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Abstract

Concept Bottleneck Models (CBMs) have garnered increas-
ing attention due to their ability to provide concept-based
explanations for black-box deep learning models while
achieving high final prediction accuracy using human-like
concepts. However, the training of current CBMs is heavily
dependent on the precision and richness of the annotated
concepts in the dataset. These concept labels are typically
provided by experts, which can be costly and require sig-
nificant resources and effort. Additionally, concept saliency
maps frequently misalign with input saliency maps, causing
concept predictions to correspond to irrelevant input fea-
tures - an issue related to annotation alignment. To address
these limitations, we propose a new framework called SS-
CBM (Semi-supervised Concept Bottleneck Model). Our
SSCBM is suitable for practical situations where annotated
data is scarce. By leveraging joint training on both labeled
and unlabeled data and aligning the unlabeled data at the
concept level, we effectively solve these issues. We propose
a strategy to generate pseudo labels and an alignment loss.
Experiments demonstrate that our SSCBM is both effective
and efficient. With only 10% labeled data, our model’s con-
cept and task accuracy on average across four datasets is
only 2.44% and 3.93% lower, respectively, compared to the
best baseline in the fully supervised learning setting.

1. Introduction
Deep learning models like ResNet [13] typically feature
complex non-linear architectures, making it difficult for
end-users to understand and trust their decisions. This lack
of interpretability is a significant obstacle to their adop-
tion, especially in critical fields such as healthcare [41]
and finance [30], where transparency is crucial. Explain-
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able artificial intelligence (XAI) models have been devel-
oped to meet the demand for transparency, providing in-
sights into their behavior and internal mechanisms [16–
18, 46]. Concept Bottleneck Models (CBMs) [25] are par-
ticularly notable among these XAI models for their abil-
ity to clarify the prediction process of end-to-end AI mod-
els. CBMs introduce a bottleneck layer that incorporates
human-understandable concepts. During prediction, CBMs
first predict concept labels from original input, then use
these predicted concepts in bottleneck layer to determine
the final label. This approach results in a self-explanatory
decision-making process that users can comprehend.

A major issue in original CBMs is the need for expert
labeling, which is costly in practice. Some researchers ad-
dress this problem through unsupervised learning. For ex-
ample, [34] proposes a Label-free CBM that transforms any
neural network into an interpretable CBM without requiring
labeled concept data while maintaining high accuracy. Sim-
ilarly, Post-hoc Concept Bottleneck models [48] can be ap-
plied to various neural networks without compromising per-
formance, preserving interpretability advantages. However,
these methods have three issues. First, those unsupervised
methods heavily rely on large language models like GPT-
3, which have reliability issues [26]. Second, the concepts
extracted by these models lack evaluation metrics, under-
mining their interpretability. Third, the assumption that no
concept labels are available is too stringent in practice. In
reality, obtaining a small portion of concept labels is feasi-
ble and cost-effective. Therefore, we can maximize the use
of this small labeled concept dataset. This is the motiva-
tion for introducing our framework, which focuses on the
semi-supervised setting in CBM.

In this paper, we introduce a framework called the SS-
CBM (Semi-supervised Concept Bottleneck Model). Com-
pared to a supervised setting, semi-supervised CBMs have
two main challenges. First, obtaining concept embeddings
requires concept labels, so we need to generate pseudo la-
bels to obtain these concept embeddings. To achieve this,
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Figure 1. (a) A sample of sparrow class with complete concept labels. (b) A sample of sparrow class with incomplete concept labels. (c)
A sample of misalignment between input features and concepts resulting from existing CBM methods. Our framework simultaneously
utilizes both (a) and (b) types of data and addresses the issue of (c) through an alignment loss.

SSCBM uses a KNN-based algorithm to assign pseudo-
concept labels for unlabeled data. Second, while such a
simple pseudo-labeling method is effective and has accept-
able classification accuracy, we also find that the concept
saliency map often misaligns with the input saliency map,
meaning concept predictions frequently correspond to irrel-
evant input features. This misalignment often arises from
inaccurate concept annotations or unclear relationships be-
tween input features and concepts, which is closely related
to the broader issue of annotation alignment. In fact, in
the supervised setting, there is a similar misalignment is-
sue [11]. Existing research seeks to improve alignment by
connecting textual and image information [15]. However,
these methods only focus on supervised settings and cannot
be directly applied to our settings, as our pseudo-labels con-
tain noise. Our framework achieves excellent performance
in both concept accuracy and concept saliency alignment
by leveraging joint training on both labeled and unlabeled
data and aligning the unlabeled data at the concept level. To
achieve this, we leverage the relevance between the input
image and the concept and get other pseudo-concept labels
based on these similarity scores. Finally, we align these two
types of pseudo-concept labels to give the concept encoder
the ability to extract useful information from features while
also inheriting the ability to align concept embeddings with
the input. See Figure 1 for an illustration. Our contributions
can be summarized as follows:

