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Abstract

MLLM reasoning has drawn widespread research for its
excellent problem-solving capability. Current reasoning
methods fall into two types: PRM, which supervises the in-
termediate reasoning steps, and ORM, which supervises the
final results. Recently, DeepSeek-R1 has challenged the tra-
ditional view that PRM outperforms ORM, which demon-
strates strong generalization performance using an ORM
method (i.e., GRPO). However, current MLLM’s GRPO al-
gorithms still struggle to handle challenging and complex
multimodal reasoning tasks (e.g., mathematical reasoning).
In this work, we reveal two problems that impede the per-
formance of GRPO on the MLLM: Low data utilization and
Text-bias. Low data utilization refers to that GRPO can-
not acquire positive rewards to update the MLLM on diffi-
cult samples, and text-bias is a phenomenon that the MLLM
bypasses image condition and solely relies on text condi-
tion for generation after GRPO training. To tackle these
problems, this work proposes Hint-GRPO that improves
data utilization by adaptively providing hints for samples
of varying difficulty, and text-bias calibration that mitigates
text-bias by calibrating the token prediction logits with im-
age condition in test-time. Experiment results on three base
MLLMs across eleven datasets demonstrate that our pro-
posed methods advance the reasoning capability of original
MLLM by a large margin, exhibiting superior performance
to existing MLLM reasoning methods. Our code is available
at https://github.com/hqhQAQ/Hint-GRPO.

1. Introduction
MLLM (Multimodal LLM) reasoning has attracted wide
research interest for its exceptional problem-solving capa-
bility, especially after the release of OpenAI’s o1 model.
Existing reasoning methods can be categorized into two
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Figure 1. Low data utilization of GRPO: If all answers are incor-
rect, the zero loss gradients (∇θL = 0) will invalidate the sample.
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Wrong Answer from MLLM: Since the central angle ∠AOB and
the inscribed angle ∠ACB intercept the same arc, ∠ACB = 1/2 *
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Figure 2. Text-bias of GRPO, where the MLLM ignores real im-
age and uses its imagined image from text to generate outputs.

types: PRM (Process Reward Method), which supervises
the intermediate reasoning steps, and ORM (Outcome Re-
ward Method), which supervises the final reasoning results.
Previously, most methods [5, 17, 32, 33] consider PRM to
be superior to ORM, leveraging numerous strategies (e.g.,
MCTS [5, 17, 33], DPO [37]) for PRM training.

Recently, DeepSeek-R1 [11] has overturned the con-
ventional belief that PRM is superior to ORM, which em-
ploys the GRPO (Group Relative Policy Optimization [25])
reinforcement learning algorithm that calculates rewards
for model predictions solely based on the model’s rea-
soning results, without supervision of intermediate reason-
ing steps. DeepSeek-R1 discovers that ORM training can
induce models to engage in self-reflection, extending the
chain of thought to reach correct answers, thereby achiev-
ing excellent reasoning performance. After the emergence
of DeepSeek-R1, many researchers explore ORM meth-
ods for LLM & MLLM reasoning, with most focusing
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on the GRPO algorithm (e.g., Open-R1 [7], simpleRL-
reason [35], R1-V [4], R1-Multimodal-Journey [20]). Some
research (Open-Reasoner-Zero [15]) also finds that PPO-
based [24] ORM algorithm could achieve similar perfor-
mance to GRPO.

However, while current MLLM’s ORM methods (e.g.,
R1-V [4]) perform well on simple visual tasks (e.g., count-
ing objects in the image), they are insufficient for more
challenging and complex multimodal reasoning tasks (e.g.,
mathematical reasoning). In this work, we identify two
problems that hinder the performance of ORM methods on
MLLM reasoning: (1) Low data utilization; (2) Text-bias.

For the first problem, GRPO requires to first prompt the
MLLM to generate multiple predictions for the same ques-
tion, and then assign rewards to the predictions based on
their correctness. However, due to the insufficient reasoning
capability of the original MLLM, all the predictions for the
difficult question could be incorrect in MLLM. In this situ-
ation, GRPO cannot update the model as the calculated ad-
vantages in GRPO are all zero, rendering the training sam-
ple invalid, as shown in Figure 1. Figure 3 (a) also shows the
ratio of valid samples in each batch during training (Qwen2-
VL-7B [30] on the mathematical reasoning dataset), verify-
ing the severity of low data utilization.

