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Figure 1. MV-Adapter is a versatile adapter that turns existing pre-trained text-to-image (T2I) diffusion models to multi-view image
generators. Row 1,2,3: results by integrating MV-Adapter with personalized T2I models, few-step T2I models, and ControlNets [68],
demonstrating its adaptability. Row 4,5: results under various control signals, including view-guided or geometry-guided generation with
text or image inputs, showcasing its versatility.

Abstract

Existing multi-view image generation methods often make
invasive modifications to pre-trained text-to-image (T2I)
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models and require full fine-tuning, leading to high com-
putational costs and degradation in image quality due to
scarce high-quality 3D data. This paper introduces MV-
Adapter, an efficient and versatile adapter that enhances
T2I models and their derivatives without altering the origi-
nal network structure or feature space. To efficiently model
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the 3D geometric knowledge within the adapter, we in-
troduce innovative designs that include duplicated self-
attention layers and parallel attention architecture, en-
abling the adapter to inherit the powerful priors of the pre-
trained models to model the novel 3D knowledge. More-
over, we present a unified condition encoder that seam-
lessly integrates camera parameters and geometric infor-
mation, facilitating applications such as text- and image-
based 3D generation and texturing. MV-Adapter achieves
multi-view generation at 768 resolution on Stable Diffu-
sion XL (SDXL), and demonstrates adaptability and versa-
tility. It can also be extended to arbitrary view generation,
enabling broader applications. We demonstrate that MV-
Adapter sets a new quality standard for multi-view image
generation, and opens up new possibilities due to its effi-
ciency, adaptability and versatility.

1. Introduction
Multi-view image generation is a fundamental task with sig-
nificant applications in areas such as 2D/3D content cre-
ation, robotics perception, and simulation. With the advent
of text-to-image (T2I) diffusion models [1, 33, 36, 37, 39,
40, 44], there has been considerable progress in generating
high-quality single-view images. Extending these models to
handle multi-view generation holds the promise of unifying
text, image, and 3D data into a cohesive framework.

Recent attempts on multi-view image generation [10, 15,
17, 21, 24, 26, 48, 53, 54, 57, 69] involve fine-tuning T2I
models on 3D datasets [5, 65] and propose modeling multi-
view consistency by applying attention to relevant pixels in
different views. However, it is computationally challenging
when working with large T2I models and high-resolution
images, as it requires at least n view images to be processed
simultaneously during training. Advanced methods [19, 21]
still struggle with 512 resolution, which is far from the 1024
or higher that modern T2I models can achieve. Moreover,
the scarcity of high-quality 3D data exacerbates the opti-
mization difficulty when performing full model fine-tuning,
resulting in a degradation in the generation quality. These
limitations primarily stem from the invasive changes to base
models and full tuning.

A feasible way to address these challenges is to fine-
tune a plug-and-play adapter, which helps preserve prior
knowledge embedded in the pre-trained models. For exam-
ple, NVS-Adapter [16] attaches an additional module to T2I
models for novel view synthesis from a single image. For
the adapter-based solution for multi-view image generation,
a key issue is how to efficiently model multi-view consis-
tency in the newly added networks while freezing the base
model. It has been demonstrated that effectively achiev-
ing multi-view consistency demands the fundamental image
prior [48], and this requirement applies to adapter-based ap-

proaches as well. NVS-Adapter [16] uses learnable tokens
as a medium to transmit information among views in its
view-consistency modules. Yet, because its adapter needs to
be trained from scratch, it lacks fundamental image prior for
learning multi-view consistency, leading to suboptimal per-
formance (see Tab. 4 and Fig. 7). Moreover, it is restricted
to the single image input and does not support native text
input or geometry guidance, which significantly limits its
applicability.