• We propose SSCBM, a framework designed to address
both the semi-supervised annotation problem and the con-
cept semantics alignment problem, which hold significant
practical importance in real-world applications. SSCBM
tackles them in an elegant and efficient manner. To the
best of our knowledge, we are the first to tackle these two
problems within a single framework, elucidating the be-
havior of CBMs through semi-supervised alignment.

• Comprehensive experiments demonstrate the superiority
of our SSCBM in annotation and concept-saliency align-

ment, indicating its efficiency and effectiveness. Using
only 10% labeled data, our model achieves concept and
task accuracy on average across the four datasets that are
merely 2.44% and 3.93% lower, respectively, than the
best baseline under fully supervised learning settings.

2. Related Work
Concept Bottleneck Models. Concept Bottleneck Model
(CBM) [25] is an innovative deep-learning approach for
image classification and visual reasoning. By introduc-
ing a concept bottleneck layer into deep neural networks,
CBMs enhance model generalization and interpretability by
learning specific concepts. However, CBMs face two pri-
mary challenges: their performance often lags behind that
of models without the bottleneck layer due to incomplete
information extraction, and they rely heavily on laborious
dataset annotation. Researchers have explored various so-
lutions to these challenges. [5] extends CBMs into inter-
active prediction settings by introducing an interaction pol-
icy to determine which concepts to label, thereby improv-
ing final predictions. [34] addresses CBM limitations by
proposing a Label-free CBM, which transforms any neu-
ral network into an interpretable CBM without requiring la-
beled concept data, maintaining high accuracy. Post-hoc
Concept Bottleneck models [48] can be applied to various
neural networks without compromising performance, pre-
serving interpretability advantages. Related work in the im-
age domain includes studies [12, 19, 23, 24, 29, 37, 38]. In
the graph concept field, [31] provides a global interpretation
of graph neural networks (GNNs) by mapping graphs into
a concept space through clustering and offering a human-
in-the-loop evaluation. [3, 44] extend this approach by in-
corporating both global and local explanations. For local
explanations, they define a concept set, with each neuron
represented as a vector with Boolean values indicating con-
cept activation. However, existing works rarely consider
semi-supervised settings, which are practical in real-world
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applications. Our framework addresses these issues effec-
tively.
Semi-supervised Learning. Semi-supervised learning
(SSL) combines the two main tasks of machine learning:
supervised learning and unsupervised learning [43]. It is
typically applied in scenarios where labeled data is scarce.
Examples include computer-aided diagnosis [6, 49], medi-
cal image analysis [8, 10, 20], and drug discovery [7]. In
these cases, collecting detailed annotated data by experts
requires considerable time and effort. However, under the
assumption of data distribution, unlabeled data can also as-
sist in building better classifiers [43]. SSL, also known as
self-labeling or self-teaching in its earliest forms, involves
the model iteratively labeling a portion of unlabeled data
and adding it to the training set for the next round of train-
ing [35]. The expectation-maximization (EM) algorithm
proposed by [32] uses both labeled and unlabeled data to
produce maximum likelihood estimates of parameters. [27]
and [40] focus on consistency regularization. II-model [27]
combines both supervised cross-entropy loss and unsuper-
vised consistency loss while perturbing the model and data
based on the consistency constraint assumption. A tempo-
ral ensembling model integrates predictions from models at
various time points. Mean teacher [40] addresses the slow
updating issue of the temporal ensembling model on large
datasets by averaging model weights instead of predicting
labels. MixMatch [4] unifies and refines the previous ap-
proaches of consistency regularization, entropy minimiza-
tion, and traditional regularization into a single loss func-
tion, achieving excellent results. Pseudo labeling, as an ef-
fective tool for reducing the entropy of unlabeled data [28],
has been increasingly attracting the attention of researchers
in the field of semi-supervised learning. [2] proposes that
directly using the model’s predictions as pseudo-labels can
achieve good results. FixMatch [39] predicts and retains
the model, generating high-confidence pseudo-labels. [36]
continuously adjusts the teacher based on feedback from
the student, thereby generating better pseudo-labels. While
there has been a plethora of work in the semi-supervised
learning field, the focus on semi-supervised concept bottle-
neck models remains largely unexplored. Our work focuses
on this new area.

