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Generate more spectral tokens
Figure 1. We approach autoregressive visual generation from the spectral perspective and propose SpectralAR which converts images into
1D causal sequences with nested spectral tokenization and generates images in a hierarchical coarse-to-fine manner. In the autoregressive
process, each generated token improves the quality of the image by introducing new high-frequency components.

Abstract

Autoregressive visual generation has garnered increasing
attention due to its scalability and compatibility with other
modalities compared with diffusion models. Most existing
methods construct visual sequences as spatial patches for
autoregressive generation. However, image patches are in-
herently parallel, contradicting the causal nature of autore-
gressive modeling. To address this, we propose a Spectral
AutoRegressive (SpectralAR) visual generation framework,
which realizes causality for visual sequences from the spec-
tral perspective. Specifically, we first transform an image
into ordered spectral tokens with Nested Spectral Tokeniza-
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tion, representing lower to higher frequency components.
We then perform autoregressive generation in a coarse-to-
fine manner with the sequences of spectral tokens. By con-
sidering different levels of detail in images, our SpectralAR
achieves both sequence causality and token efficiency with-
out bells and whistles. We conduct extensive experiments on
ImageNet-1K for image reconstruction and autoregressive
generation, and SpectralAR achieves 3.02 gFID with only
64 tokens and 310M parameters. Project page: https:
//huang-yh.github.io/spectralar/.

1. Introduction

Diffusion models [19, 39, 44, 46] have long been the best
performing approach to visual generation. Despite their ex-
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ceptional generation quality, diffusion models still exhibit
deficiencies in multimodal modeling and integration of per-
ception and generation. The advent of autoregressive vi-
sual generation methods [10, 29, 36, 42, 48, 50, 65] alle-
viates these limitations and enables better scalability with
the next-token prediction paradigm. It first utilizes a visual
tokenizer to convert images into tokens and then generates
samples in a sequential manner. This advancement supports
a variety of emerging applications, including scalable visual
generation [16, 57, 59, 69], mixed-modal foundation mod-
els [49, 56, 60], and autoregressive world models [21, 73].

Despite their dominance in language modeling [40, 53],
the performance of autoregressive models in visual gen-
eration [10, 14] is still inferior to that of diffusion mod-
els [35, 39] and non-autoregressive models [4, 66]. This
distinction can be attributed to the inherent difference be-
tween text and image modalities. Text, invented for human
communication, is discrete and sequential, while image data
is continuous and invariant to translation [28], indicating the
intrinsic equality among image pixels. This equality makes
it a critical issue for autoregressive visual generation to con-
vert images into one-dimensional sequential tokens [65].
Methods based on spatial scanning [10, 34, 47, 62] at-
tempt to discretize the image locally into tokens according
to patches, and then perform autoregressive generation fol-
lowing a certain order based on their locations. However,
the resulting spatial sequence violates the equality among
image patches, making it suboptimal for causal autoregres-
sive modeling. Another line of work [4, 31, 66] introduces
bidirectional interaction in the generator as a workaround.
Nonetheless, they still tokenize images spatially, thus as-
suming a causal order among image patches. In addition,
the bidirectional design may deviate from the conventional
autoregressive paradigm, complicating their integration into
omni-modal frameworks [49, 56]. In contrast to spatial to-
kenization, VAR [50] explores transforming the image into
multiple scales and producing a sequence by concatenating
tokens from ordered scales. Although scale-wise autore-
gressive generation indeed satisfies the equality of image
pixels, it suffers from inferior token efficiency and parallel
generation of multiple tokens from the same scale.