To address this problem, this work proposes Hint-GRPO,
which provides additional hints for MLLM to solve ques-
tions of high difficulty. Specifically, for difficult questions
where MLLM cannot find the correct answer (invalid sam-
ples), Hint-GRPO provides the initial part of correct rea-
soning steps (according to a certain ratio) to the MLLM as
hints, allowing it to complete the remaining reasoning steps
and arrive at the final answer. As shown in Figure 3 (a),
Hint-GRPO effectively leads MLLM to generate correct an-
swers, thereby improving the data utilization. Furthermore,
Hint-GRPO can adaptively adjust hint ratios for questions
of varying difficulty, avoiding excessive hints for simple
questions, thereby allowing for optimal utilization of the
dataset and achieving better performance.

For the second problem (text-bias), this work observes
a phenomenon that during GRPO training, MLLM learns
to directly infer the final answer from text condition while
ignoring image condition, as shown in Figure 2. Besides,
Figure 5 (a) demonstrates that as GRPO training progresses,
the accuracy of MLLM (with the image condition removed)
on the test set also increases.

To tackle this problem, this work proposes a text-bias
calibration method in test-time to reduce MLLM reason-
ing errors caused by ignoring image condition. Inspired
by CFG (classifier-free guidance) [13] in image generation,
this text-bias calibration method first uses the MLLM to
generate prediction results (token logits) with and without
image condition, and then calibrates the token logits using
the difference between them.

(a) Data Utilization Rate (b) Accuracy Reward

Figure 3. Data utilization rate & reward of GRPO & Hint-GRPO.

We perform comprehensive experiments to validate the
performance of the proposed methods. Specifically, we ap-
ply text-debiased Hint-GRPO to three base MLLMs across
eleven datasets (mathematical reasoning & universal multi-
modal reasoning), and the experiment results demonstrate
that our methods improve the reasoning capability of origi-
nal MLLM by a large margin, achieving significantly supe-
rior performance to existing MLLM reasoning methods.

To sum up, the main contributions of this work can be
summarized as follows:

• We identify and thoroughly analyze two problems that
hinder the performance of GRPO on MLLM reasoning: (1)
Low data utilization; (2) Text-bias.

• We propose two methods (Hint-GRPO and text-bias
calibration), which effectively mitigate these two problems.

• Experiment results show that our proposed meth-
ods achieve significantly superior performance to existing
MLLM reasoning methods.

2. Related Work

PRM for MLLM Reasoning. Most existing MLLM rea-
soning methods follow the PRM (Process Reward Method)
paradigm, which employs fine-grained supervision on the
intermediate reasoning steps. LLaVA-o1 [32] trains the
MLLM to generate structured reasoning steps. Atom-
Think [31] directly trains a process reward model to as-
sess the reasoning steps, using the framework of Markov
decision process (MDP) learning. Mulberry [33], M-
STAR [17], and AR-MCTS [5] utilize Monte Carlo Tree
Search (MCTS) to estimate the reasoning steps. LLaVA-
Reasoner-DPO [37] employs direct preference optimiza-
tion (DPO) [22] to improve the intermediate reasoning pro-
cess. Virgo [6] constructs a long-thought dataset to enable
the MLLM with long reasoning capability. LlamaV-o1 [28]
adopts curriculum learning to train the MLLM in an easy-
to-hard manner. However, DeepSeek-R1 [11] points out
current PRM methods struggle to accurately evaluate the
reasoning steps and suffer from a serious reward hacking
problem, resulting in suboptimal performance. On the con-
trary, ORM enables accurate evaluation by simply compar-
ing the reasoning results with the ground truth, thus avoid-
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Figure 4. Framework of Hint-GRPO and text-bias calibration. Specifically, Hint-GRPO adaptively provides hints to the samples and
selects the most eligible group for training, mitigating the low data utilization problem. Text-bias calibration increases the intensity of
image condition in test-time, alleviating the text-bias problem. Note that “<BoS>” denotes the beginning-of-sequence token in MLLM.

ing the reward hacking problem.

ORM for MLLM Reasoning. ORM (Outcome Reward
Method) only supervises the reasoning results using the
ground truth, regardless of the intermediate reasoning steps.
ORM methods such as GRPO can achieve strong general-
ization performance, verified by DeepSeek-R1. After the
emergence of DeepSeek-R1, more researchers are shifting
towards the ORM paradigm (i.e., GRPO) for MLLM rea-
soning. Specifically, Open-R1-Multimodal [2] establishes
the first GRPO baseline for MLLM reasoning. R1-V [4]
demonstrates that GRPO performs well in simple multi-
modal reasoning tasks, e.g., counting objects in the image.
R1-Multimodal-Journey [20] significantly accelerates the
training speed using the vLLM package [16]. Video-R1 [8]
generalizes Open-R1-Multimodal to video reasoning. How-
ever, current methods are still limited in addressing more
challenging multimodal reasoning tasks (e.g., mathematical
reasoning). Our work identifies two problems that hinder
the GRPO performance in MLLM reasoning (low data uti-
lization and text-bias), and proposes two methods to address
them (Hint-GRPO and text-bias calibration).

