yielded ex-
cellent results in visual tasks [1, 15, 46, 63], we instantiate
this idea by employing a straightforward process of itera-
tively refining the noisy point clouds. Meanwhile, in order
to acquire visual features that understand the physical en-
vironment of robots, we also incorporate the robot action
information and the historical frame of robotic point cloud
scene into the diffusion process.

Our method, dubbed FVP, frames the learning objective
as a next-point-cloud-prediction problem and models the
prediction network as a conditional diffusion probabilistic
model. Notably, FVP directly pre-trains on the robot tra-
jectories (e.g., sequences of observation-action pairs), ren-
dering FVP a general plug-in 4D pre-training module for
all 3D imitation learning methods. FVP first embeds the
history frames of the observed point cloud into the latent
visual representations using a standard visual encoder such
as PointNet++ [27], Point Transformer [61], and DP3 En-
coder [57]. Then, conditioning on the 3D visual represen-
tations, a modified Point-Voxel Diffusion network [18, 64]
gradually denoises the Gaussian noise into the point clouds
of the next frame, as shown in Figure 1.

In contrast to past point cloud pre-training methods such
as contrastive learning or point cloud reconstruction, FVP
introduces a novel approach by predicting the next frame of
point cloud. Traditional methods [13, 25, 58, 60] typically
use contrastive learning where point clouds from the same
time step are treated as positive pairs and those from differ-
ent time steps as negative pairs; another approach is to em-
ploy point cloud reconstruction by masking portions of the
point cloud (see Figure 1). However, FVP leverages the cur-
rent robot observation predict the subsequent robot obser-
vation. Specifically, it enables the visual model to learn to
predict the robot’s next action based on the current observa-
tion. This predictive mechanism allows the visual model to
better capture the motion characteristics of the robot, lead-
ing to enhanced performance in real-world robotic appli-
cations. By focusing on predicting future states, FVP en-
ables more accurate and robust learning of dynamic behav-
iors—an ability that is critical for robotic tasks.

To demonstrate the effectiveness of FVP, we construct a
comprehensive set of tasks comprising 12 simulation tasks
and 12 real-world tasks. Simulation tasks are selected
from the Adroit [32] and MetaWorld [53] benchmarks. In
the real-world tasks, the robots used include single-arm
robots equipped with grippers and dexterous hands, dual-
arm robots, and humanoid robots. For the Simulation tasks,
regardless of whether in-domain or out-of-domain datasets
are used for pre-training, FVP-pretrained DP3 achieves
the state-of-the-art performance on various simulator tasks.
Specifically, it improves average task accuracy by 17%
when using in-domain datasets and by 24.7% when us-
ing out-of-domain datasets. For the Real tasks, we observe
that FVP could achieve 15%∼55% absolute improvements
when built upon the state-of-the-art 3D imitation learning
methods, e.g., DP3 [57] and RISE [44], and largely sur-
pass other 2D methods such as ACT [62] and Diffusion
Policy [4] (see Figure 1). Moreover, we show that FVP
could improve over different 3D encoders including DP3
Encoder [57], PointNet++[27], and Point Transformer [61],
showing the potential in pre-training on large-scale datasets.
Then, the visual models pre-trained by FVP are leveraged in
the Vision-Language-Action Robotic models (VLA model),
specifically RDT-1B [17]. We demonstrate through real-
world tasks involving both single-arm and dual-arm robots
that 3D point cloud input can effectively improve the ef-
ficiency and generalization of RDT models. Additionally,
utilizing the FVP pre-trained 3D encoder on the RoboMind
dataset enhances the RDT-1B model’s abilities in several
key areas: spatial perception, language understanding, and
task generalization. We are committed to releasing the code.

