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Abstract

Parameter-Efficient Fine-Tuning (PEFT) has emerged to
mitigate the computational demands of large-scale mod-
els. Within computer vision, adapter-based PEFT meth-
ods are often favored over prompt-based approaches like
Visual Prompt Tuning (VPT) due to the latter’s performance
and efficiency limitations. Our analysis reveals that VPT’s
shortcomings stem from its prompt deployment strategy,
which can distort the model’s inherent self-attention mech-
anism. To address this, we propose Cross Visual Prompt
Tuning (CVPT). CVPT introduces a cross-attention mod-
ule to directly model interactions between prompts and im-
age tokens. This design decouples the prompts from the
input sequence, preserving the original self-attention in-
tegrity while enabling efficient feature integration. Further-
more, we employ a weight-sharing mechanism for cross-
attention initialization, which enhances representative ca-
pability without a large parameter overhead. Extensive
experiments across 25 datasets show that CVPT signifi-
cantly outperforms VPT. For instance, on the VIAB-1K
benchmark, CVPT achieves over 4% higher average accu-
racy, rivaling leading adapter-based methods in both per-
formance and efficiency. Our work confirms that prompt-
based methods can achieve exceptional results in visual
fine-tuning. The code is available at https://github.
com/Lingyun0419/CVPT

1. Introduction

Increasing the scale of the models is a common method
to enhance the model’s performance [44][11][34][35].
In recent years, with the rapid development of com-
puting devices, model sizes have significantly increased
[54]1[71[21][57]. For instance, the number of parameters
in the GPT series developed by OpenAl has surged from
117 million to 1.8 trillion in just five years [42][43][3].
The rapidly increasing number of parameters will lead to
the problem of immense computational overhead. There-
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Figure 1. Comparisons of performance and flops between VPT
and our CVPT with a pre-trained ViT-B/16 model on the VTAB-
1k benchmark. We set the number of prompts to 1, 10, 20, 50,

100, 150, 200 respectively.

fore, adapting those models to downstream tasks with the
full-tuning method will incur enormous costs. To re-
solve this issue, the PEFT approach has been proposed
[24][33][1][45][6]. PEFT adapts those large-scale pre-
trained models to downstream tasks in a more efficient
way by fine-tuning a subset of the models that contain
much fewer parameters. Two mainstream methods within
PEFT are Adapter [23] and Prompt [33]. During the train-
ing process, the Adapter inserts adapters into each trans-
former block and tunes those adapters, while the Prompt
inserts prompt tokens into the embedded tokens to update
the prompt tokens.

VPT, a prompt-based method is first introduced by Jia et
al. [26] for visual fine-tuning tasks. Nevertheless, research
on the adapter-based method is prominent due to its supe-
rior performance. Although some works have improved the
performance of VPT [25][17][9], it is still challenging to
match the effectiveness to that of adapter-based methods.
There appears to be a consensus that prompt-based methods
underperform adapter-based methods in the visual domain.
But is that really the case?

We conduct extensive experiments and analyses on VPT
to uncover the reasons for its weaker performance compared
to the Adapter. As a result of our investigation, we attribute
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this issue to the deployment of prompts in VPT. In VPT,
prompts are concatenated with embedded tokens and pro-
cessed together by the transformer blocks. Notably, this
concatenation occurs along the token dimension, leading
to the computational complexity of self-attention increasing
quadratically with the number of prompts, which introduces
computational redundancy. Moreover, the self-attention
among embedded tokens is influenced by the prompt to-
kens, thereby distorting the original features 3. This im-
plies that prompt-based methods are constrained to use only
a limited number of prompts. However, due to compu-
tational inefficiencies and the limited learnable parameter
count, this smaller number of prompts lacks the flexibil-
ity to adapt to various downstream tasks, resulting in a
performance gap between VPT and Adapter methods.

To address the issues above, it is necessary to alter the
deployment of prompts to decouple prompts from the self-
attention of embedded tokens. However, this also implies
the need to find an alternative way to establish connec-
tions between embeddings and prompts, enabling prompts
to participate in the fine-tuning process. With this in mind,
we propose CVPT. We use cross-attention to capture the
relationship between prompts and embedded tokens, in-
corporating the result as a residual term into the embed-
ded tokens. This approach avoids the computational com-
plexity of self-attention that is quadratically related to the
number of prompts and allows prompts to focus on the
embedded token to adapt to downstream tasks more effi-
ciently. Additionally, by maintaining consistency in to-
ken dimensions throughout the computation process, the re-
sults of cross-attention can be directly summed with em-
bedded tokens as residuals and do not introduce addi-
tional computational overhead for subsequent MLP. Fur-
thermore, we share the weights of the self-attention layer
with the cross-attention layer during loading checkpoints,
keeping the cross-attention layer frozen alongside the self-
attention layer, which eliminates the requirement for addi-
tional learned parameters for the cross-attention, and uti-
lizes the encoded information in self-attention to help the
fine-tuning of the model. In 1, we present the trends of ac-
curacy and flops for CVPT and VPT with different numbers
of prompts.