3. Method
3.1. Preliminaries
Supervised Fine-tuning (SFT). SFT trains the LLM
on curated query-output pairs to improve its instruction-
following ability. The objective of SFT is to maximize the
following objective:

JSFT(θ)=E[q, o∼P (Q,O)]

 1

|o|

|o|∑
t=1

log πθ(ot|q, o<t)

,

where q, o is the query-output pair sampled from the
SFT dataset P (Q,O), θ denotes the model parameters,
πθ(ot|q, o<t) represents the logit of the model predicting
the next token ot from q and previous tokens o<t.

Proximal Policy Optimization (PPO). PPO is an actor-
critic RL algorithm that is widely used in the RL fine-tuning
stage of LLM. In particular, it optimizes the model by max-
imizing the following objective:

JPPO(θ)=E[q∼P (Q),o∼πθold(O|q)] 1|o|

|o|∑
t=1

πθ(ot|q, o<t)

πθold(ot|q, o<t)
At,

where πθold is the old model, At represents the advantage
function measuring how the t-th token’s prediction deviates
from average, based on the rewards {r≥t} and a learned
value function Vψ . The min & clip operations for avoiding
extreme values are omitted here for simplicity.

Group Relative Policy Optimization (GRPO). GRPO di-
rectly calculates At using the average reward of multiple
sampled outputs, eliminating the additional value function
Vψ in PPO. Specifically, GRPO samples a group of out-
puts {o1, o2, ..., oG} from the old model πθold , and then
optimizes the model by maximizing the following objec-
tive (min & clip operations are also omitted here):
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JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t − βDKL[πθ||πref ]

}
,

where DKL[πθ||πref ] serves as a regularization term that
prevents the new model πθ from deviating too far from the
original model πref (the model before training). As an ORM
method, GRPO provides the reward ri at the end of each
output oi (ri = 1 if the reasoning result is correct, otherwise
ri = 0), and sets the advantage Âi,t of all tokens in oi as the
normalized reward (r = {r1, r2, ..., rG}, mean(·) denotes
the average, and std(·) denotes the standard deviation):

Âi,t = r̃i =
ri − mean(r)

std(r)
. (1)

3.2. Hint-GRPO
3.2.1. Low Data Utilization
Low data utilization refers to the problem that in current
GRPO training, many training samples fail to provide effec-
tive feedback to the MLLM, as shown in Figure 1. Specif-
ically, due to the limited reasoning ability of the original
MLLM, the generated reasoning results on these training
samples are all incorrect. This situation (i.e., ri = 0 for all
{ri}Gi=1) causes each advantage Âi,t =

ri−mean(r)
std(r) = 0, thus

hindering the MLLM training (note that std(r) has a small
offset to avoid division by zero). Furthermore, we can an-
alyze the invalidity of these training samples by examining
the gradients of the optimizing objective JGRPO(θ) on the
MLLM parameters θ:

∇θJGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
Âi,t∇θπθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
−β∇θDKL[πθ||πref ]

}
.

When all Âi,t equal 0, the update of MLLM parame-
ters θ only depends on the less important KL divergence
DKL[πθ||πref ] and is unrelated to the accuracy of reasoning
results. This prevents such training samples from providing
effective feedback for model optimization.

In this work, we conduct an in-depth analysis of the low
data utilization problem. Specifically, we propose a data
utilization rate to measure the proportion of effective sam-
ples in each batch during GRPO training. Let {zk}Bk=1 de-
note a training batch of B samples, and the MLLM gener-
ates G outputs for each sample, then r(zk) ∈ RG represents
the correctness of all G outputs of zk, i.e., r(zk)i = 1 if
the output result is correct, otherwise r(zk)i = 0. Next,
we can determine the sample zk is valid if and only if
std(r(zk)) ̸= 0. In other words, std(r(zk)) = 0 indicates

(b) Invalid Ratio(a) Accuracy w/o Image

Figure 5. (a) Qwen2-VL-7B’s test accuracy w/ & w/o image in
GRPO training. (b) The ratio of two types of invalid samples.

that r(zk) equals a zero vector 0G or a ones vector 1G, re-
sulting in the calculated advantages Âi,t being all zero and
thus invalidating the sample zk. Finally, the data utilization
rate Svalid ∈ [0, 1] for this training batch is calculated as
below (1{·} denotes the indicator function):