2. Related Work
Visual representations for robotics. In recent years, the
field of visual representations for robotics has seen signif-
icant advancements, driven by the need for robots to bet-
ter understand and interact with their environments. Most
works use 2D visual representations for robot control, learn-
ing from large-scale web datasets such as ImageNet [6, 36]
and Ego4D [11, 22, 31, 49]. Among them, R3M [22]
explores Time Contrastive Learning and Video-Language
Alignment to train a universal representation for robots.
MVP [49] follows the masked autoencoder paradigm and
learns from Ego4D videos. VC-1 [19] scales up the model
size and dataset in MVP. Recently, learning visuomotor
policies from point clouds has shown great promise [37, 44,
55, 57], but a universal pre-training paradigm for robotic
point cloud data remains unexplored.
Visual imitation learning provides an efficient way to
teach robots human skills from human demonstrations and
the learned skills could be more easily deployed in the
real world compared to state-based methods [4, 37, 54, 57,
62]. Nonetheless, 2D imitation learning methods such as
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ACT [62] and Diffusion Policy [4] are sensitive to cam-
era positions and often fail to capture 3D spatial informa-
tion about the objects in the environments, which high-
lights the necessity of 3D observations. ACT3D [9] ex-
plores the features of multi-view RGB images with a pre-
trained 2D backbone and lifts them in 3D to predict the
robot actions. DP3 [57] utilizes lightweight encoders to ex-
tract point cloud features, which are then fed into a diffu-
sion model to predict the robot trajectory. Rise [44] adopts
a more complex structure, including sparse convolutional
networks and transformers, to encode the point cloud into
point tokens and then uses these tokens to predict actions.
Diffusion models for robotics. Diffusion models are a kind
of generative models that learn a denoising process by the
diffusion process. They have been gaining significant pop-
ularity in the past few years due to their excellent perfor-
mance in image generation [12, 34, 39, 40] and point cloud
generation [21, 52, 64]. Due to the expressiveness of dif-
fusion models, they have been applied in robotics recently,
such as reinforcement learning [3, 41], imitation learning
[4, 7, 23, 28, 43, 50, 57], reward learning [12, 14, 20],
grasping [35, 38, 42], and motion planning [33]. Different
from these works, this work provides a visual pre-training
framework for robotics that is based on diffusion models.

3. Method
In this section, we describe the details of our proposed 4D
Visual Pre-training (FVP). We begin by giving an introduc-
tion to diffusion models and then describe how FVP pre-
trains 3D visual representations and applies the pre-trained
representations for downstream robotic manipulation tasks.

3.1. Diffusion Models Revisited
We first give a brief introduction to the denoising dif-
fusion probabilistic model which generates 3D point
clouds through denoising process from random Gaussian
noises [12, 39, 40, 64]. During training, diffusion models
add a series of noises to the original point cloud X0 as in-
put, represented as XT . The process of adding noise, e.g.,
the diffusion process, is modeled as a Markov chain [16]:

q(X1:T |X0) =

T∏
t=1

q(Xt|Xt−1),

q(Xt|Xt−1) = N (Xt;
√
1− βtXt−1, βtI).

(1)

where T denotes the number of steps and q(xt|xt−1) is a
Gaussian transition kernel, which gradually adds noise to
the input with a variance schedule {βt}Tt=0. Thus, by pro-
gressively inferring the point cloud distribution, we can ob-
tain:

q(Xt|X0) =
√
ᾱtX0 + ϵ

√
1− ᾱt, (2)

where αt = 1 − βt, ᾱt =
∏t

s=0 αs, and ϵ ∼ N (0, I).
In order to generate a recognizable object, we learn a

parametrized reverse process, which denoises the noise dis-
tribution q(XT ) into the target distribution q(X0). To
achieve the reverse process, we utilize the network ϵθ to
learn the reverse process q(Xt−1|Xt). ϵθ: RN×3 → RN×3

is a diffusion model which assigns the points from Gaussian
noise ball into the optimal location. Specially, at each step,
we use the network to predict the offset of each point from
current location and through each step iterates, the noisy
point will arrive in the ideal position. Thus, the network is
required to output the added noise ϵ at the most recent time
step T to denoise. We use the L2 loss L between the pre-
dicted noise and the ground truth ϵ ∈ RN×3 to optimize the
network:

L = Eϵ∼N (0,I)

[
∥ϵ− ϵθ(Xt, t)∥22

]
(3)

At the inference time, we reverse the diffusion process
that denoises the point cloud with a standard 3D Gaussian
distribution XT ∼ N(0, I3N ) into a recognizable sample
X0 iteratively.