Therefore, we propose MV-Adapter, an efficient and ver-
satile plug-and-play adapter that enhances T2I models and
their derivatives for multi-view generation under various
conditions. Unlike existing full-tuning methods [47, 48],
which intrusively modify the base model’s original self-
attention layers to include multi-view or reference fea-
tures, we duplicate the self-attention layers to create new
multi-view attention and image cross-attention layers as an
adapter. To efficiently model multi-view consistency in
our adapter, we introduce a parallel structure for the newly
added attention layers—those handle image-related fea-
tures—ensuring they remain in the same domain as the base
model’s spatial self-attention. This design allows us to ini-
tialize the new attention weights with those already learned
by the pre-trained self-attention, enabling the adapter to
inherit the powerful image generation priors without hav-
ing to relearn them from scratch (as is the case in NVS-
Adapter [16]), and thus, the learning efficiency of multi-
view consistency is greatly improved. Additionally, we
introduce a unified condition embedding and encoder that
seamlessly integrates camera parameters and geometric in-
formation into spatial map representations, enhancing both
versatility and applicability of our approach.

By leveraging our adapter design, we successfully
achieve the consistent multi-view generation at 768 reso-
lution on SDXL [37]. As shown in Fig. 1, our MV-Adapter
produces highly consistent images and demonstrates both
adaptability and versatility. It seamlessly applies to deriva-
tives of the base model [13, 43, 68] for customized or con-
trollable generation, while simultaneously supporting cam-
era and geometry guidance, which benefits applications
in 3D generation and texture generation. Moreover, MV-
Adapter can be extended to arbitrary view generation, en-
abling broader applications. In summary, our contributions
are as follows:
• We design an innovative adapter, MV-Adapter, that in-

herits the pre-trained image prior and efficiently models
multi-view consistency.

• MV-Adapter is a versatile plug-and-play adapter that en-
ables T2I models and their derivatives to generate multi-
view images under various conditions.

• Experiments demonstrate that MV-Adapter produces
768-resolution multi-view images from text, images and
sketches, and supports generating arbitrary view images.
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2. Related Work

Text-to-Image Diffusion Models. Text-to-image (T2I)
generation [1, 14, 20, 28, 33, 36, 37, 39, 40, 44] has
made remarkable progress, particularly with the advance-
ment of diffusion models [7, 11, 12, 49]. Guided diffu-
sion [7] and classifier-free guidance [11] improved text con-
ditioning and generation fidelity. DALL-E2 [40] leverages
CLIP [38] for better text-image alignment. The Latent Dif-
fusion Model [42], also known as Stable Diffusion, en-
hances efficiency by performing diffusion in the latent space
of an autoencoder. Stable Diffusion XL [37], a two-stage
cascade diffusion model, has greatly improved the genera-
tion of high-frequency details.

Derivatives and Extensions of T2I Models. To facilitate
creation with pre-trained T2Is, various derivative models
and extensions have been developed, focusing on model dis-
tillation for efficiency [23, 27, 32, 51] and controllable gen-
eration [3, 30, 31, 66]. These derivatives encompass person-
alization [9, 13, 18, 29, 43, 46, 50, 56, 64], and spatial con-
trol [34, 68]. Typically, they employ adapters or fine-tuning
methods to extend functionality while preserving the origi-
nal feature space of the pre-trained models. Our work ad-
here to non-intrusive principle, ensuring compatibility with
these derivatives or extensions for broader applications.

Multi-view Generation with T2I models. Multi-view
generation methods [10, 15, 17, 21, 24, 26, 35, 48, 53,
54, 57, 61, 62, 69] extend T2I models by leveraging 3D
datasets [5, 65]. For instance, MVDream [48] integrates
camera embeddings and expands the self-attention mech-
anism from 2D to 3D for cross-view connections, while
SPAD [17] enhances spatial relational modeling by apply-
ing epipolar constraints to cross-view attention. Era3D [21]
introduces an efficient row-wise self-attention mechanism
aligned with epipolar lines across views, facilitating high-
resolution multi-view generation. However, these methods
typically require extensive parameter updates, altering the
feature space of pre-trained T2I models and limiting their
compatibility with T2I derivatives. Our work addresses this
by introducing a multi-view adapter that harmonizes with
pre-trained T2Is, significantly expanding the potential for
diverse applications.

3. Preliminary

We introduce the preliminary of multi-view diffusion mod-
els [17, 21, 48], which helps understand common strategies
in modeling multi-view consistency in T2I models.