Svalid =
1

B

B∑
k=1

1{std(r(zk)) ̸= 0}. (2)

As shown in Figure 3 (a), the original GRPO exhibits
a low Svalid (40% to 50%) for Qwen2-VL-7B during train-
ing. In addition, we also calculate the ratio of two situations
where the training sample is invalid: (1) r(zk) equals 0G,
i.e., all outputs of zk are incorrect. (2) r(zk) equals 1G, i.e.,
all outputs of zk are correct. Figure 5 (b) presents that situ-
ation (2) only accounts for a small proportion (within 10%),
which corresponds to the phenomenon of low rewards dur-
ing GRPO training in Figure 3 (b). These findings verify
that GRPO suffers from the low correctness of MLLM out-
puts, thus constraining the training of MLLM reasoning.

3.2.2. Hint-GRPO Implementation
To tackle the problem of low data utilization, this work pro-
poses Hint-GRPO, which provides reasoning hints to lead
the MLLM to generate correct answers for difficult train-
ing samples, thus improving the number of samples with
std(r(zk)) ̸= 0. Specifically, let h denote the reasoning
hint, then the MLLM predicts πθ(oi,t|q, h, oi,<t) (the next-
token prediction logit) with h as condition in Hint-GRPO.
The implementation of Hint-GRPO consists of three parts:
(1) Dataset construction; (2) Hint injection method; and (3)
Hint adaptation strategy.

(1) Dataset construction
The training of Hint-GRPO requires a dataset containing
multiple samples with image, query text, reasoning steps,
and the ground-truth answer. Here, we choose the LLaVA-
CoT dataset [32], a high-quality and influential training
dataset for MLLM reasoning, as our base dataset. Never-
theless, the original LLaVA-CoT dataset still necessitates
two modifications before being used for Hint-GRPO:

First, we use GPT-4o to split the original reasoning
steps (a long text) of each sample into multiple structured
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steps, which allows us to control the hint level by directly
adjusting the number of reasoning steps in the hint.

Second, we convert multi-choice questions to fill-in-the-
blank format by removing the options, stopping the MLLM
from getting correct answers through random guessing.

(2) Hint injection method
In πθ(oi,t|q, h, oi,<t) (the next-token prediction logit of
Hint-GRPO), the MLLM requires to inject h (the reason-
ing hint split from the correct reasoning steps in the dataset)
into the model. The simplest baseline Iquery (named hint
injection in query) in Figure 4 is to append the hint to the
original query text, e.g., appending “Solve the question fol-
lowing the hint: {Reasoning Hint}”. However, this baseline
has two problems: First, even with hints in the prompt, the
model sometimes ignores them and starts reasoning from
scratch. Second, and more critically, query text with hint
in training-time is inconsistent with query text without hint
in test-time, leading to poor test performance.

To address these problems, we propose Ianswer (named
hint injection in answer) in Figure 4, which keeps the query
text unchanged while using the reasoning hint as the begin-
ning of model output, letting the model complete the re-
maining steps to reach the final answer. Ianswer makes the
MLLM faithfully continue reasoning based on the hint, and
the query text requires no hint in both training and testing,
performing significantly better than the baseline Iquery.

(3) Hint adaptation strategy
Hint-GRPO requires adjusting the hint level to achieve op-
timal results. Specifically, if the hint level is too low, it still
cannot lead the MLLM to the correct answers, remaining
trapped in the low data utilization problem; If the hint level
is too high, the MLLM can reach correct answers without
reasoning, hindering effective use of the data for MLLM
reasoning training. Therefore, based on our constructed
dataset, we employ a hint ratio α ∈ [0, 1] to adjust the hint
level. In detail, for the total L correct reasoning steps of a
sample, we extract the first L · α steps as hint (denoted as
hα), and thus a higher α indicates a higher hint level. Next,
we explore three strategies to set the hint level: (1) Fixed
hint level; (2) Random hint level; (3) Adaptive hint level.

Fixed hint level sets the same hint ratio α for each train-
ing sample. However, this strategy can lead to simple ques-
tions being given excessive hints, resulting in insufficient
training for MLLM reasoning. Experiments in Table 3 show
that this strategy achieves suboptimal performance.

Random hint level samples α ∼ Uniform(0, 1) ran-
domly for each training sample, inspired by diffusion model
training [14, 26]. Experiments in Table 3 imply that this
strategy is still suboptimal, because it also cannot provide
an appropriate hint level for different samples.