3.2. 4D Visual Pre-training on 3D Visual Represen-
tations

Demonstration collection. To pre-train 3D visual repre-
sentations for downstream robotic manipulation tasks, we
access the demonstrations X = {x0 , x1 , . . . , xT} collected
from the real-world robotic tasks, where each trajectory
contains T frames of observation-action pairs xt = (ot, at).
The observation ot is the 3D point cloud at time t and the
action is at the robot joint position at time t. Each task
demonstrations are used to pre-train its own visual encoder.
FVP is also applicable for out-of-domain pre-training us-
ing publicly available robot datasets such as Robomind, as
long as they contain complete point cloud information for
robotic manipulation.
Extracting 3D visual representations. FVP encodes the
previous frame’s point cloud ot−1 into a latent representa-
tion z, which is to guide the diffusion model to predict the
future frame point cloud ot (Figure 1). The visual encoder
could be implemented as any type of general 3D encoders,
such as PointNet++ [27], Point Transformer [61], DP3 En-
coder [57], and RISE Encoder [44]. The latent representa-
tion z ∈ RN×Cv , where N is the number of point clouds,
Cv are the feature dimensions of point clouds.
Generating future point cloud. Conditioning on the la-
tent representation z, our point cloud diffusion model de-
noises the random Gaussian noise into the future point
cloud. In particular, we project the latent representation
z onto the current frame of point cloud with added noise
otT , T represents the number of added noisy steps. The
input point cloud of the diffusion model is changed from
otT ∈ RN×3 to otT,+ ∈ RN×(Cv+3). ϵθ is now a new func-
tion: RN×(Cv+3) → RN×3 which predicts the noise ϵ from
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the attached point cloud otT,+ = [otT , z]. Thus, the opti-
mization of the loss function L for the neural network ϵθ is
transformed as:

L = Eϵ∼N (0,I)

[
∥ϵ− ϵθ(o

t
+,T , T )∥22

]
(4)

Downstream robotic tasks. After obtaining the pre-trained
3D visual representations, we apply them in downstream
real-world robotic manipulation tasks. Given the collected
expert demonstrations, we train 3D visuomotor policies
such as RISE [44] and DP3 [57], which adopts point clouds
as input from time step t and predict robot joint positions
for time step t + 1. We directly replace the original visual
representations with the pre-trained ones and fine-tune the
visual representations and the policy backbone in an end-
to-end manner during training.

4. Simulation Experiment
In our experiment, we aim to investigate how the pre-trained
visual representations adopted by FVP can be utilized for
downstream robotic simulation and real-world manipula-
tion tasks. As the discrepancy between simulation environ-
ments and real-world scenarios diminishes, some standard-
ized simulation benchmarks can serve as effective tools to
validate the efficacy of FVP. Therefore, in this section, we
evaluate the performance of FVP on simulation tasks from
the “Adroit” and “Metaworld” benchmarks.

4.1. Simulation Benchmark
Adroit. Adroit [32] introduces a set of dexterous manip-
ulation tasks that serve as a benchmark for assessing the
capabilities of deep reinforcement learning in controlling a
24-degree-of-freedom hand. The tasks include object relo-
cation, where a ball must be moved to a randomized target
location; in-hand manipulation, requiring the repositioning
of a pen to match a target orientation; door opening, involv-
ing the undoing of a latch and swinging the door open; and
tool use, specifically hammering a nail into a board with
variable nail positions.
MetaWorld. MetaWorld [53] is a comprehensive bench-
mark that encompasses 50 diverse simulated robotic ma-
nipulation tasks. These tasks are designed to challenge
and evaluate the capabilities of meta-reinforcement learning
and multi-task learning algorithms in acquiring new skills
efficiently. The tasks involve a range of actions such as
reaching, pushing, grasping, and placing objects, as well
as more complex maneuvers like opening doors, windows,
and drawers, turning dials, and inserting pegs into holes.