Multi-View Diffusion Models. Multi-view diffusion mod-
els enhance T2Is by introducing multi-view attention mech-
anism, enabling the generation of images that are consistent
across different viewpoints. Several studies [48, 57] extend
the self-attention of T2Is to include all pixels across multi-
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Figure 2. Inference pipeline.

view images. Let f in denotes the input of the attention
block, the dense multi-view self-attention extends f in from
the view itself to the concatenated feature sequence from n
views. While this approach captures global dependencies,
it is computationally intensive, as it processes all pixels of
all views. To mitigate the computational cost, epipolar at-
tention [15, 17] leverages geometric relationships between
views. Specifically, methods like SPAD [17] extend the
self-attention by restricting f in to the view itself as well
as patches along its epipolar lines.

Furthermore, when generating orthographic views at an
elevation angle of 0◦, the epipolar lines align with the image
rows. Utilizing this property, row-wise self-attention [21]
is introduced after the original self-attention layers in T2I
models. The process is defined as:

fself = SelfAttn(f in) + f in;

fmv = MultiViewAttn(fself ) + fself
(1)

where MultiViewAttn performs attention across the same
rows in different views, effectively enforcing multi-view
consistency with reduced computational overhead.

4. Methodology
MV-Adapter is an efficient and versatile adapter that learns
multi-view priors transferable to derivatives of T2Is with-
out specific tuning, and enable them to generate multi-view
consistent images under various conditions. As shown in
Fig. 2, at inference, our MV-Adapter, which contains a con-
dition guider and the decoupled attention layers, can be in-
serted into a personalized or distilled T2I to constitute the
multi-view generator.

In detail, as shown in Fig. 3, the condition guider
in Sec. 4.1 encodes the camera or geometry informa-
tion, which supports both camera-guided and geometry-
guided generation. Within the decoupled attention mech-
anism in Sec. 4.2, the additional multi-view attention lay-
ers learn multi-view consistency, while the optional image
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Figure 3. Overview of MV-Adapter. Our MV-Adapter consists of two components: 1) a condition guider that encodes camera or geometry
condition; 2) decoupled attention layers that contain multi-view attention for learning multi-view consistency, and optional image cross-
attention to support image-conditioned generation, where we use the pre-trained U-Net to encode the reference image.

cross-attention layers are for image-conditioned generation.
These new layers are duplicated from pre-trained spatial
self-attention and organized in a parallel architecture.

4.1. Condition Guider
We design a general condition guider that supports encod-
ing both camera and geometric representations, enabling
T2I models to perform multi-view generation under various
guidance.
Camera Conditioning. To condition on the camera pose,
we use a camera ray representation (“raymap”) that shares
the same height and width as the latent representations in
the pre-trained T2I models and encodes the ray origin and
direction at each spatial location [10, 45, 60].
Geometry Conditioning. Geometry-guided multi-view
generation helps applications like texture generation. To
condition on the geometry, we use a global, rather than
view-dependent representation that contains position maps
and normal maps [2, 22]. Each pixel in the position map
represents the coordinates of the point on the shape, which
provide point correspondences across different views. Nor-
mal maps provide orientation information and capture fine
geometric details, helping produce detailed textures. We
concatenate the position map and normal map along to form
a composite geometric conditioning input for each view.
Encoder Design. To encode the camera or geometry rep-
resentation, we design a simple and lightweight condition
guider for the conditioning maps cm (cm ∈ Rn×6×h×w).
The condition guider consists of a series of convolutional
networks, which contain feature extraction blocks and
downsampling layers to adapt the feature resolution to the
features in the U-Net encoder. The extracted multi-scale
features are then added to the corresponding scales in the
U-Net, enabling the model to integrate the conditioning in-
formation seamlessly at multiple levels. In theory, the input
to our encoder is not limited to specific types of conditions;

it can also be extended to a wider variety of maps, such as
depth maps and pose maps.