Adaptive hint level. To address this problem, we pro-
pose to adaptively adjust the hint level based on the diffi-

culty level of different samples. To this end, this strategy
extends the original GRPO’s single group output per sam-
ple (G outputs per group) to M groups, and assigns dif-
ferent hint ratios to each group. Specifically, let {αi}Mi=1

denote the hint ratios for these M groups, then αi is set
to i−1

M . As the hint ratio progressively increases, the sam-
ple difficulty steadily decreases from group 1 through group
M . Finally, this strategy selects the first group with existing
correct answers (in the order from group 1 to group M ) for
training. By selecting the most appropriate hint level, this
strategy both avoids the low-data utilization problem and
mitigates the issue of excessive hints preventing the MLLM
from reasoning, thereby achieving optimal results.

Efficiency analysis: Although this strategy increases the
group number to M , the MLLM still uses only one group
for training. Besides, we use vLLM [16] to significantly
speed up generation. Therefore, compared to the original
strategy, this strategy only increases the training time by
20.5% when M is 2, as shown in S2.1 of the appendix.

3.3. Text-Bias Calibration
This work reveals a phenomenon (named text-bias) that the
MLLM trained with GRPO tends to directly reason from
text condition while ignoring image condition, as shown in
Figure 2. Besides, Figure 5 (a) demonstrates that as GRPO
training continues, the accuracy of MLLM (with the image
condition removed) on the test set also improves. We sus-
pect that this phenomenon stems from that many query texts
in current MLLM reasoning datasets can fully describe the
questions, leading the MLLM to rely solely on text. How-
ever, when the query text is insufficient to describe the en-
tire question, this type of reasoning will result in errors and
lower performance.

To mitigate this text-bias problem, this work proposes
text-bias calibration, which can directly emphasize the im-
age condition in test-time. Inspired by CFG (classifier-
free guidance) [13] in image generation, text-bias cali-
bration first uses the MLLM to predict token logits with
and without image condition, and then calibrates the to-
ken logits according to their differences. Specifically,
let qimg and qtext denote the image condition and text
condition, then π̂θ(ot|qimg) = πθ(ot|qimg, qtext, o<t) and
π̂θ(ot) = πθ(ot|qtext, o<t) represent the token logit pre-
dicted with and without image condition (note that π̂θ ab-
breviates the original πθ). Finally, the calibrated token logit
π̂calibrated
θ (ot|qimg) is calculated as below following CFG:

π̂calibrated
θ (ot|qimg)= π̂θ(ot|qimg)+γ·(π̂θ(ot|qimg)−π̂θ(ot)),

where γ is a hyper-parameter controlling the intensity
of image condition. Intuitively, this text-bias calibration
method makes the calibrated token logits move away from
π̂θ(ot) and closer to the real π̂θ(ot|qimg), thereby alleviating
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the problem of ignoring image condition. Furthermore, we
provide a theoretical analysis on text-bias calibration in S1
of the appendix, for a more comprehensive understanding.

4. Experiments

Implementation details. Following existing GRPO meth-
ods (e.g., R1-V [4], Open-R1-Multimodal [2]), we con-
duct the main experiments on mathematical (geometry) rea-
soning tasks, using Qwen2-VL-7B and Qwen2.5-VL-3B as
base models. Besides, we also follow LLaVA-o1 [32] to
conduct experiments on the universal multimodal reasoning
tasks, using Llama-3.2-11B-Vision as base model. During
training, we adopt AdamW optimizer with a learning rate
of 5e-5, and train the model on 8 GPUs for 2 epochs (fol-
lowing R1-V) with a batch size of 1 per GPU. A system
prompt is used to instruct the model to generate responses
in the format of “<think>{Reasoning Steps}</think>
<answer>{Reasoning Result}</answer>”. We also use
DeepSpeed [1, 23] to facilitate the model training through
ZeRO-3 optimization. Besides, we use the vLLM pack-
age [16] to accelerate the generation process in GRPO, allo-
cating 1 GPU for generation and 7 GPUs for training. The
hyper-parameter M for adaptive hint is set to 3, and the
hyper-parameter γ for text-bias calibration is set to 0.8.

Training dataset. For the geometry reasoning, we extract
geometry samples from the LLaVA-CoT dataset [32] for
training, with a total size of 7840. For the universal mul-
timodal reasoning, we use the whole LLaVA-CoT dataset
for training, with a total size of 100,000.

Test benchmark. For the geometry reasoning, we follow
R1-V to use the same subset of Geo170K dataset [9] for
evaluation. Besides, we also incorporate other geometry
data from existing datasets (MathVista [19], MMStar [3],
MathVerse [36], Math-Vision [29], MM-Math [27], and
WeMath [21]) for evaluation, towards a comprehensive
comparison. For the universal multimodal reasoning, we
follow LLaVA-o1 to evaluate the model on 6 benchmarks:
MMStar [3], MMBench [18], MMVet [34], MathVista [19],
AI2D [12], and Hallusion [10].