We validate the effectiveness of our method on 25
datasets, the results show that the CVPT achieves a sig-
nificant improvement in performance and efficiency com-
pared to the VPT. CVPT shows an average 5% improve-
ment in accuracy on the 19 VTAB-1K datasets, 1% on the 5
FGVC datasets, and 3% on the ADE20K dataset. Addition-
ally, benefiting from the design of CVPT, it achieves supe-
rior performance compared to other prompt-based methods,
even with a limited number of prompts. If a large number
of prompts is allowed, CVPT outperforms the SOTA meth-
ods on out-of-distribution datasets like ADE20K. Besides,
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although a large number of prompts are used, it does not in-
troduce too much extra computational overhead compared.

Finally, we explore the impact of the deployment’s posi-
tion and the effectiveness of the weight-sharing mechanism.
The improvement on the model can be fully illustrated
by the experimental results above, indicating that prompt-
based methods can also rival advanced adapter-based meth-
ods.

Overall, our contributions are as follows:

* We provide a detailed analysis of the application of VPT
to visual tasks, and propose that its drawback can be at-
tributed to inefficiency and redundancy of computation
and the destruction of self-attention, which are caused
by the deployment of prompts.

* We propose CVPT, which introduces cross-attention and
weight-sharing mechanisms, to decouple prompts from
the self-attention of embedded tokens, which allows
prompts to integrate visual features efficiently. This
makes it possible to use a large number of prompts to
adapt to downstream tasks, thereby improving both per-
formance and efficiency.

* We conducted experiments on 25 datasets with different
downstream tasks. The results show that our approach
significantly outperforms the original VPT and other
prompt-based works in terms of performance and effi-
ciency. It is also comparable to advanced adapter-based
methods, demonstrating the usability of the prompt-based
approach for visual fine-tuning.

2. Related Work

PEFT. In the era of CNN, making bigger and deeper models
was an effective way to improve performance [31][19][52].
With the rise of transformers, this trend became even more
popular. ChatGPT’s introduction further cemented the com-
munity’s goal to develop larger and more powerful models.
However, limited by their scale, despite their powerful per-
formance and generality, these large models are difficult to
adapt to downstream tasks by using traditional paradigms
(full-tuning). Consequently, NLP researchers first proposed
PEFT methods. Their works demonstrate that fine-tuning
just a small number of parameters in a large-scale pre-
trained model can achieve nearly the same performance as
full-tuning. Encouraged by the success in NLP, researchers
began to apply PEFT to large-scale vision models on dif-
ferent visual tasks [10][53]. After development in the past
several years, the mainstream PEFT methods can be broadly
categorized into adapter-based methods and Prompt-based
methods. We mainly introduce prompt-based methods.

Prompt. Prompt was originally used in the field of NLP
which is added to the input text for comprehension tasks.
Lester et al. [33] proposed treating the prompt as a con-
tinuous vector and fine-tuning the model by updating its
gradients. Jia et al. [26] introduced this concept to visual



fine-tuning for the first time, naming it VPT. As shown in
Fig.3, the embedded tokens are spliced with the prompt to-
kens before entering each transformer block, allowing it to
participate in every layer of the network within the trans-
former block. Before entering the next transformer block,
the prompt tokens of the previous layer are discarded, and
new prompt tokens are spliced with the embedded token
again (VPT-Deep). This can be formulated as shown be-
low:

(%, B3] = Lo([#io1, Py, Eia)), (D
where the red and blue indicate learnable and frozen pa-
rameters, respectively. P denotes a learnable d-dimensional
vector, X is the CLS token, and E is the patched image.
There are improved variants based on VPT, such as E2VPT
[17], EXPRESS [9] and DAM-VP [25]. In E2VPT, prompts
are only combined with the key and value matrices in self-
attention. However, these variants do not alter the deploy-
ment of prompts in VPT, leading to similar issues as those
in VPT, and they are still unable to compete with advanced
adapter-based methods.