4.2. Evaluation Detail
The primary objective of FVP is to provide a novel pre-
training method to enhance the performance of 3D imitation
learning. To this end, our main baselines are several 3D/4D

visual pre-training methods. Additionally, we also compare
FVP with 2D pre-training visual models in terms of their
enhancement of imitation learning. Meanwhile, to validate
the effectiveness of FVP, we employ both in-domain and
out-of-domain datasets for pre-training. The out-of-domain
datasets contain all tasks within the current benchmark,
which also include the tested tasks. For example, for the
“Adroit”, the in-domain dataset consists of datasets for each
individual task (“Hammer”, “Door”, “Pen”), while the out-
of-domain dataset comprises the sum of all tasks datasets
on the “Adorit”.

Following the DP3 testing pipline, we run 3 seeds for
each experiment with seed number 0, 1, 2. For each seed,
we evaluate 20 episodes every 200 training epochs and then
compute the average of the highest 5 success rates. We re-
port the mean and std of success rates across 3 seeds.

4.3. Experiment Results
In Figure 2, we demonstrate the performance of differ-
ent baselines pre-trained on in-domain and out-of-domain
datasets on DP3 [57]. We can observe that when pre-
training on the in-domain dataset, FVP exhibits an average
improvement in the success rate of 16.9% on the Adorit
and the Metaworld benchmarks. When FVP adopts the
out-of-domain datasets to pre-train the vision encoder, DP3
pre-trained by FVP demonstrates a significant improvement
in task success rates on the Adorit and Metaworld bench-
marks, especially in some difficult tasks (such as Hand In-
sert and Pick Out of Hole Hand Insert Disassemble). Thus,
we can conclude that FVP demonstrates a more effective
ability to improve the success rates of tasks in simula-
tion compared to other pre-training methods, regardless of
whether pre-training is conducted on small batches of in-
domain datasets or large number of out-of-domain datasets.
Meanwhile, we evaluate the performance of DP3 [57], pre-
trained with FVP, against 2D imitation learning utilizing a
pre-trained vision backbone in Figure 2. Despite being pre-
trained on datasets exceeding size 300M, the performance
of MVP and R3M in enhancing the success rate of tasks
when applied to Diffusion Policy is inferior to that of FVP
pre-trained on in-domain/out-of-domain data in 3D imita-
tion learning.

5. Real-world Experiment
Currently, 3D imitation learning gains widespread appli-
cation in enabling various types of robots to execute real-
world tasks. In this section, we systematically evaluate
the extent to which FVP enhances the performance of sin-
gle task imitation learning and vision-language-action large
model(VLA model) in practical tasks. Specifically, we as-
sess the effectiveness of FVP in improving task success
rates and robustness across different robotic platforms, in-
cluding the UR5 single-arm robot with a robotic arm grip-
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Figure 2. Comparing FVP with more baselines in simula-
tion. We include various 3D pre-training methods, various 2D pre-
training methods, and variants of Diffusion Policy such as Equi-
Bot [51] and EquiDiff [45].

per and 16-Dof Leap Hand with four fingers, the AgileX
dual-arm robot and the TianGong humanoid robot.