Baseline methods. For the geometry reasoning, we com-
pare our method with the SFT baseline, PRM meth-
ods (Mulberry), and existing GRPO methods (Open-R1-
Multimodal, R1-V). Specifically, Open-R1-Multimodal and
R1-V are both GRPO methods but are trained on differ-
ent datasets: GEOQA R1V and open-r1-8k-verified respec-
tively. For the universal multimodal reasoning, we compare
our method with the influential LLaVA-o1.

4.1. Comparison Analysis
Mathematical (Geometry) reasoning. Table 1 shows
the comparison results of different methods on two base

(a) Fixed (b) Random & Adaptive

Figure 6. Ablation experiments of hint adaptation strategy for
Qwen2-VL-7B on the Geo170K dataset.

MLLMs (Qwen2-VL-7B & Qwen2.5-VL-3B) across seven
datasets. Several conclusions can be drawn from Table 1:

(1) Supervised fine-tuning (SFT) reduces the perfor-
mance of original MLLMs on out-of-domain data, indicat-
ing that SFT merely memorizes knowledge mechanically,
without learning patterns of reasoning that can generalize
to new problems.

(2) PRM method (Mulberry) outperforms SFT, demon-
strating that PRM can enhance the intermediate reasoning
steps of MLLM to some extent.

(3) GRPO methods (Open-R1-Multimodal, R1-V, and
GRPO on our dataset) demonstrate superior performance to
both PRM and SFT methods, implying that GRPO enables
the MLLM to independently learn how to think and reason
for tackling new problems.

(4) As analyzed in section 3, GRPO methods suffer from
the low data utilization and text-bias problems, hindering
the model training. Our proposed text-debiased Hint-GRPO
can alleviate these two problems, achieving significantly su-
perior performance to existing GRPO methods.

Universal multimodal reasoning. Table 2 presents the
comparison results of different methods on Llama-3.2-11B-
Vision across six datasets. Both trained on the LLaVA-
CoT dataset, our text-debiased Hint-GRPO outperforms
the original LLaVA-o1 (trained with SFT). Nevertheless,
the improvement of the GRPO method on universal multi-
modal reasoning is not as significant as in geometry reason-
ing. We discover that this issue may stem from the accu-
racy estimation in GRPO training, e.g., in samples requir-
ing bounding box localization, the model’s responses can
hardly match the ground-truth answers perfectly, making
such samples all incorrect and invalid for GRPO training.
Therefore, a more robust accuracy estimation method is re-
quired for universal multimodal reasoning. For example,
regarding the aforementioned samples, IoU values can be
used to measure the accuracy of model responses.

4.2. Ablation Experiments
4.2.1. Hint-GRPO
This section provides the ablation experiments of three parts
in Hint-GRPO: (1) Dataset construction; (2) Hint injection
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Method Geo170K MathVista
(Geometry)

MMStar
(Geometry)

MathVerse
(Geometry)

Math-Vision
(Geometry)

MM-Math
(Geometry)

WeMath
(Geometry) Average

Qwen2-VL-7B

Original 30.63 44.50 40.52 27.92 10.89 8.73 35.52 30.40
SFT 37.53 41.66 37.07 14.47 2.86 1.95 26.84 25.50

Mulberry 33.55 52.17 42.24 17.68 6.06 10.69 42.07 32.08
Open-R1-Multimodal 35.68 45.55 40.52 28.78 11.43 6.78 38.22 31.56

R1-V 38.72 47.26 41.38 28.12 12.51 8.83 41.44 33.19
GRPO 38.46 48.82 42.24 30.10 12.02 10.37 40.52 33.92

Hint-GRPO 45.62 52.77 43.97 31.68 14.38 14.35 45.23 37.60
Debiased Hint-GRPO 46.68 54.19 45.69 32.18 14.99 14.61 45.86 38.55

Qwen2.5-VL-3B

Original 35.41 47.50 41.38 26.17 8.08 11.69 39.66 32.17
SFT 43.24 46.64 43.10 20.03 8.62 2.29 32.64 30.40

Open-R1-Multimodal 48.67 45.88 44.83 27.44 12.71 14.68 40.75 35.10
R1-V 47.48 48.67 47.41 31.42 14.58 12.10 42.07 36.55
GRPO 45.49 49.84 48.27 30.88 14.48 12.35 43.45 36.83

Hint-GRPO 53.32 54.79 51.72 33.68 17.09 16.73 44.89 40.88
Debiased Hint-GRPO 55.31 56.11 52.59 34.09 17.39 17.51 46.78 41.95

Table 1. Experiment results of two base MLLMs on the geometry reasoning tasks. Bold font denotes the best result.