3. Analysis of Previous VPT

The underperformance of VPT relative to adapter-based
methods in the realm of PEFT has become a widely ac-
cepted notion. We aim to conduct an in-depth analysis of
VPT to elucidate the root causes of its limitations. Specif-
ically, employing a large number of prompts during fine-
tuning can, in some cases, lead to significant performance
improvements. In VPT-Deep, Jia et al. [26] utilized 50+
prompts on 13 out of 24 datasets to achieve optimal perfor-
mance, while in VPT-Shallow, 19 datasets benefited from
the use of 50+ prompts. Subsequent works [9, 25] have
leveraged even larger numbers of prompts to enhance per-
formance, with APT [2] employing over 1000 prompts.
However, this increase in the number of prompts introduces
the following challenges:

3.1. Computational inefficiency and redundancy

In VPT, prompts are concatenated with embedded tokens
and transformer blocks process this combined input. Each
token computes its attention score with every token when
calculating multi-head self-attention. This results in the
attention score matrix being divided into four parts: self-
attention among the original tokens, self-attention among
the prompts, attention from the original tokens to the
prompts, and attention from the prompts to the original to-
kens. Since prompts are discarded at the end of each trans-
former block, we focus more on the embedded tokens that
remain, specifically the self-attention matrix of the origi-
nal tokens. We find that prompts do not directly affect the
self-attention among the original tokens; instead, they can
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only indirectly fine-tune the embedded tokens by influenc-
ing other attention scores.

Besides, the computational complexity of self-attention
is n2, where n is the number of embedded tokens. If m rep-
resents the number of inserted prompt tokens, the computa-
tional complexity of self-attention in VPT can be expressed
as (n+m)?2. This increases the computational overhead sig-
nificantly, especially when using a larger number of prompt
tokens.

Additionally, since prompt tokens are discarded at the
end of each transformer block, we found that those prompt
tokens not only add computational overhead but also do not
impact the results. Our experiments show that removing
those prompt tokens after self-attention does not affect the
results. And this phenomenon has been similarly noted in
previous studies [2].

3.2. Destruction of self-attention

As we analyzed above, the attention score matrix is divided
into four parts. Subsequently, the attention score matrix
passes through a softmax layer. Along the channel dimen-
sion, the sum of the weights for each matrix is normalized
to 1. This means that as the number of prompt tokens in-
creases, the attention weights assigned to the self-attention
among the embedded tokens are progressively weakened.
Therefore, the ability to represent self-attention between
embedded tokens will be weakened. Since the prompt to-
ken is eventually removed, this is equivalent to multiplying
the self-attention result between the embedded tokens by a
factor which less than one. To explore how large this effect
is, we set the number of prompts to 1,5,20,50,100,150,196
respectively, and visualize the tensor after the softmax func-
tion, the results are shown in Fig.2 below.

num=1 num=>5
e

num=100
r

T TF -

Figure 2. Self-attention weight obtained by prompt tokens and
embedded tokens. We visualize the self-attention of clstoken
and exclude itself to observe the attention of cls;oken to other to-
kens. Thus, we can understand the impact of different tokens on
the attention scores for the clstoken. And the darker the color, the
larger the weight. When giving 196 prompts, the attention weight
obtained by prompts is over 80%, which greatly influences the
self-attention received by embedded tokens.

As the number of prompts increases, the sum of the
prompt’s weight values exceeds 0.8, which is over 4 times
that of embedded tokens, significantly disrupting the self-
attention between the embedded tokens. This explains



why VPT performance decreases substantially with a larger
number of prompts.

Previous solutions for excessive attention. Several prior
studies have also recognized the detrimental effects caused
by this phenomenon of attention convergence. Xiao et
al. [51] posit that the performance collapse observed in
large language models (LLMs) exceeding their maximum
context length stems from attention convergence on non-
informative initial tokens. This is attributed to the fact that,
beyond the context length, initial tokens are excluded; how-
ever, because these tokens occupy a significant proportion
of the softmax distribution, their exclusion induces a sub-
stantial shift in the distribution of attention scores, conse-
quently leading to model failure. This observation parallels
our own, as both are fundamentally rooted in the distribu-
tional issues of attention weights arising from the softmax
function. They propose a mitigation strategy involving the
introduction of additional learnable placeholder tokens to
reduce the strong focus of other tokens on the initial tokens;
this, in effect, acts as a form of smoothing for tokens that
receive excessive attention.

Darcet et al. [8] note that DINOv2 exhibits suboptimal
performance when utilized for feature extraction. This is
attributed to the presence of a subset of tokens possessing
exceptionally high norms, thereby inducing an "attention-
squeezing" effect on the remaining tokens. To mitigate this,
they introduce several learnable REG tokens into the se-
quence, serving to smooth the scores of tokens exhibiting
outlier values.

Previous prompt-based method also identified the issue
of prompt tokens‘ excessive attention. In VFPT [56], they
demonstrate that the attention weights acquired by the orig-
inal tokens in their VFPT are significantly higher compared
to those in VPT. This indicates that their approach also
serves to smooth the attention distribution.