In this paper, we introduce a spectral autoregressive vi-
sual generation framework to achieve causal autoregressive
modeling and improve token efficiency, as shown in Fig-
ure 2. Frequency is an inherent attribute of all types of sig-
nals and has become a significant perspective and method-
ology that complements the spatial-temporal domain [2].
For visual data, the spectral density often conforms to the
power-law distribution [6], with low-frequency components
representing the overall structure of an image and high-
frequency components focusing on the intricate details.
This hierarchical coarse-to-fine nature of the correspon-
dence between spectral and spatial domains indicates a se-
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Figure 2. Comparison between autoregressive visual genera-
tion methods. SpectralAR achieves both token efficiency and se-
quence causality with nested 1D spectral tokens.
quential order of images, motivating us to represent images
as causal spectral sequences. Specifically, we first transform
images into spectral tokens with Nested Spectral Tokeniza-
tion (NST), which uses varying sequence lengths to repre-
sent images across different frequency bands. The causality
of the spectral sequences originates from the coarse-to-fine
progression characteristic resembling human visual percep-
tion and is strengthened with the application of a causal
mask. In addition, inspired by the image compression lit-
erature [55, 58], we design a non-uniform token-frequency
mapping, which allocates more tokens to represent low-
frequency components and fewer for high-frequency com-
ponents. This mapping technique greatly reduces the num-
ber of tokens, while maintaining the quality of reconstructed
samples. In the autoregressive process, we begin with the
token representing the DC component and progressively
predict tokens corresponding to higher frequencies condi-
tioned on previous ones. We conduct extensive experiments
on the ImageNet-1K dataset for image reconstruction and
class-conditional generation. Our SpectralAR demonstrates
comparable performance with state-of-the-art methods.

2. Related Work
Autoregressive visual generation. While diffusion mod-
els have achieved exceptional performance, they are fun-
damentally different from the conventional autoregressive
framework [49, 56] for cross-modal and cross-task model-
ing. Therefore, a body of research aims to advance autore-
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gressive models for visual generation. Early efforts [5, 51]
perform pixel-level generation in the row-major raster-scan
order, followed by VQGAN [10] which transfers to the la-
tent feature space of VQVAE [52] for autoregressive mod-
eling. Subsequent work improves based on VQGAN with
multiple scales [42], residual quantization [29], ViT archi-
tecture [63] or textual conditions [64]. However, raster-scan
generation violates the equality between image pixels as
discussed in Section 1, contradicting the causality premise
of autoregressive modeling. Recently, VAR [50] proposes
the scale-wise autoregressive generation that aims to pre-
dict the next-scale token map conditioned on the previous
ones. Despite achieving causality with the multi-scale de-
sign, VAR predicts multiple tokens with bidirectional atten-
tion in each step, thus deviating from the standard autore-
gressive framework. In contrast, our method realizes causal
autoregressive generation from the spectral perspective and
still conforms to the unidirectional scheme.

Efficient image tokenization. Autoregressive genera-
tion requires the conversion of images into token sequences,
which is often achieved using autoencoders [18, 54]. Patch-
based autoencoders [10, 24, 37, 52, 72] tokenize images
spatially, where each token corresponds to a certain patch
from the original image. Although this paradigm performs
well in image reconstruction and diffusion-based genera-
tion [39, 44], it is not suitable for autoregressive modeling
due to its spatial design. Also, its token length is propor-
tional to the square of image resolution, which might be-
come the bottleneck in multimodal modeling given limited
context length [49]. TiTok [66] proposes a 1D tokenizer
which reduces the number of tokens to 32 for 256 × 256
images. However, TiTok is trained with only an overall
reconstruction objective, and thus the precise meaning of
these 1D tokens remains unclear. VAR [50] introduces a
multi-scale tokenizer for causal autoregressive image gen-
eration. Nonetheless, the multi-scale strategy requires an
even greater number of tokens compared to patch-based to-
kenization methods, further diminishing token efficiency.
Our method converts images into 1D causal sequences of
spectral tokens and enhances token efficiency by leveraging
the long-tail distribution of spectral density in image data.

Spectral visual analysis. Spectral analysis [2] has been
a common technique in computer vision, complementing
the spatial and temporal domains. Representative applica-
tions include image enhancement and denoising [15, 68],
texture analysis and feature extraction [41], compression
and super-resolution [13, 55], visual generation [61, 67],
adversarial attacks and defenses [12, 32, 33]. For autore-
gressive image generation, CART [43] and SIT [11] pro-
pose to transform an image into multiple causal sets of to-
kens with base-detail decomposition and discrete wavelet
transform, respectively. However, these methods still ad-
here to the multi-scale 2D tokenization paradigm similar to

VAR, resulting in suboptimal token efficiency and bidirec-
tional attention to predict multiple tokens per autoregressive
step. In contrast, SpectralAR leverages the discrete cosine
transform to capture the global information of an image, and
compress it into a 1D sequence with high efficiency.