Method MMStar MMBench MMVet MathVista AI2D Hallusion Average

Original 49.8 65.8 57.6 48.6 77.3 40.3 56.6
LLaVA-o1 57.6 75.0 60.3 54.8 85.7 47.8 63.5

Ours 60.7 75.8 64.2 56.8 86.6 50.7 65.8

Table 2. Experiment results of Llama-3.2-11B-Vision on the universal multimodal reasoning tasks. Bold font denotes the best result.

method; (3) Hint adaptation strategy.

Dataset construction. We convert the multi-choice ques-
tions to fill-in-the-blank format in the original LLaVA-CoT
dataset, and the original dataset and converted dataset are
denoted as Doriginal and Dnew, respectively. Table 3 shows
that GRPO trained on Dnew outperforms GRPO trained
on Doriginal notably, by addressing the problem that the
MLLM takes shortcuts (i.e., random guessing) to correct
answers rather than through reasoning. Therefore, we use
Dnew as the training dataset in the subsequent experiments.

Hint injection method. This work proposes two methods
to inject the hint into the MLLM: hint injection in query (de-
noted as Iquery) and hint injection in answer (denoted as
Ianswer). Table 3 demonstrates that Hint-GRPO Iquery
severely degrades performance, resulting from the incon-
sistency between query text with hint during training and
query text without hint during testing.

Hint adaptation strategy. Figure 6 (a) shows the effect
of hint ratio α on the strategy of fixed hint level, implying
that a low-level hint ratio (e.g., 0.25) can improve MLLM
performance compared to the original GRPO, as hints en-
hance data utilization and facilitate the training. However,
excessive hint levels (e.g., 0.50, 0.75) impair MLLM per-
formance, which causes the MLLM to skip reasoning and
undermine their reasoning capability.

Method MMStar MathVista
(Geometry)

MMStar
(Geometry) Avg.

Original 30.63 44.50 40.52 40.04
GRPO + Doriginal 35.81 43.94 37.93 40.40

GRPO + Dnew 38.46 48.82 42.24 44.59

Hint-GRPO + Iquery 41.64 47.17 39.66 43.91
Hint-GRPO + Ianswer 45.62 52.77 43.97 48.78

Table 3. Ablation experiments of training dataset and hint injec-
tion method on Qwen2-VL-7B.

Base Model 0.0 0.4 0.8† 1.2 1.6

Qwen2-VL-7B 45.62 46.29 46.68 46.02 44.69
Qwen2.5-VL-3B 53.32 54.77 55.31 54.38 53.58

Table 4. Ablation experiments of γ for text-bias calibration on the
Geo170K dataset. † denotes the selected one.

As shown in Figure 6 (b), while the random hint level im-
proves MLLM performance over the original GRPO frame-
work by increasing data diversity and utilization during
training, the adaptive hint level strategy achieves even better
performance. It does so by intelligently assessing the diffi-
culty of each sample and dynamically assigning the most
suitable hint level, thus facilitating a more effective and tar-
geted learning process.
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Points A, B, and C are on
circle O, ∠B = 40°, ∠C =

20°, then ∠BOC is ().

Wrong Answer (Orignal): Since ∠B = 40°
and ∠C = 20°, and angles at center are twice

angles at circumference. Therefore, ∠BOC = 2
* ∠B = 2 * 40° = 80°.

AO

B

C

Correct Answer (After Training): <think> Lines
OA, OB, OC are radii of the circle,

thereby ∠OAC = ∠C = 20° and ∠OAB = ∠B =
40°. Next, ∠BAC = ∠OAC + ∠OAB = 60°.
Since ∠BOC is the central angle for the

inscribed angle ∠BAC, ∠BOC = 2 * ∠BAC =
120°. </think><answer> 120° </answer>

Wrong Answer (Orignal): OB and OC are angle
bisectors of exterior angles of triangle ABC.

Given ∠BOC = 40°. Since ∠OBC + ∠OCB = 180° -
(∠BOC / 2) = 180° - 20° = 160°, ∠ABC + ∠ACB =

320°. Therefore, ∠A = 180° - 320°/2 = 20°.

Wrong Answer (Orignal): There are 7 cats in
the image: white with orange eyes, grayish-
blue, gray with white stripes, brown-black

tabby, white with brown-black patches, and
two white cats with brown patches.

In triangle ABC, the
bisectors of the exterior
angles of ∠ABC and ∠ACB
intersect at O, and ∠BOC

= 40°, then ∠A = ().