5.1. Experiment Setup
UR5 single-arm robot setup. We use the UR5 robotic
arm equipped with a gripper for real-world robotic tasks.
Our visual observations including images and point clouds
are collected by one Intel RealSense L515 RGB-D camera.
The camera is placed in the northeast corner of the console,
which is approximately 120cm by 60cm in size. For a thor-
ough evaluation of our approach, we design two real-world
tasks:
• PickSquarel, where the robot picks up the green square

and places it in the bowl.
• PlaceBottle, where the robot grabs the bottle and places

it on the table.
Then, we equip a UR5 single-arm with a LeapHand dexter-
ous hand as the end effector instead of a gripper, and then
we design four tasks to evaluate the effectiveness of FVP.
These tasks are explained as follows:
• PickPlace: The dexterous hand picks up a toy chicken

and places it into a blue bowl.
• FlipCup: The dexterous hand reaches a cup lying on the

table and upright it.
• Assembly: The dexterous hand reaches and grasps a

cylindrical cup, lifts it up and inserts it into a kettle.
• ArtiManip: The dexterous hand lifts the lid of a box us-

ing its thumb and gently opens it.
AgileX dual-arm robot setup. Since many operational
tasks in human reality require dual-arm coordination to
complete, and dual-arm coordination can achieve higher
task efficiency. In our paper, we use the AgileX Cobot
Magic [2] dual-arm robot setup designed based on Mobile
ALOHA [8] to perform actual dual-arm tasks to validate
the effectiveness of FVP. Additionally, we use the Intel Re-
alSense L515 RGB-D camera to record visual information
during task execution. We provide a detailed description of
each dual-arm manipulation task:

• PutBox: Both the left and right arms move the fruits from
the table into the box.

• StackBowl: The dual arms stack two bowls on top of
each other, with each arm controlling one bowl.

• WipePlate: The left arm holds the sponge and clean the
plate picked by the right arm.

TianGong humanoid robot setup. We use the built-in
cameras of TianGong humanoid robot [48] to collect vi-
sual information from real-world task scenarios, including
3D point clouds and 2D images. Simultaneously, we col-
lect proprioceptive data, such as joint positions and actions,
from the upper body of the TianGong humanoid robot. The
upper body of the TianGong robot has 30 degrees of free-
dom (DoF), distributed across its head, arms, waist, and
hands. Specifically, the head has three degrees of freedom,
each arm contains seven degrees of freedom, each dexter-
ous hand has six degrees of freedom, and the waist has one
degree of freedom. To evaluate the performance of FVP in
humanoid robots, we design three real-world tasks:
• PushDraw: The humanoid robotic arm pushes in a

drawer.
• ToastBread: The humanoid robotic arm starts the toaster

to bake bread.
• Closelid: The humanoid robot arm closes the garbage lid.

The visualization of the designed tasks is shown in Fig-
ure 3. Then, we introduce the data collection process for
different robots. For UR5 single-arm robots with gripper,
we use a keyboard interface to control the arm’s movements
and gripper actions. For the UR5 single-arm robot with a
dexterous hand, we use HaMeR [26] to detect human hand
poses with a single RealSense D435 camera. We then em-
ploy the AnyTeleop [29] framework to retarget the robot
system. For the dual-arm robot, we use an auxiliary robotic
arm to control the primary robotic arm to collect the dataset.
For the humanoid robot, we use motion capture suits to map
human movements to robot control, enabling the collection
of the robot dataset. We collect 50 expert demonstrations
utilized for model training. We conduct 20 trials for each
experiment and report the success rate over these trials to
evaluate the performance of FVP.
VLA model experiment setup. Evaluating the perfor-
mance of the VLA model solely based on task success rates
is not the only criterion [59]. Generalization and under-
standing long-range tasks are critical measures of the effec-
tiveness of the VLA model. Figure 5 shows the four tasks
we designed to investigate the spatial understanding, task
transfer, language understanding, and long-horizon task
performance of the VLA (Vision-Language-Action) model.
These tasks include placing apples at the four corners of
the space, picking up bananas and placing them on a plate,
pouring water using both arms, and a long-term task that in-
volves placing apples, pouring water, and wiping the table.
Each task still requires collecting 50 demos.
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Figure 3. Visualization of our real-world tasks. For each task, we show several steps to understand the task process.