3. Preliminaries
Concept Bottleneck Models [25]. We consider a classifi-
cation task with a concept set denoted as C = {p1, · · · , pk}

with each pi being a concept given by experts or LLMs, and
a training dataset represented D = {(x(i)

, y
(i)
, c

(i))}N
i=1.

Here, for i 2 [N ], x(i)
2 X ✓ Rd represents the feature

vector (e.g., an image’s pixels), y(i) 2 Y ✓ Rl denotes the
label (l is the number of classes), c(i) = (c1

i
, · · · , c

k

i
) 2 Rk

represents the concept vector (a binary vector of length k,
where each value indicates whether the input x(i) contains

that concept). In CBMs, the goal is to learn two representa-
tions: one called a concept encoder that transforms the input
space into the concept space, denoted as g : Rd

! Rk, and
another called label predictor that maps the concept space to
the downstream prediction space, denoted as f : Rk

! Rl.
Usually, the map f is linear. For any input x, we aim to en-
sure that its predicted concept vector ĉ = g(x) and predic-
tion ŷ = f(g(x)) are close to their underlying counterparts,
thus capturing the essence of the original CBMs.
Concept Embedding Models [9]. As the original CBM
is based solely on concept features to determine the pre-
dictions of the model, compared to canonical deep neu-
ral networks, it will degrade prediction performance. To
further improve the performance of CBMs, CEM is devel-
oped by [9]. It achieves this by learning interpretable high-
dimensional concept representations (i.e., concept embed-
dings), thus maintaining high task accuracy while obtaining
concept representations that contain meaningful semantic
information. For CEMs, we use the same setting as that
of [9, 21]. For each input x, the concept encoder learns
k concept representations ĉ1, ĉ2, . . . , ĉk, each correspond-
ing to one of the k ground truth concepts in the training
dataset. In CEMs, each concept ci is represented using two
embeddings ĉ+

i
, ĉ�

i
2 Rm, each with specific semantics,

i.e., the concept is True (activate state) and concept is False
(negative state), where hyper-parameter m is the embedding
dimension. We use a DNN  (x) to learn a latent represen-
tation h 2 Rnh , which is used as input to the CEM em-
bedding generator, where nh is the dimension of the latent
representation. The CEM embedding generator � feeds h
into two fully connected concept-specific layers to learn two
concept embeddings in Rm.

ĉi = �i (h) = a (Wih+ bi) .

Then we use a differential scoring function s : R2m
!

[0, 1], to achieve the alignment of concept embeddings
ĉ+
i
, ĉ�

i
and ground-truth concepts ci. It is trained

to predict the probability p̂i := s

⇣⇥
ĉ+
i
, ĉ�

i

⇤>⌘
=

�

⇣
Ws

h⇥
ĉ+
i
, ĉ�

i

⇤>i
+ bs

⌘
that the concept ci is active in

the embedding space. We get the final concept embedding
ĉi, as follows:

ĉi := p̂iĉ
+
i + (1� p̂i)ĉ

�
i .

At this point, we understand that we can obtain high-quality
concept embeddings rich in semantics through CEMs. In
the subsequent section 4, we will effectively utilize these
representations of concepts and further optimize their inter-
pretability through our proposed framework SSCBM.
Semi-supervised Setting. Now, we consider the setting
of semi-supervised learning for concept bottleneck models.
As mentioned earlier, a typical training dataset for CBMs
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can be represented as D = {(x(i)
, y

(i)
, c

(i))}N
i=1, where

x
(i)

2 X represents the input feature. However, in semi-
supervised learning tasks, the set of feature vectors typically
consists of two parts, X = {XL,XU}, where XL represents
a small subset of labeled data and XU represents the remain-
ing unlabeled data. Here, the unlabeled data refers to data
where the class label y is known, while the concept label c
is unknown. Generally we assume |XL| ⌧ |XU |. We as-
sume that x(j)

2 XL is labeled with a concept vector c(j)
and a label y(j), and for any x

(i)
2 X , there only exists a

corresponding label y(i) 2 Y .
Under these settings, given a training dataset D =

DL [ DU that includes both labeled and unlabeled data,
the goal is to train a CBM using both the labeled data DL

and unlabeled data DU . This aims to get better mappings
g : Rd

! Rk and f : Rk
! Rl than those trained by using

only labeled data, ultimately achieving higher task accuracy
and its corresponding concept-based explanation.