3.3. Root causes of the limitations

We observe that excessive attention allocated to prompt to-
kens is a recurring issue in prior works. Approaches that
increase the attention weights of original tokens or decrease
the attention weights of prompt tokens might appear to be
viable solutions. However, these methods still face the same
fundamental challenges as the number of inserted prompt
tokens increases. Furthermore, they do not resolve the is-
sue of the additional computational burden, which scales
quadratically with the number of prompts.

We re-examine these approaches and find that, in the sce-
narios described in [8, 51], the tokens exhibiting anomalous
attention originate from the original sequence. As intrin-
sic components of the original sequence, these tokens carry
substantial semantic information, playing a crucial role in
contextual understanding for natural language processing
tasks or feature recognition in visual tasks. However, in
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VPT, the anomalous token - prompts are artificially intro-
duced. They do not inherently possess semantic meaning,
serving solely as an indirect tuning factor. Their importance
is thus not comparable to that of the outlier tokens observed
in the aforementioned scenarios, removing them does not
disrupt the network’s inherent capabilities. Based on this,
we think that decoupling prompts from self-attention can
fundamentally address the negative impact of prompts on
self-attention.

4. Method

Having attributed the root cause of VPT’s limitations to the
involvement of prompts in the self-attention process, we
recognize that decoupling prompts from self-attention ne-
cessitates a new approach to establish a connection between
prompt tokens and original tokens, thereby enabling their
participation in fine-tuning. Consequently, the core chal-
lenge transforms into how to capture the semantic rela-
tionship between two distinct sequences.

Inspired by the works in NLP, it occurred to us to use
cross-attention to establish the connection between prompt
and original tokens. Therefore, we introduce CVPT (Cross
Visual Prompt Tuning). Next, we review cross-attention.

4.1. Cross-Attention

Unlike self-attention [47], which computes the relationship
between each element in the input sequence, cross-attention
computes attention on two different sequences to process
the semantic relationship between them [4]. For exam-
ple, in translation tasks, cross-attention is used to com-
pute the attention weights between the source language sen-
tence and the target language sentence. In our method, we
introduce cross-attention to handle the semantic relation-
ship between embedded tokens and prompt tokens, guid-
ing the fine-tuning of the model. Specifically, the input
of cross-attention consists of two parts: X; and X, in
which X; € R"*% and X, € R™*9, And X, serves
as the query set and X serves as the key-value set. We set
Q = X;W®and K = V = X,W¥, and then the cross-
attention can be expressed as follows:
. Q- K
CrossAttention(X1, Xa) = Softmaz ( A > V.
2
In which W® € R%*d and WK € R%*% are learned
projection matrix, dy, is the dimension of value-key set. In

our methods, dy = ds = di. And the shape of output is
n X dj, which is consistent with X.

4.2. Cross Visual Prompt Tuning

We propose CVPT, which redesigns the deployment of
prompts to better adapt visual tasks. Our approach, as il-
lustrated in Fig.3, follows the VPT, the main parameters
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Figure 3. Structure comparison of VPT and CVPT. In which blue represents frozen parameters and orange represents learnable.

of the network remain frozen, and only the final classifi-
cation layer and the prompt are trainable. The key differ-
ence is that we allow the prompt token to perform cross-
attention with the embedded tokens and the result of cross-
attention is added with the embedded tokens as residuals.
This operation allows us to decouple the self-attention be-
tween prompts and embedded tokens, and more efficiently
reestablish the connection between the prompts and embed-
ded tokens. We demonstrate how significant this improve-
ment is in Sec.5.2. Specifically, for any input z; of a trans-
former block, the forward flow can be represented as fol-
lows:

X1 = Xi+ SALN(X5)), 3)
Xo=X1 + (X1, Prompt), 4
Xout = X2+ ( (X2)), (%)

where blue denotes frozen parameters and red denotes
trainable parameters, SA denotes self-attention, CA denotes
cross-attention, and LN denotes layer normalization.

In CVPT, we only introduce linear computational over-
head associated with the number of prompt tokens. It al-
lows CVPT to use a large number of prompt tokens to im-
prove its performance by introducing an acceptable over-
head. Furthermore, CVPT preserves the original procedure
of self-attention, keeping the complete representation abil-
ity of embedded tokens. We demonstrate the improvement
over VPT in terms of performance and efficiency in Sec.5.3.
Finally, we set embedded tokens as query sets and prompt
tokens as key-value sets, so that the consistency of the di-
mension can be maintained, allowing the result of cross-
attention to be directly summed with the input as a residual
term.