4.2. Decoupled Attention
We introduce a decoupled attention mechanism, where we
retain the original spatial self-attention layers and duplicate
them to create new multi-view attention layers as well as
image cross-attention layers for image-conditioned genera-
tion. These three types of attention layers are organized in
a parallel architecture, which ensures that the new attention
layers can fully inherit the powerful priors of the pre-trained
self-attention layers, thus enabling efficient learning of ge-
ometric knowledge.
Duplication of Spatial Self-Attention. Our design ad-
heres to the principle of preserving the original network
structure and feature space of the base T2I model. Exist-
ing methods like MVDream [48] and Zero123++ [47] mod-
ify the base model’s self-attention layers to include multi-
view or reference features, which disrupts the learned pri-
ors and requires full model fine-tuning. Here we duplicate
the structure and weights of spatial self-attention layers to
create new multi-view attention and image cross-attention
layers, and initialize the output projections of these new at-
tention layers to zero. This allows the new layers to learn
geometric knowledge without interfering with the original
model, ensuring excellent adaptability.
Parallel Attention Architecture. In the pre-trained
T2I model, the spatial self-attention layer and text cross-
attention layer are connected serially through residual con-
nections. Suppose feature f in is the input of the attention
block, we can express the process as

fself = SelfAttn(f in) + f in;

f cross = CrossAttn(fself ) + fself
(2)

A straightforward method to incorporate new attention lay-
ers is to append them after the original layers, connecting
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Figure 4. Serial vs parallel architecture.

them in a serial manner. However, the sequential arrange-
ment may not effectively utilize the image priors modeled
by the pre-trained self-attention layers, as it requires the
new layers to learn from scratch. Even if we initialize the
new layers with the pre-trained weights, the features input
to these serially organized layers are in a different domain,
causing the initialization to be ineffective. To fully exploit
the effective priors of the spatial self-attention layers, we
adopt a parallel architecture, as shown in Fig. 4. The pro-
cess can be formulated as

fself = SelfAttn(f in) + MultiViewAttn(f in)

+ ImageCrossAttn(f in,fref ) + f in
(3)

where fref refers to features of the reference image. Since
the features f in fed into the new layers are the same as those
to the self-attention layer, we can effectively initialize them
with the pre-trained layers to transfer the image priors. We
zero-initialize the output projection layer of the new layers
to ensure that the initial output does not disrupt the original
feature space. This architectural choice allows the model
to build upon the established priors, facilitating efficient
learning of multi-view consistency and image-conditioned
generation, while preserving the original space of the base
text-to-image diffusion models.
Details of Multi-View Attention. We design different
strategies for multi-view attention to meet the specific needs
of different applications. For 3D object generation, we en-
able the model to generate multi-view images at an eleva-
tion of 0◦ and employ row-wise self-attention [21]. For 3D
texture generation, considering the view coverage require-
ments, in addition to the four views evenly at elevation 0◦,
we add two views from top and bottom. We then perform
both row-wise and column-wise self-attention, enabling ef-
ficient information exchange among all views. For arbitrary
view generation, we employ full self-attention [48] in our
multi-view attention layers.

Details of Image Cross-Attention. To condition on ref-
erence images ci and achieve, we propose a novel method
for incorporating detailed information from the image with-
out altering the original feature space of the T2I model. We
employ the pre-trained and frozen T2I U-Net as our image
encoder. We pass the clear reference image into this frozen
U-Net, setting the timestep t = 0, and then extract multi-
scale features from the spatial self-attention layers. These
fine-grained features contain detailed information about the
subject and are injected into the denoising U-Net through
the decoupled image cross-attention layers. In this way, we
leverage the rich representations learned by the pre-trained
model, enabling precise control over the generated content.

5. Experiments
We implemented MV-Adapter on Stable Diffusion V2.1
(SD2.1) [42] and SDXL [37], training a 512 × 512 adapter
for SD2.1 and a 768 × 768 adapter for SDXL using a sub-
set of the Objaverse dataset [5]. Detailed configurations are
provided in the supplementary materials.