4. Semi-supervised Concept Bottleneck Models
In this section, we will elaborate on the details of the pro-
posed SSCBM framework, which is shown in Figure 2. SS-
CBM follows the main idea of CEM. Specifically, to learn
a good concept encoder, we use different processing meth-
ods for labeled and unlabeled data. The labeled data first
passes through a feature extractor  to be transformed into
a latent representation h, which then enters the concept em-
bedding extractor to obtain the concept embeddings and the
predicted concept vector ĉ for the labeled data, which is
compared to the ground truth concept to compute the con-
cept loss. Moreover, the label predictor predicts ŷ based on
ĉ, and calculates the task loss.

For unlabeled data, we first extract image features V

from the input using an image encoder. Then, we use the
KNN algorithm to assign a pseudo-label ĉimg to each un-
labeled data, which has been experimentally proven to be
simple and effective. In the second step, we compute a
heatmap between concept embeddings and the input. Af-
ter applying a threshold, we obtain the predicted alignment
label ĉalign. Finally, we compute the alignment loss be-
tween ĉimg and ĉalign. During each training epoch, we
simultaneously compute these losses and update the model
parameters based on the gradients.

4.1. Label Anchor: Concept Embedding Encoder
Concept Embeddings. As described in Section 3, we ob-
tain high-dimensional concept representations with mean-
ingful semantics based on CEMs. Thus, our concept en-
coder should extract useful information from both labeled
and unlabeled data.

For labeled training data DL = {(x(i)
, y

(i)
, c

(i))}|DL|
i=1 ,

we follow the original CEM [9], i.e., using a back-
bone network (e.g., ResNet50) to extract features h =

{ (x(i))}|DL|
i=1 . Then, for each feature, it passes through an

embedding generator to obtain concept embeddings ĉi 2

Rm⇥k for i 2 [k]. After passing through fully connected
layers and activation layers, we obtain the predicted binary
concept vector ĉ 2 Rk for the labeled data. The specific
process can be represented by the following expression:

h(j) =  (x(j)), j = 1, . . . , |DL|,

ĉ(j)
i

= �(�(h(j))), i = 1, . . . , k, j = 1, . . . , |DL|,

where  , � and � represent the backbone, embedding
generator, and activation function, respectively.

To enhance the interpretability of concept embeddings,
we calculate the concept loss utilizing binary cross-entropy
to optimize the accuracy of concept predictions by com-
puting Lc based on predicted binary concept vector ĉ and
ground truth concept labels c:

Lc = BCE(ĉ, c), (1)

where BCE is the binary cross entropy loss.
Task Loss. Since our ultimate task is classification, we
also need to incorporate the task loss for the final predic-
tion performance. After obtaining the predicted concept ĉ,
we use a label predictor to predict the final class ŷ. Then we
can define the task loss function using the categorical cross-
entropy loss to train our classification model as follows:

Ltask = CE(ŷ,y), (2)

Note that for the unlabeled data, we can also calculate
the task loss since their class labels are known, to make full
use of the data.

4.2. Unlabel Alignment: Image-Textual Semantics
Alignment

Pseudo Labeling. Unlike supervised data, CEM cannot di-
rectly extract useful information from unlabeled data, as the
concept encoder is a supervised training architecture. Thus,
in practical situations lacking labeled data, one direct ap-
proach is to get high-quality pseudo concept labels to train
the model. In the following, we will introduce the method
we use to obtain pseudo-concept labels.

Firstly, we can naturally think of measuring the similar-
ity between images by calculating the distance in the cosine
space. Based on this idea, we can assign pseudo labels to
unlabeled data by finding labeled data with similar image
features to them. Specifically, for each unlabeled training
data x 2 DU = {(x(i)

, y
(i))}|DU |

i=1 , we calculate its co-
sine distance with all labeled data points x

(j)
2 DL =

{(x(j)
, y

(j)
, c

(j))}|DL|
j=1 and select the k samples with the

smallest distances:

dist(x, x(j)) = 1�
⌦(x) · ⌦(x(j))

k⌦(x)k2 · k⌦(x(j))k2
, j = 1, . . . , |DL|,
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Figure 2. Overall framework of our proposed SSCBM.

where ⌦ is a visual encoder. Then, we normalize the re-
ciprocal of the cosine distance between the nearest k data
points and x as weights. We use these weights to com-
pute a weighted average of the concept labels of these k

data points, obtaining the pseudo concept label for x. In
this way, we can obtain pseudo concept labels ĉimg for all
x 2 DU .