4.3. Weight-sharing mechanism

The utilization of cross-attention, which requires a large
number of learnable parameters, leads to a major challenge
in computational overhead. Therefore, if the parameters

852

of them are tunable, the computational overhead of CVPT
will even rival those using full-tuning. Therefore, we in-
troduce the weight-sharing mechanism. Due to the struc-
ture of cross-attention equal to that of self-attention, we
consider that the weight of self-attention is also instructive
for the fine-tuning of cross-attention. Thus, we initialize
the weight of cross-attention with the parameters of self-
attention when loading checkpoints. It avoids the intro-
duction of a huge number of learnable parameters in cross-
attention and keeps the efficiency of our CVPT. We explore
the impact of weight-sharing in Sec.5.4 and demonstrate its
effectiveness and efficiency.

5. Experiment

5.1. Experimental settings

Datasets. We evaluate our CVPT on both image classifi-
cation and semantic segmentation tasks to verify its effec-
tiveness. The specific datasets involved in our work are pre-
sented in the following.

* VTAB-1K. VTAB-1K comprises 19 datasets from differ-
ent domains, classified into three main categories: the
Natural group (natural images captured by standard cam-
eras) [30][38][14][40], the Specialized group (profes-
sional images captured by specialized equipment, such
as medical and remote sensing images) [48][22], and the
Structured group (synthetic images from artificial envi-
ronments). Each task contains only 1,000 training sam-
ples [27][15][37]. This is a primary metric for evaluating
PEFT’s performance.

FGVC. FGVC consists of five fine-grained visual clas-
sification benchmarks, including CUB-200-2011 [49],
NABirds [46], Oxford Flowers [39], Stanford-Dogs [28]
and Stanford-Cars [29]. Unlike VTAB-1K, the datasets in
FGVC benchmarks are complete.

ADE20K. ADE20K [59] contains more than 25,000 im-
ages and is primarily used for scene perception, parsing,
segmentation, multi-object recognition, and semantic un-



Table 1. Performance comparisons on the VTAB-1k benchmark with ViT-B/16 models pre-trained on ImageNet-21K.
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Full-tuning 858 689 | 689 877 643 972 869 874 388 | 79.7 957 842 739|563 586 417 655 575 46.7 257 29.1
Linear-probing [20] 0 576 | 634 850 632 97.0 863 36.6 510|785 875 686 740|343 306 332 554 125 200 9.6 192
Bias [55] 0.10 652 | 728 87.0 592 975 853 599 514|787 916 729 698 | 615 556 324 559 666 400 157 25.1
Adapter [23] 0.15 7391692 90.1 68.0 98.8 899 828 543|840 949 819 755|809 653 486 783 748 485 299 4l1.6
AdaptFormer [5] 0.15 747 |70.8 912 705 99.1 909 86.6 548 |83.0 958 844 763|819 0643 493 803 763 457 31.7 41.1
LoRA [24] 029 745|671 914 694 98.8 904 853 540|849 953 844 73.6|829 692 498 785 757 47.1 31.0 444
RepAdapter [36] 023 76.1 | 724 91.6 71.0 992 914 90.7 55.1 |853 959 846 759|823 680 504 799 804 492 38.6 410
SPT-LoRA [18] 048 764 | 73,5 933 725 993 915 879 555|857 962 859 759 | 844 676 525 82.0 81.0 51.1 302 413
RLRR [12] 033 768 | 75.6 924 729 993 915 898 57.0 | 8.8 952 853 759|797 642 539 821 839 537 334 436
DM-LoRA [13] 029 77.0 | 740 90.7 739 993 922 91.1 564 | 856 965 87.0 76.1 | 835 699 520 81.6 802 502 36.1 43.1
VPT-shallow 0.06 678 | 777 869 626 975 873 745 512|782 920 756 729|505 58.6 405 67.1 687 36.1 202 34.1
VPT-Deep [26] 0.53 720 | 788 908 658 98.0 883 781 49.6 | 81.8 96.1 834 684|685 60.0 465 728 736 479 329 378
EXPRESS [9] 098 729|780 89.6 68.8 987 889 89.1 519|848 962 809 742|665 604 465 776 780 495 26.1 353