5.2. Q1: Can FVP-pretrained policies outperform
other imitation learning methods?

We compare the DP3 and RISE pre-trained by FVP against
2D/3D imitation learning methods on our different robot
tasks. Figure 4 shows that FVP pre-training approach can
effectively enhance 3D imitation learning such as DP3 [57]
and RISE [44]. Meanwhile, RISE pre-trained by FVP
achieves the SOTA performance across these real-world
tasks, largely surpassing both 2D and 3D single task imita-
tion learning methods. Especially in the tasks of dexterous
hand, FVP can notably improve the success rate of these
tasks, because FVP introduces the time frames to assist vi-
sual models in understanding the complexity of motion tra-
jectory on dexterous hand.

5.3. Q2: Can FVP outperform other pre-trained
visual representations?

We select various 3D/4D pre-training methods (such as
PointMAE [25], STRL [13] and C2P [60]) to train visual
models for comparison with visual models pre-trained by
FVP in real-world tasks. To validate the generalization
of the FVP pre-training framework, we pre-train FVP and
these baselines using both in-domain and out-of-domain
datasets. For the out-of-domain dataset, we select the Robo-
mind dataset [47], which contains 3D point cloud informa-
tion. Figure 4 indicates that whether using an in-domain
dataset or an out-of-domain dataset for pre-training, com-
pared to PointMAE [25], STRL [13], and C2P [60], FVP
pre-trained approach can learn more effective visual fea-
tures, thereby aiding DP3/RISE in improving the more ef-
ficacy of real-world robotic task achievement. Vision en-

Figure 4. Success rate (%) of imitation learning on real-world
robotic tasks and 2D & 3D visual representations pre-trained
by different approaches. “DP3+FVP” and “RISE+FVP” denote
the application of FVP to pretrain the visual models from DP3
and RISE, respectively. “DP3” indicates that the visual model
within DP3 has not undergone pretraining. “DP3+PointMAE”,
“DP3+STRL”, and “DP3+C2P” signify the utilization of Point-
MAE, STRL, and C2P to pre-train the visual model from DP3.
The numbers before the comma represent the performance using
in-domain datasets for pre-training, while the numbers after the
comma represent the performance using out-of-domain datasets
for pre-training.

coders pretrained using the Robomind dataset with the FVP
framework are considered as general robot vision repre-
sentations. Meanwhile, we compare DP3 pre-trained by
FVP with R3M [22], MVP [49] and MAE (Soup-1M+100
DoH) [5], which are the large robotic generalized mod-
els pre-trained by 2D images. We show the performance
of using R3M [22], MVP [49] and MAE (Soup-1M+100
DoH) [5]-trained features in the same policy model as DP3
in Table 1. We find that FVP pre-training method is more ef-

8456



fective in improving the performance of model on the real-
world tasks compared to R3M [22], MVP [49] and MAE
(Soup-1M+100 DoH) [5]. Similarly to the approach used in
R3M [22], MVP [49] and MAE (Soup-1M+100 DoH) [5],
the DP3 experiment results in the Table 1 are also pre-
trained using an out-of-domain dataset. Specifically, the vi-
sual encoder from DP3 is pre-trained using the Robomind
dataset [47].

Table 1. Success rate (%) of 2D pre-trained visual representa-
tions on the diffusion policy. We use the same policy generator as
in DP3 to fine-tune R3M, MVP, and MAE (Soup-1M+100 DoH)
on the six real-work tasks.