5.1. Camera-Guided Multi-view Generation

Evaluation on Community Models and Extensions. We
evaluated MV-Adapter using representative T2Is and exten-
sions, including personalized models [13, 43], efficient dis-
tilled models [23, 27], and plugins such as ControlNet [68].
We present six qualitative results in Fig. 5. More results can
be found in the supplementary materials.
Comparison with Baselines. For text-to-multiview gener-
ation, we compared our MV-Adapter with MVDream [48]
and SPAD [17] on 1,000 prompts from the Objaverse
dataset. The results are presented in Fig. 6 and Tab. 1.
For image-to-multiview generation, we conduct compari-
son with full-tuning methods [21, 47, 55, 57, 59], and the
adapter-based method NVS-Adapter [16] on the Google
Scanned Objects (GSO) dataset [8], as results shown in
Fig. 7 and Tab. 4. Compared to those full-tuning methods,
it indicates that, by preserving the original feature space
of T2I models, our MV-Adapter achieves higher visual fi-
delity and consistency with conditions. Compared to NVS-
Adapter that needs to train new modules from scratch, our
adapter inherits pre-trained prior and produces consistent
multi-view images.

Quantitative comparisons on training efficiency with the
baseline method Era3D [21] in Tab. 3 demonstrates that
our MV-Adapter significantly reduces computational costs,
facilitating high-resolution multi-view generation based on
larger backbones.

5.2. Geometry-Guided Multi-view Generation

Evaluation on Community Models. We evaluated our
geometry-guided model with T2I derivative models. The re-
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Figure 5. Results of text-to-multi-view generation with community models and extensions.
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Figure 6. Qualitative comparison on camera-guided text-to-multiview generation.

Table 1. Quantitative results on text-to-multiview generation.

Method FID↓ IS↑ CLIP Score↑

MVDream [48] 32.15 14.38 31.76
SPAD [17] 48.79 12.04 30.87
Ours (SD2.1) 31.24 15.01 32.04
Ours (SDXL) 29.71 16.38 33.17

sults in Fig. 9 demonstrate the adaptability of MV-Adapter
in seamlessly integrating with different base models.

Comparison with Baselines. We compare our text-
and image-conditioned multi-view-based texture genera-
tion method (see details in Sec. 5.4) with four state-of-
the-art methods, including TEXTure [41], Text2Tex [4],
Paint3D [67], SyncMVD [25], and FlashTex [6]. For our

image-to-texture model, we used ControlNet [68] to gener-
ate reference images conditioned on text and depth maps.
As shown in Fig. 8 and Tab. 2, compared to these project-
and-inpaint or synchronized multi-view texturing methods,
our approach fine-tunes additional modules to model geo-
metric associations and preserves the generative capabilities
of the base T2I model, thereby producing multi-view con-
sistent and high-quality textures. Additionally, testing on a
single RTX 4090 GPU revealed that our method achieves
faster generation speeds than the others.

5.3. Ablation Study

Parallel Attention Architecture. To assess the effective-
ness of our proposed parallel attention architecture, we con-
ducted ablation studies on image-to-multi-view generation
setting. We report the quantitative and qualitative results of
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Figure 8. Qualitative comparison on texture generation. We compare our text- and image-conditioned models with baseline methods.

using serial or parallel architecture in Tab. 4 and Fig. 10.
The results show that, the serial setting, which cannot lever-
age the pre-trained image prior, tends to produce artifacts
and inconsistent details with the image input. In contrast,
our parallel setting produces high-quality and highly con-
sistent results with the reference image.

5.4. Applications

3D Generation. Following Era3D [21], we use StableNor-
mal [63] to generate normal maps of multi-view images,
which are then fed into NeuS [58] to reconstruct 3D meshes.
We conducted comparison with Era3D [21]. Results in
Tab. 3 show that our SD2.1-based MV-Adapter is compa-
rable to Era3D, but our SDXL-based model shows signif-
icantly higher performance. These findings underline the
scalability of MV-Adapter and its ability to leverage the
strengths of state-of-the-art T2I models, providing addi-
tional benefits to 3D generation. Visualization results can
be found in supplementary materials.