DAM-VP [25] 252 731 - - - - - - - - - - - - - - - - - - -
E2VPT[17] 027 739 | 78.6 894 67.8 982 885 853 523|878 96.1 848 73.6| 717 612 479 758 80.8 481 31.7 419
VAPT [32] 025 753 |80.8 919 69.7 98.8 892 867 529|844 965 851 745|748 63.6 500 772 86.1 483 338 409
VFPT [56] 048 755 | 80.7 914 694 993 903 856 527|835 965 844 754|758 632 483 793 815 560 341 434
SA2VP [41] 041 758 | 73.0 919 705 99.1 90.8 84.7 56.8 | 86.0 959 858 752|766 61.8 508 799 845 528 347 453
CVPT 039 772 | 81.5 915 740 992 914 90.7 545|858 965 87.6 758 | 79.0 67.2 50.6 82.7 815 53.0 344 453

derstanding. This adaptation is challenging due to the

huge gap between the objectives of pretraining and down-

stream tasks.
Baseline. We primarily use CVPT to compare with the fol-
lowing methods: (1) Full-tuning and Linear Probing, (2)
Adapter and its variants, and (3) VPT and its variants.
Training. We use the ViT-Base-16 model as our main
model and AdamW as our optimizer. The other settings
and training strategies follow those used in VPT. We set the
number of prompts from [1, 5, 10, 20, 50, 100, 200] for
VTAB-1K (consistent with VPT). Besides, we use a single
NVIDIA 3090 on VTAB-1K and FGVC benchmark and use
NVIDIA 3090 x 8 on ADE20k.

5.2. Comparison with other PEFT methods

VTAB-1K. We compared CVPT with other baselines on the
VTAB-1K benchmark. The experimental results are shown
in Table.l, where we report the top-1 accuracy of these
methods. In the table, we divide the prompt-based methods
into one group and the other methods into another group.
The bold values in each group represent the best accuracy.

We first compare our method with other prompt-based
methods. The results of our experiments show that our
method achieved the best performance among prompt-
based methods in 12 out of 19 datasets, significantly out-
performing VPT and other VPT-based methods. No-
tably, CVPT achieves the highest accuracy in 5 out of 8
datasets within the structured group, indicating that the ad-
dition of cross-attention significantly improves the adap-
tation of prompts. Therefore, CVPT performs better in
those out-of-distribution (OOD) datasets. CVPT requires
fewer parameters than the latest methods like VFPT [56]
and SA%VP [41], which also perform well.

When considering all PEFT methods, we find that on a
small dataset like VTAB-1K, almost all mainstream PEFT
methods outperformed full-tuning in terms of performance.
This suggests that correctly selecting the parameters to fine-
tune is crucial. Our CVPT, shows an impressive perfor-
mance, over 0.2 in accuracy than DM-LoRA [13] and 0.4
than RLRR [12], outperforming the other PEFT methods
in performance in VTAB-1K. Notably, given the previously
observed limitations of prompt-based methods in terms of
performance and efficiency, our CVPT deeply explores the
potential of prompt-based methods and demonstrates that
prompt-based approaches can be competitive with state-of-
the-art adapter-based methods.

FGVC. Performance on VTAB-1K alone is not enough to
prove the superiority of CVPT. Therefore, we introduce the
experimental results of CVPT on FGVC to explore its per-
formance on a complete dataset of a certain scale. The re-
sults are shown in Table.2 below:

Table 2. Performance comparisons on five FGVC datasets with
ViT-B/16 models pre-trained on ImageNet-21K.

W CUB-200 ‘ NABirds ‘ Oxford | Stanford ‘ Stanford ‘ Avg. ‘ Params.
Method -2011 | Flowers Dogs Cars Acc. M)
Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5 86.0
Linear probing [20] 853 759 97.9 86.2 51.3 79.3 0.18
Adapter [23] 87.1 84.3 98.5 89.8 68.6 85.7 0.41
AdaptFormer [5] 84.7 752 97.9 84.7 83.1 85.1 0.37
LoRA [24] 88.3 85.6 99.2 91.0 83.2 89.5 0.44
SPT-LoRA [18] 88.6 83.4 99.5 914 87.3 90.1 0.48
RLRR [12] 89.3 84.7 99.5 92.0 87.0 90.4 0.47
DMLoRA [13] 89.8 86.6 99.5 91.8 85.7 90.7 0.47
VPT-Shallow [26] 86.7 78.8 98.4 90.7 68.7 84.6 0.25
VPT-Deep [26] 88.5 84.2 99.0 90.2 83.6 89.1 0.85
DAM-VP [25] 87.5 82.1 99.2 92.3 - - -
EXPRESS [9] 88.3 - 99.0 90.0 80.5 - -
E?VPT[17] 88.5 842 99.0 90.2 83.6 89.2 0.45
VAPT [32] 89.7 84.6 99.1 91.7 82.8 89.6 0.67
VFPT [56] 88.7 84.5 99.1 90.4 83.6 89.2 0.85
SA2VP [41] 89.1 85.8 99.3 92.1 84.1 90.1 0.85
CVPT 89.9 86.5 99.3 91.7 85.2 90.5 0.77
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Similar to the results on VTAB-1K, our approach sub-
stantially outperforms other prompt-based methods and
achieves the best results in 4 out of 5 datasets in FGVC.
It is only behind 0.2% than DMLoRA [13] and outperforms
other methods. This demonstrates CVPT’s generalization
and adaptability to the increasing scale of data in the future.
ADE20K. Finally, we apply CVPT to SETR[58] on the
ADE20K dataset to explore its performance on semantic
segmentation tasks. The results are shown in Table.3.