Diffusion Policy for Robotic Action
R3M [22] MVP [49] MAE (Soup-1M+100 DoH) [5] DP3+FVP

PickSquarel 15/20 17/20 18/20 20/20
PlaceBottle 13/20 15/20 15/20 20/20
PickPlace 14/20 16/20 16/20 17/20
FlipCup 14/20 17/20 15/20 16/20
Assembly 9/20 10/20 11/20 13/20
ArtiManip 11/20 14/20 14/20 16/20
Average 12.5/20 15.5/20 15.3/20 16.4/20

5.4. Q3: Can FVP improve the effectiveness of VLA
models?

At present, large vision-language-action (VLA) robot mod-
els such as RDT-1B [17] rely on 2D images and robotic
proprioceptive data to generate robot actions. Thus, we in-
corporate a point cloud encoder into the visual component
of the original VLA models to support point cloud input.
The point cloud visual encoder in the VLA model is the
same as the one used in iDP3 [56], featuring a pyramid-
structured multi-layer fully connected network. We group
tasks of the same robot type together to fine-tune RDT-1B.
Table 2 shows the performance of RDT-1B, including their
versions with point cloud input and pre-trained using FVP,
in real-world tasks. We find that incorporating 3D point
cloud input and using the FVP pre-training method signifi-
cantly improves the performance of RDT-1B on real-world
tasks.

Table 2. Success rate (%) of five real-world tasks using RDT-
1B with different section. “2D Image Input” and “3D point cloud
Input” refer to using only images as input and adding point clouds
as additional input, respectively. “2D Image Input by R3M” and
“3D encoder pretrained by FVP” refer to the experimental results
using a 2D encoder pretrained with R3M and a 3D encoder pre-
trained with FVP, respectively, in real-world scenarios.

Input Style RDT-1B [27]
PickSquarel PlaceBottle PutBox StackBowl WipePlate

2D Image Input 12/20 10/20 6/20 8/20 3/20
2D Image Input by R3M 15/20 12/20 7/20 11/20 4/20
3D point cloud Input 14/20 12/20 9/20 13/20 4/20
3D encoder pretrained by FVP 18/20 17/20 9/20 16/20 5/20

5.5. Q4: Can pre-trained VLA exhibit stronger spa-
tial understanding abilities?

We mainly examine if using 3D point cloud inputs and FVP
pre-training can improve the VLA model’s spatial percep-
tion capabilities. We design a pick-and-place task in which

Table 3. Success rate (%) of RDT-1B on the different gener-
alization tasks. “FVP” represents FVP pre-trains the 3D encoder
using the Robomind dataset.

FVP Pre-training RDT-1B [27]
2D Iamge 3D PointCloud FVP

Spatial Understanding 8/20 11/20 14/20
Knowledge Transfer 10/20 14/20 16/20
Lanugage Understanding 6/20 6/20 7/20
Long Horizon Task 0/20 2/20 3/20
Average 6/20 8.25/20 10/20

apples are placed in their designated positions based on the
given instructions. We presents the visualization results of
the designed tasks in Figure 5. Table 3 shows the improve-
ment in spatial perception capabilities of the VLA model
with 3D point cloud inputs and FVP pre-training.

5.6. Q5: Can pre-trained VLA transfer their gen-
eral knowledge and behavioral abilities to sim-
ilar but unseen tasks?

We design a straightforward task in which the model learns
to grasp a banana and place it on a plate. Subsequently, we
test the model’s ability to pick up an apple and place them
on the plate, as depicted in the Figure 5. From Table 3,
we find that due to the use of a large robotic dataset for
pre-training, FVP can effectively enhance the VLA model’s
task transferability. Both the training and testing language
inputs are “pick up the object from the table and place it on
the plate.”.

5.7. Q6: Can pre-trained VLA enhanced language
understanding ability?

We aim to verify whether FVP can enhance the robustness
of the VLA model in terms of language understanding. For
this purpose, we design an experiment in the same scene
where the task is to pour water, with language instructions
to control either the left water bottle or the right water bottle
to perform the pouring. Figure 5 shows the visualization
results of this task. During the testing process, we input the
language instructions “Pour the water from the bottle on the
Left into the cup ” and “Pour the water from the bottle on
the Right into the cup.” ten times each. Our training set
further contains two types of language instructions, with an
equal number of demonstrations provided for each. We find
that the improvement in language understanding provided
by point cloud input to the model is small (see Table 3).