In our experiments, we find that directly feeding pseudo-
concept labels generated by KNN to CEM has satisfactory
performance. However, this simple labeling method can
lead to alignment issues in the concept embeddings learned
by the CEM’s concept encoder. Specifically, the predicted
concepts ĉ could not have a relation to the corresponding
features V in the image, which hinders the effectiveness of
CEM as a reliable interpretability tool. Moreover, due to
misalignment, this will also degrade the prediction perfor-
mance of the concept encoder. In the following, we aim to
address such a misalignment issue.
Generating Concept Heatmaps. Our above pseudo con-
cept labels via KNN have already contained useful infor-
mation for prediction. Thus, our goal is to provide these
labels with more information about their relation to the cor-
responding features. To achieve this, we first get another
pseudo-concept label via these relations, which are cal-
culated by the similarity between the concept embedding
and the input image, namely concept heatmaps. Specif-
ically, given an image x, we first have its feature map
V 2 RH⇥W⇥m for each concept extracted by V = ⌦(x),

where H and W are the height and width of the feature map.
Given V and the i-th concept embedding ci, we can ob-

tain a heatmap Hi, i.e., a similarity matrix that measures
the similarity between the concept and the image can be ob-
tained by computing their cosine distance:

Hp,q,i =
ĉmi · Vp,q

||ĉmi || · ||Vp,q||
, p = 1, . . . , H, q = 1, . . . ,W

where p, q are the p-th and q-th positions in the heatmaps,
and Hp,q,i represents a local similarity score between V and
ĉm
i

. Intuitively, Hi represents the relation of each part of the
image with the i-the concept. Then, we derive heatmaps for
all concepts, denoted as {H1,H2, . . . ,Hk}.
Calculating Concept Scores and Concept Labels. As
average pooling performs better in downstream classifica-
tion tasks [45], we apply average pooling to the heatmaps
to deduce the connection between the image and concepts:
si =

1
P ·Q

P
P

p=1

P
Q

q=1 Hp,q,i. Intuitively, si is the refined
similarity score between the image and concept ĉm

i
. Thus,

a concept vector s can be obtained, representing the sim-
ilarity between an image input x and the set of concepts:
s = (s1, . . . , sk)>. s can be considered as a soft concept
label which is got by similarity. Next, we have to transform
it into a hard concept label ĉalign. we determine the pres-
ence of a concept attribute in an image based on a threshold
value derived from an experiment. If the value si exceeds
this threshold, we consider the image to possess that specific
concept attribute and set the concept label to be True. We
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can obtain predicted concept labels for all unlabeled data.
Alignment of Image. Based on our earlier discussions, on
the one hand, the concept encoder should learn information
from ĉimg . On the other hand, it should also get concept
embeddings which can get good similarity-based concept
labels ĉalign for alignment with the input image. Thus, we
need a further alignment loss to achieve these two goals.
Specifically, we compute the alignment loss as follows:

Lalign = BCE(ĉimg, ĉalign). (3)

In fact, during this alignment process, the CBM back-
bone is taught a reasonable latent space structure by the
visual encoder, and thus we can regard it as an implicit
Student-Teacher setup framework.

4.3. Final Objective
In this section, we will discuss how we derive the process
of network optimization. First, we have the concept loss Lc

in (1) to improve the interpretability of the concept embed-
dings. Also, since the concept embeddings are entered into
the label predictor to output the final prediction, we also
have a task loss between the predictions given by the con-
cept bottleneck and ground truth, which is shown in (2). In
the context of binary classification tasks, we employ binary
cross-entropy (BCE) as our loss function. For multi-class
classification tasks, we use cross-entropy as the measure.
Finally, to align the images with the concept labels, we com-
puted the loss of alignment in (3). Formally, the overall loss
function of our approach can be formulated as:

L = Ltask + �1 · Lc + �2 · Lalign, (4)

where �1,�2 are hyperparameters for the trade-off between
interpretability and accuracy.

5. Experiments
In this section, we will conduct experimental studies on
the performance of our framework. Specifically, we eval-
uate the utility of our method according to the concept and
prediction of the class label. We also design interpretabil-
ity evaluation and test-time intervention to verify the inter-
pretability and alignment performance of our method. Fi-
nally, we give the ablation study to verify why we need the
alignment loss. Details and additional results are in Ap-
pendix A.