Table 3. Results of ADE20K datasets with ViT-L. "mIoU-SS"
and "mloU-Ms" denote single-scale and multi-scale, respectively.

Methods | Params(M) | mIoU-SS | mloU-Ms
Full-tuning 318.3 48.31 50.07
Linear probing 13.18 35.12 37.46
Bias [55] 13.46 43.40 45.33
VPT [26] 13.43 42.11 44.06
VPT+Bias [26] 15.79 44.04 45.63
RepAdapter [36] 13.82 44.44 46.71
SPT-LoRA [18] 14.60 45.40 47.50
CVPT(P=10) 1343 43.78 45.85
CVPT(P=200) 18.00 45.66 47.92

This task is quite challenging because of the huge dis-
tribution gap between pre-training datasets and downstream
tasks. In this situation, our CVPT shows a 1.7% enhance-
ment of "mIoU-SS" over the VPT with the same number
of prompts. If we use 200 prompts for fine-tuning, CVPT
represents a significant improvement over the other PEFT
methods. This fully demonstrates the adaptation of CVPT
to OOD datasets. Besides, due to our optimization of the
deployment, even though the number of learnable parame-
ters increases by 4 million, our memory usage and training
time increase by less than 20% compared to linear probing
and less than 10% compared to it when using 10 prompts
during training.

5.3. Comparison with VPT

Performance improvement. To investigate how much
improvement CVPT makes and the effect of the number
of prompts on performance, we use different numbers of
prompt tokens and conduct experiments on VTAB-1K us-
ing VPT and CVPT, respectively. The results are shown in
the following Table.4:

Table 4. Performance comparisons With VPT and CVPT on
VTAB-1K benchmark of different number of prompt tokens.

Number
m‘ ! ‘ 5 ‘10‘20‘50‘100‘150‘200

VPT 71.0 ‘ 73.0 | 73.0 | 72.8 | 722 | 69.2 | 66.0 | 64.0
CVPT 69.5 735 |74.0 | 741 | 743 | 74.5 | 74.6 | 74.8

These results show that our CVPT achieves better perfor-
mance in almost every case except the number of prompts
equals 1. As we analyzed in Sec.3, due to the destruc-
tion of self-attention between embedded tokens, when given
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a larger number of prompt tokens, VPT shows significant
performance degradation or even crashes. In contrast, our
CVPT avoids suffering from these problems. Additionally,
its performance improves as the number of prompt tokens
increases. We selected CIFAR[30], DTD, and SUN397 to
investigate the reasons for the performance degradation in
VPT, and the results are shown in Table.5.

Table 5. Performance comparisons With VPT and CVPT on
CIFAR, DTD, and SUN397, whose feature distribution is similar
to pretraining dataset.

Number
Dataset ’M 1 ‘ 10 ‘ 20 ‘ 50 ‘ 100 ‘ 200
VPT 65.2 | 64.9 | 63.6 | 603 | 57.5 | 35.7
CIFAR CVPT 702 | 724 | 720 726 | 719 | 721
1D VPT 688 | 66.1 | 659 | 634 | 619 | 595
CVPT 70.7 | 724 | 720 726 | 719 | 721
VPT 52.6 | 476 | 468 | 436 | 344 | 275
SUN397 CVPT 523 | 544 | 542 54.1 | 539 | 54.0

Han et al. [16] think pretrained parameters play a pivotal

role in capturing general features, while the added learnable
parameters are important for potentially encoding task in-
formation in the context of transfer learning. This indicates
that the destruction of self-attention between embedded to-
kens weakens the ability to recognize general features, and
significantly leads to performance collapse on datasets with
feature distributions similar to those of the pretraining data.
Meanwhile, it can be observed that the performance of our
CVPT does not fluctuate significantly with variations in the
number of prompts. This demonstrates the advantage of
preserving the complete self-attention.
Efficiency improvement. To explore the improvement
in the efficiency of CVPT, we also recorded the amount of
GPU memory occupied by VPT and CVPT during train-
ing and testing as well as the total computation of the two
when conducting the above experiments, and the results are
shown in Fig.4 follows.