A

B
C

O

Correct Answer (After Training): <think> Since
∠BOC = 40°, we have ∠OBC + ∠OCB = 180° -
∠BOC = 140°. Next, since OB and OC are angle
bisectors of exterior angles of triangle ABC,
we have ∠ABC = 180° - 2 * ∠OBC and ∠ACB =
180° - 2 * ∠OCB. Therefore, ∠ABC + ∠ACB =
360° - 2 * 140° = 80°. Finally, in triangle ABC,
we have ∠A = 180° - (∠ABC + ∠ACB) = 180° -
80° = 100°. </think><answer> 100° </answer>

How many cats are
in the image?

Correct Answer (After Training): <think> Six
cats sit in a row against a white background: 1.
White cat with orange markings. 2. Dark grey

fluffy cat. 3. Grey-brown striped tabby. 4.
Brown Maine Coon. 5. White and brown Ragdoll.

6. Partial brown cat. </think><answer>
6 </answer>

(a) Geometry Reasoning (b) Geometry Reasoning (c) Universal Multimodal Reasoning

Figure 7. Visualization examples of MLLMs’ outputs before/after Hint-GRPO.

Points A, B, and C
are on circle

O, ∠AOB = 110°,
then ∠ACB = ().

Wrong Answer (Before using Text-Bias
Calibration): <think> Since the central angle ∠AOB and

the inscribed angle ∠ACB intercept the same arc, ∠ACB =
1/2 * ∠AOB = 1/2 * 110° = 55°. </think><answer>

55° </answer>

A

O
O

B

C
A

B
C

Real Image Imagined Image

Correct Answer (After using Text-Bias
Calibration): <think> In quadrilateral AOBC, ∠A + ∠AOB +
∠B + ∠ACB = 360°, therefore ∠A + ∠B + ∠ACB = 360° -
∠AOB = 250°. Connect OC, since OA = OC and OB = OC,

then ∠A = ∠ACO and ∠B = ∠OCB, so 2 * (∠ACO + ∠OCB) =
250°. Also, since ∠ACB = ∠ACO + ∠OCB, therefore ∠ACB

= 1/2 * 250° = 125°. </think><answer> 125° </answer>

Figure 8. Visualization example of Qwen2-VL-7B’s outputs be-
fore/after text-bias calibration.

4.2.2. Text-Bias Calibration
As shown in Table 1, text-debiased Hint-GRPO outper-
forms Hint-GRPO using the calibration operation in test-
time, which increases the image conditioning intensity for
alleviating the text-bias problem. Besides, Table 4 provides
the ablation experiments for the effect of γ on text-bias cali-
bration, revealing that an excessively high γ value degrades
performance due to over-correction.

4.3. Visualization Analysis
Visualization before/after Hint-GRPO. Figure 7 demon-
strates the visualization examples of MLLMs’ outputs be-
fore/after Hint-GRPO. Figure 7 (a) and (b) show that after

Hint-GRPO training, the MLLM (Qwen2-VL-7B) conducts
more thorough analysis of difficult geometry problems,
reaching correct solutions through extended reasoning pro-
cesses (within “<think>” and “</think>” symbols). Be-
sides, Figure 7 (c) presents that Hint-GRPO also achieves
excellent performance in universal multimodal reasoning on
Llama-3.2-11B-Vision.

Visualization before/after text-bias calibration. As
shown in Figure 8, before text-bias calibration, the
MLLM (Qwen2-VL-7B) ignores the real image and uses
the imagined image from text to generate the wrong an-
swer. After increasing the image conditioning intensity with
text-bias calibration, the MLLM successfully concentrates
on the real image and generates the correct answer from it.

5. Conclusion
In this work, we identify and provide a thorough analysis
of two problems that hinder the performance of GRPO on
MLLM reasoning: Low data utilization and Text-bias. In
detail, low data utilization occurs when GRPO fails to ob-
tain positive rewards for updating the MLLM on difficult
samples. Text-bias is a phenomenon where the MLLM dis-
regards the image condition after GRPO training. To tackle
these two problems, we propose two key contributions: (1)
Hint-GRPO, which improves data utilization by providing
adaptive hints for samples of varying difficulty, and (2) text-
bias calibration, which mitigates text-bias in test-time by
calibrating the token prediction logits with image condi-
tion. We conduct experiments on three base MLLMs across
eleven datasets, showing that our proposed method achieves
significantly superior performance to the original model,
PRM methods, and existing GRPO methods. We hope our
method and dataset (will be made publicly available) can
contribute to the community of MLLM reasoning.
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