5.1. Experimental Settings
Datasets. We evaluate our methods on four real-world
image tasks: CUB[14], AwA2[33], WBCatt[42] and 7-
point[22]. See Appendix A.1 for a detailed introduction.
Baselines. We compare our SSCBM with Concept Bottle-
neck Model (CBM) and Concept Embedding Model (CEM)

Table 1. Concept and task accuracy results of SSCBM at a labeled
ratio of 0.1, compared to baselines in the fully supervised setting.

Method CUB AwA2 WBCatt 7-point
Concept Task Concept Task Concept Task Concept Task

CBM 93.99% 67.33% 96.48% 88.71% 94.18% 99.71% 74.34% 75.44%
CEM 96.39% 79.82% 95.91% 87.00% 95.33% 99.71% 77.15% 75.85%

SSCBM 90.88% 67.67% 96.48% 89.77% 93.98% 99.68% 73.67% 70.09%

mentioned in Section 3. Since those baselines do not inher-
ently include settings for semi-supervised learning, to en-
sure fairness in the evaluation, we use the same pseudo-
labeling approach as SSCBM. We utilize the KNN algo-
rithm to annotate unlabeled data based on labeled data,
which is mentioned in Section 4.2. For CBM [25], we adopt
the same setting and architecture as in the original CBM.
And for CEM, we follow the same setting as in [9]. We
also compare label-free CBM [34], which is an unsuper-
vised CBM method.
Evaluation Metrics. To evaluate the utility, we con-
sider the accuracy for the prediction of class and con-
cept labels. Specifically, concept accuracy measures the
model’s prediction accuracy for concepts: Cacc = 1

N
·

1
k

P
N

i=1

P
k

j=1 I(ĉ
(i)
j

= c
(i)
j
). Task accuracy measures

the model’s performance in predicting downstream task
classes: Aacc =

1
N

P
N

i=1 I(ŷ(i) = y(i)).
To evaluate the interpretability, besides the concept ac-

curacy, similar to previous work [9, 25], we show visualiza-
tion results. Moreover, we evaluate the performance of the
test-time intervention.
Implementation Details. All experiments are conducted
on a Tesla V100S PCIe 32 GB GPU and an Intel Xeon Pro-
cessor CPU. See Appendix A.2 for more details.

5.2. Evaluation Results on Utility
To comprehensively evaluate the model’s performance in
the semi-supervised learning setting, we simulate real-
world application scenarios. We consider labeling K sam-
ples for each class in the dataset, with an extreme case
where K=1. Clearly, K = total data size ⇥ labeled ratio
÷ number of classes. We also conduct experiments with la-
beled ratios of 0.05, 0.1, 0.15, and 0.2. We also compare the
performance of SSCBM with the baseline under the fully
supervised setting. The experimental results are shown in
Table 1 and 2. Additionally, we also explored the impact of
different backbones on model performance, which can be
found in the Appendix A.3.

Table 1 shows the performance comparison of SSCBM
at a labeled ratio of 0.1 with CEM and CBM under the fully
supervised setting. It can be observed that, although CEM
performs the best on CUB, WBCatt and 7-point, SSCBM is
only slightly inferior to it. On the AwA2 dataset, its perfor-
mance even surpasses that of CEM under the fully super-
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Table 2. Results of concept and task accuracy for different datasets with different portions of labeled data. Since the label-free CBM [34]
and LaBo [47] do not use the concept set included in the dataset but instead rely on GPT-3 to generate concepts based on class names, we
do not report the concept accuracy here.

Dataset Labeled Ratio CBM+SSL CEM+SSL Label-free CBM LaBo SSCBM
Concept Task Concept Task Concept Task Concept Task Concept Task

CUB

K=1 83.11% 5.51% 82.36% 59.35% - 74.31% - 66.38% 88.99% 66.72%
0.05 (K=2) 84.51% 8.35% 83.72% 62.20% - 74.31% - 66.38% 90.04% 67.43%
0.1 (K=3) 84.96% 9.84% 84.03% 63.12% - 74.31% - 66.38% 90.88% 67.67%

0.15 (K=4) 85.47% 9.96% 84.30% 64.14% - 74.31% - 66.38% 91.47% 68.36%
0.2 (K=5) 86.67% 16.43% 86.83% 67.64% - 74.31% - 66.38% 92.09 % 70.07%