Table 2. Quantitative comparison on 3D texture generation. FID
and KID (×10−4) are evaluated on multi-view renderings. Our
models achieves best texture quality with faster inference.

Method FID↓ KID↓ Time↓

TEXTure [41] 56.44 61.16 90s
Text2Tex [4] 58.43 60.81 421s
Paint3D [67] 44.38 47.06 60s
SyncMVD [25] 36.13 42.28 50s
FlashTex [6] 50.48 56.36 186s

Ours (SD2.1 - Text) 38.19 42.83 18s
Ours (SD2.1 - Image) 33.93 38.73 19s
Ours (SDXL - Text) 32.75 35.18 32s
Ours (SDXL - Image) 27.28 29.47 33s

Texture Generation. We leverage back-projection and
incidence-based weighted blending techniques [2] to map
the generated multi-view images onto the UV texture map.
We then perform view coverage analysis to identify uncov-
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Figure 10. Qualitative ablation study on the attention architecture.

ered regions, render images from the current 3D texture for
those views, and refine them using an efficient inpainting
model [52]. More visualization results can be found in the
supplementary materials.

Arbitrary View Generation. Following CAT3D [10], we
perform multiple rounds of multi-view generation, with the
number of views generated each time set to n = 8. Starting
from text or an initial single image as input, we first gen-
erate eight anchor views that broadly cover the object. In
practice, these anchor views are positioned at elevations of
0◦ and 30◦, with azimuth angles evenly distributed around
the circle (e.g. every 45◦). For generating new target views,
we cluster the viewpoints based on their spatial orientations,
grouping them into clusters of 8. We then select the 4 near-

Table 3. Quantitative comparison on training efficiency (batch size
set to 1) and 3D reconstruction. We compare with baseline method
Era3D [21] on Training Params (TP), Memory Usage (MU), Train-
ing Speed (TS), as well as Chamfer Distance (CD) and Volume
IoU (IoU) of reconstruction results.

Method TP↓ MU↓ TS↑ CD↓ IoU↑

Era3D (SD2.1) 993M 36G 2.2iter/s 0.0329 0.5118
Ours (SD2.1) 127M 17G 3.1iter/s 0.0317 0.5173

Era3D (SDXL) 3.1B >80G - - -
Ours (SDXL) 490M 60G 1.05iter/s 0.0206 0.5682

Table 4. Quantitative results on image-to-multiview generation.

Method PSNR↑ SSIM↑ LPIPS↓

ImageDream [57] 19.280 0.8472 0.1218
Zero123++ [47] 20.312 0.8417 0.1205
CRM [59] 20.185 0.8325 0.1247
SV3D [55] 20.042 0.8267 0.1396
Ouroboros3D [61] 20.810 0.8535 0.1193
Era3D [21] 20.890 0.8601 0.1199

NVS-Adapter [16] 17.236 0.8069 0.1476

Ours (SD2.1, Parallel Attention) 20.867 0.8695 0.1147
Ours (SDXL, Parallel Attention) 22.131 0.8816 0.1002
Ours (SDXL, Serial Attention) 20.687 0.8681 0.1149

est known views from the already generated anchor views
to serve as conditions guiding the generation of each target
view. When using four input views, we concatenate them
into a long image and input this into the pre-trained T2I U-
Net to extract features. Implementation details and visual
results are provided in supplementary materials.

6. Conclusion

In this paper, we present MV-Adapter, an efficient and ver-
satile adapter that enhances text-to-image diffusion models
and their derivatives without compromising quality or al-
tering the original feature space. We introduce innovative
adapter framework that includes duplicated self-attention
layers and a parallel attention architecture, allowing the
adapter to efficiently model 3D geometric knowledge. Ad-
ditionally, we introduced a unified condition encoder that
integrates camera parameters and geometric information
into spatial map representations, enhancing the model’s ver-
satility and applicability in 3D generation and texture gener-
ation. Extensive evaluations highlight the efficiency, adapt-
ability, and versatility of MV-Adapter across different mod-
els and conditions. MV-Adapter offers an efficient and flex-
ible solution for multi-view image generation, presenting
exciting possibilities for a wide range of applications.
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