5.8. Q7: Can pre-trained VLA accurately support
the completion of long-horizon tasks?

We investigate whether FVP improves performance on
long-range tasks. Figure 5 shows the visualization results
of a long-horizon task involving multiple dual-arm opera-
tions, specifically: placing an apple on a plate, then wiping
the table with a sponge, and finally pouring water into a
cup. Table 3 shows that using 3D point cloud input and the
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Long Horizon
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“Pour the water from the bottle 
on the right into the cup.”

“Pour the water from the 
bottle on the left into the cup.”

“Put the apple on 4 different 
locations.”

Figure 5. Visualization of the different generalization tasks on RDT-1B. We visualize the tasks designed to evaluate various capabilities
and generalization of the RDT-1B model.
FVP pre-training method can effectively enhance the per-
formance of the RDT-1B model on the long-horizon tasks.

Table 4. Ablation study of DP3 pre-trained by FVP on UR5
single arm tasks. DP3 vision encoder is pre-trained on the Robo-
mind datasets.

Real Tasks
PickSquarel PlaceBottle PushDraw ToastBread

DP3+FVP 20/20 20/20 20/20 16/20
Current Frame Input 15/20 14/20 13/20 13/20
Freeze Visual Encoder 11/20 9/20 10/20 7/20

5.9. Q8: Which components of FVP are important?
To understand the contributions of each component of FVP,
we conduct several ablation studies, as shown in Table 4.
Specifically, we compare the full FVP with the deficient
FVP, which does not history frame point cloud informa-
tion. We use the current frame’s point cloud instead of the
historical frame point cloud to test its impact on FVP perfor-
mance. Table 4 shows the success rate of DP3 pre-trained
by the full/deficient FVP deployed on the several real-world
robotic tasks. We can find that the information from histori-
cal frames and have a positive impact on the performance of
FVP. The historical frame information plays a more signif-
icant role in the visual representations pre-trained by FVP.
Table 4 shows that applying such pre-trained visual features
to DP3 does not improve the model’s performance. Finally,
we investigate the success rate of downstream tasks when
freezing the visual model during the training of DP3. Ta-
ble 4 shows that freezing the visual model does not lead
to an increase in the success rate of real-world tasks. We
think this phenomenon is due to the gap between the out-

of-domain and in-domain datasets. We also analyze the im-
pact of using historical frames with different step sizes as
the input condition on FVP’s performance. Table 5 demon-
strates the performance of FVP when using different his-
torical frame point clouds as inputs in the PickSquarel and
PlaceBottle task.
Table 5. Performance of DP3+FVP with Different Historical
Frame Point Clouds in the PickSquarel and PlaceBottle Tasks

Task 1 Frame 2 Frames 3 Frames 4 Frames

PickSquarel 20/20 19/20 17/20 15/20
PlaceBottle 20/20 18/20 17/20 14/20

6. Conclusion
In this work, we introduce 4D Visual Pre-training (FVP),
a visual pre-training framework for robotic manipulation,
which utilizes the point cloud from history frames and
robotic actions to predict the future point clouds as the
learning objective, to pre-train a 3D visual representation
for downstream robotic tasks. FVP is a general pre-training
method for 3D imitation learning methods and we imple-
ment FVP upon DP3 and RISE, which results in state-of-
the-art results across several real-world manipulation tasks.
Additionally, we apply the FVP framework to the VLA
(Vision-Language Action) model, which not only improve
the success rate of real-world tasks but also enhance the
model’s generalization capabilities.

Limitations. Open-source robotics datasets, including
Open-X-Embodiment [24], are available. However, these
datasets lack complete camera extrinsic parameters and
depth information. Thus, we do not utilize these datasets
as out-of-domain data for pre-training.
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