AWA2

K=1 71.32% 90.87% 65.55% 84.44% - 73.67% - 93.73% 85.05% 89.02%
0.05 (K=30) 77.23% 91.11% 68.31% 85.01% - 73.67% - 93.73% 95.42% 89.37%
0.1 (K=60) 80.45% 91.03% 69.96% 85.48% - 73.67% - 93.73% 96.48% 89.77%
0.15 (K=90) 83.46% 91.00% 72.14% 86.61% - 73.67% - 93.73% 96.81% 90.54%
0.2 (K=120) 85.76% 91.12% 72.14% 86.61% - 73.67% - 93.73% 96.81% 90.44%

WBCatt

K=1 79.06% 99.39% 70.27% 98.64% - 41.92% - 92.26% 91.48% 99.13%
0.05 (K=62) 81.08% 99.48% 73.82% 99.52% - 41.92% - 92.26% 93.53% 99.61%
0.1 (K=124) 85.48% 99.32% 72.25% 99.29% - 41.92% - 92.26% 93.98% 99.68%

0.15 (K=186) 85.39% 99.68% 72.68% 99.58% - 41.92% - 92.26% 94.42% 99.71%
0.2 (K=247) 87.07% 99.74% 74.14% 99.52% - 41.92% - 92.26% 94.42% 99.71%

7-point

K=1 59.91% 55.95% 62.78% 66.09% - 55.44% - 64.97% 66.58% 66.84%
0.05 (K=5) 65.36% 57.47% 67.85% 67.09% - 55.44% - 64.97% 70.98% 68.77%
0.1 (K=9) 68.82% 55.70% 72.23% 66.33% - 55.44% - 64.97% 73.67% 70.09%

0.15 (K=13) 66.14% 59.75% 66.54% 67.09% - 55.44% - 64.97% 73.94% 72.56%
0.2 (K=17) 70.29% 60.44% 73.04% 66.84% - 55.44% - 64.97% 76.52% 74.56%

vised setting, which sufficiently demonstrates the superior-
ity of our method.

In Table 2, it can be observed that as the proportion
of labeled data gradually increases, the concept and class
prediction accuracy of all models improve. SSCBM out-
performs all baselines. On the CUB dataset, when only
one labeled sample per class is available, SSCBM achieves
88.99% concept accuracy and 66.72% class accuracy, which
are 6.63% and 7.37% higher, respectively, than the per-
formance achieved by CEM in a semi-supervised learning
setting. This demonstrates the effectiveness of the Image-
Textual Semantics Alignment module. The 7-point dataset
is the most challenging, and on this dataset, SSCBM still
achieves the best performance across all settings. As the
amount of labeled data increases, the concept prediction ac-
curacy improves from 66.58% to 76.52%. We also note
that on WBCatt and 7-point, the performance of Label-free
CBM is poor. This is mainly because both datasets con-
tain only five classes, which prevents Label-free CBM from
fully leveraging the world knowledge of LLMs to generate
an effective concept set, resulting in poor performance. This
further demonstrates that semi-supervised learning scenar-
ios are more realistic and practical for real-world datasets.

5.3. Interpretability Evaluation
Besides the concept accuracy, note that in SSCBM, we also
have a pseudo label revived by the alignment between the
concept embedding and the input saliency map. We use the
alignment loss to inherit this alignment. Thus, we will eval-
uate the alignment performance here to show the faithful-
ness of the interpretability given by SSCBM. We measure

our alignment performance by comparing the correctness
of the concept saliency map with the concept semantics in
Figure 3. See Appendix A.2 for detailed experimental pro-
cedures for generating saliency maps. Results show that our
concept saliency map matches the concept semantics, indi-
cating the effectiveness of our alignment loss. In Appendix
C, we also provide our additional interpretability evaluation
in Figure 6-18.

5.4. Test-time Intervention
Test-time intervention enables human users to interact with
the model at inference time. We conduct this experiment
by correcting the ratio 10% to 100% of the concept labels
in the concept predictor. We expect that the model perfor-
mance will steadily increase along with the ratio of concept
intervention, indicating that the model learned such correct
label information and automatically corrected other labels.