The results reveal that our CVPT has made signifi-
cant efficiency improvements compared to VPT especially
given a large amount of prompt tokens. Additionally, the
weight-sharing mechanism allows for targeted optimization
in engineering applications, letting cross-attention and self-
attention share memory, further widening the efficiency gap
with VPT. Moreover, the careful design of CVPT prevents
explosive growth in memory and computation as the num-
ber of prompts increases. This means we can improve the
performance of CVPT by increasing the number of prompts
more computationally and efficiently than before.

In summary, our CVPT significantly improves the per-
formance and efficiency of VPT by introducing cross-
attention and the weight-sharing mechanism, especially
given a larger number of prompts. Therefore, it allows
us to introduce more prompts to the prompt-based method
in an efficient manner, thus improving its performance in
OOD datasets.
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Figure 4. The trends of training memory, testing memory, and Flops with the variation in the number of prompt tokens. Where LP
represents Linear Probing which only tunes the final classifier linear. The batch_size is set to 32. Pre-trained model is ViT-B/16.

5.4. Ablation Studies

The impact of the location of the Cross-Attention (CA).
We conducted experiments with the following five positions
to explore the optimal deployment of CA, and the results of
the experiments are displayed in Fig.5:

It can be observed that positions near the self-attention
(SA) module (1-3) outperform those near the MLP block
(4-5), and we attribute this to the more effective adapta-
tion of the rich, contextual features generated by SA. Prior
work [36] also demonstrated that inserting adapters near SA
yields better results. Among all options, inserting prompt
tokens after SA (position 3) achieves the best performance.
Notably, position 2 offers a compelling trade-off, enabling
parallel insertion for improved efficiency with only a negli-
gible drop in performance.

Position | Avg. Acc.

(VR RN S R
=
N
[=)

Figure 5. (a) The deployments of cross-attention in ViT. Our final
deployments are in dark blue. (b) Performance comparisons of
different deployments.

The impact of weight-sharing between CA and SA.
Weight-sharing can be viewed as an initialization strategy
for CA. We introduce random init for comparison and in-
clude linear probing (fine-tuning only the classifier head)
to demonstrate the effectiveness of introduced prompts and
frozen CA. Results with 10 prompts are shown in Table.6:

Table 6. Performance comparisons of learnable CA and frozen
CA with weight-sharing.

Method Nat. | Spe. | Str. | Avg | FGVC | Param(M)
Linear probing 689 | 77.2 | 26.8 | 57.6 | 79.3 0
Random init+Leanable CA 80.0 | 84.9 | 57.2 | 74.0 | 89.5 28.4
Weight Sharing+Leanable CA | 79.8 | 85.3 | 58.8 | 74.6 | 89.5 28.4
Random init+Frozen CA 72.8 | 81.8 | 36.6 | 63.7 | 86.0 0.09
Weight Sharing+Frozen CA | 80.0 | 84.5 | 57.5 | 740 893 0.09

After introducing weight-sharing, a frozen module sig-
nificantly outperforms one with random initialization. No-
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tably, its performance is comparable to that of a fully learn-
able CA, despite requiring substantially fewer parameters.
This strongly suggests that the parameters inherited from
SA provide a powerful inductive bias, effectively guiding
the CA module.

While a larger parameter count can increase model ca-
pacity, it does not guarantee better performance and may
lead to overfitting. The frozen CA, with its smaller and
well-initialized parameter space, is therefore easier to op-
timize and converges much faster than the fully learnable
version, proving to be a more efficient approach.

6. Conclusion

In the current field of visual fine-tuning, many researchers
overlook prompts in favor of adapters due to their strong
performance. The few prompt-based derived works do not
realize the drawbacks of combining prompts with embed-
ded tokens, continuing to use the method from VPT. In
light of this, we thoroughly analyzed the shortcomings of
such deployment and proposed CVPT. Its advantages are
as follows: 1) It decouples prompts from self-attention
and uses cross-attention to establish a connection with em-
bedded tokens. 2) It employs weight-sharing to avoid the
large number of learnable parameters introduced by cross-
attention. Additionally, we conducted extensive experi-
ments on CVPT, demonstrating its efficiency and perfor-
mance improvements over VPT and the effectiveness of
cross-attention and weight-sharing. Therefore, we prove
that prompt-based methods can perform comparably to ad-
vanced adapter methods in the visual fine-tuning domain.
We hope our work will inspire prompt-based PEFT meth-
ods in the future.

The limitation of our work is that we do not propose
new strategies for the init of prompt tokens. We have made
some attempts and noticed that other studies have been in-
troduced [26, 50]. However, neither our attempts nor those
reported elsewhere have shown substantial effects. There-
fore, we follow the same with VPT. We think the explo-
ration of initialization will help us understand how prompts
help the model’s fine-tuning.
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