The results in Figure 4 demonstrate the robustness of our
model and an increasing trend to learn the information about
the concept, indicating our interpretability and model pre-
diction performance. During the test phase, the SSCBM
model generates probability scores for each concept (e.g.,
has wing color :: brown). Prior to intervention, we em-
ploy the COOP algorithm (following CEM) to identify the
most critical concepts exhibiting both high predictive uncer-
tainty and task importance. For these selected concepts, we
replace the model’s predicted values with their correspond-
ing ground truth annotations. This rectified concept vector
is subsequently fed into the classification head to produce
the final task prediction. Finally, we successfully cause the
model to predict the Great Crested Flycatcher instead of the
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(a) Original Image (b) Tail Pattern: Multi-colored (c) Underparts Color: Brown (d) Wing Color: Brown

Figure 3. The concept saliency map for the CUB dataset (savannah sparrow) demonstrates that our proposed SSCBM achieves meaningful
alignment between the ground truth concepts and the input image features. The first image on the left is the original input image. The three
images on the right show the aligned regions for different concepts using SSCBM.

ERRORhas_wing_color::brown

Great Crested
Flycatcher

Swainson
Warbler

CORRET

[0.00 ... 0.01 ... 0.00]

[0.00 ... 1.00 ... 0.00]

Intervention

Figure 4. Left: Performance with different ratios of intervened concepts on CUB dataset. Right: An example of successful intervention.

Swainson Warbler. More results are in Appendix B.

Table 3. Results of ablation study.

Ratio w/o img w/o align full model
Concept Task Concept Task Concept Task

CUB

0.0001 (K=1) 87.77% 59.89% 80.87% 65.15% 88.99% 66.72%
0.05 (K=2) 90.01% 65.98% 80.60% 65.67% 90.04% 67.43%
0.1 (K=3) 91.02% 67.28% 80.60% 64.69% 90.88% 67.67%
0.15 (K=4) 90.60% 67.97% 80.65% 65.43% 91.47% 68.36%
0.2 (K=5) 91.94% 68.99% 80.73% 64.45% 92.09% 70.07%

WBCatt

0.0001 (K=1) 88.44% 99.68% 57.80% 99.51% 91.48% 99.13%
0.05 (K=62) 92.17% 99.29% 57.93% 99.51% 93.53% 99.61%
0.1 (K=124) 92.91% 99.52% 60.49% 99.64% 93.98% 99.68%

0.15 (K=186) 93.55% 99.58% 59.13% 99.65% 94.42% 99.71%
0.2 (K=247) 94.19% 99.61% 60.65% 99.70% 94.42% 99.71%

7-point

0.0001 (K=1) 62.31% 64.30% 55.07% 66.33% 66.58% 66.84%
0.05 (K=5) 69.42% 65.06% 56.75% 68.10% 70.98% 68.77%
0.1 (K=9) 70.06% 67.34% 56.07% 65.82% 73.67% 70.09%

0.15 (K=13) 73.39% 68.10% 56.23% 65.82% 73.94% 72.56%
0.2 (K=17) 74.44% 68.61% 56.11% 65.57% 76.52% 74.56%

5.5. Ablation Study
We then give a finer study on the two kinds of pseudo-labels
to demonstrate that each one is indispensable in bolstering
the efficacy of SSCBM. Specifically, based on our method
in Section 4.2, we have three types of pseudo labels avail-
able: pseudo concept label ĉimg , ĉalign, and label ĉ pre-
dicted by the concept embedding. We first remove ĉimg

and calculate our alignment loss using ĉalign and ĉ; con-
versely, we remove ĉalign and calculate the alignment loss
using ĉimg and ĉ.

From the results presented in Table 3, it is evident that
removing the ĉimg component significantly degrades the
performance of SSCBM at both the concept level and class
level. This indicates that the pseudo-concept labels via
KNN contain necessary information about the ground truth.
The concept encoder needs to extract information from such
labels to get better performance. This situation is simi-
lar when removing the ĉalign component, indicating that
aligning the concept embedding and the input saliency map
can further extract useful information from the input image
and, thus, is beneficial to improve the performance. Our ob-
servations underscore the high degree of joint effectiveness
of two kinds of pseudo-concept labels within our objective
function, collectively contributing to the enhancement of
model prediction and concept label prediction.

6. Conclusion
The training of current CBMs heavily relies on the accuracy
and richness of annotated concepts in the dataset. These
concept labels are typically provided by experts, which can
be costly and require significant resources and effort. Ad-
ditionally, concept saliency maps frequently misalign with
input saliency maps, causing concept predictions to corre-
spond to irrelevant input features - an issue related to anno-
tation alignment. In this problem, we propose SSCBM, a
strategy to generate pseudo labels and an alignment loss to
solve these two problems. Results show our effectiveness.
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