3. Proposed Approach
3.1. Revisiting Images from the Spectral Domain
Discrete cosine transform. Spectral analysis investigates
how complex signals can be represented with simpler ba-
sis functions [2], producing a spectral density distribution
that represents the magnitude of corresponding basic com-
ponents. This spectral density distribution is an equivalent
representation of the original signal and provides a distinct
perspective from the spatial domain depending on the prop-
erties of the basis functions. We employ the Discrete Cosine
Transform (DCT) [1] to convert images into the spectral do-
main. The DCT result D shares the same shape with the
transformed image I ∈ RH×W (for simplicity, we omit the
channel dimension):

D = {F (u, v)}W,H
u,v=1, I = {f(x, y)}W,H

x,y=1. (1)

Each F (u, v) represents the intensity of the corresponding
basis function gu,v(x, y) in the image I, which writes:

gu,v(x, y) =
2C(u)C(v)√

HW
cos

(2x+ 1)uπ

2W
cos

(2y + 1)vπ

2H
, (2)

where C(u) = 1/
√
2 if u = 0 and C(u) = 1 otherwise.

This family of basis functions has the following properties:
(1) Given u and v, the basis function gu,v(x, y) exhibits a
checkerboard-like pattern in the spatial domain, with peri-
ods along the x- and y-axis of 2W/u and 2H/v, respec-
tively. This pattern suggests that the basis function char-
acterizes the rate of variation of images in the spatial do-
main. (2) The F (u, v)s also form a 2D matrix together,
where the top-left corner represents the low-frequency com-
ponents (small u, v), while the bottom-right corner corre-
sponds to the high-frequency components (large u, v).

Causality from the spectral domain. Since low- and
high-frequency components describe overall structures and
intricate details, respectively, we can decompose an image
into a sequence of sub-images {I′i}Li=1 with increasing lev-
els of detail by applying inverse-DCT on partially masked
spectral density distributions {D′

i}Li=1. With more high-
frequency components, the sub-images will gradually tran-
sition from blurred to sharp, as shown in Figure 2. This hi-
erarchical coarse-to-fine sequence aligns with human visual
perception and artistic drawing, thus enhancing causality.

Efficiency from the spectral domain. As the image
compression literature [1] pointed out, the DCT result D of
images conforms to the power-law distribution with the ab-
solute values of F (u, v)s on the top-left corner substantially
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Figure 3. Overall pipeline of the proposed SpectralAR. Left: We convert an input image into a 1D causal sequence efficiently with nested
spectral tokenization. Each nested sequence is supervised with distinct reconstruction target in a coarse-to-fine manner, which endows each
token with an explicit spectral interpretation. We also apply the causal mask to the spectral tokens in the encoder and decoder to enhance
the causality. Right: We use the groundtruth sequences from the tokenization process to train an autoregressive generation model.

larger than the bottom-right corner, indicating that most en-
ergy of an image is concentrated in the low-frequency com-
ponents. In addition, human visual perception is less sen-
sitive to high-frequency signals, which have little influence
on the visual quality of images. Based on these distinctions,
we can encode the high-frequency components of an image
with coarser granularity to improve token efficiency, simi-
lar to the JPEG algorithm [55] which saves more than 90%
storage for images by suppressing high-frequency signals.

3.2. Nested Spectral Tokenization

Overall framework. In contrast to the 2D spatial tok-
enization that captures the local correlation between im-
age patches, the basis function gu,v(x, y) of DCT encodes a
global frequency pattern. Therefore, we convert images into
1D tokens in spectral tokenization to reflect the global na-
ture of the basis functions. We start with the general frame-
work of a 1D image tokenizer [66]. Given an image I, we
aim to encode it into N discrete vectors S, and also recon-
struct the original image with S. We first patchify the image
into P ∈ Rhw×C , and concatenate the image features with
the initial query vectors S0 to form [P;S0] ∈ R(hw+N)×C ,
where h, w, C denote the resolution of image features and
the channel dimension, respectively. We then employ the
vision transformer E to enable feature extraction and inter-
action between the image features and 1D query tokens, re-
sulting in the informative 1D representation Ŝ. In the vector
quantizer Q, we match these continuous vectors with the

codebook embeddings to derive the discrete representation
S, which could serve as the groudtruth for the autoregres-
sive training. At last, we append S to a set of mask tokens
M ∈ Rhw×C and process them with the decoder network
D similar to E , in order to reconstruct the original image.
This overall framework could be formulated as:

Ŝ = E([P;S0]), S = Q(Ŝ), Î = D([M;S]), (3)

where Î denotes the reconstructed image. The training ob-
jective typically consists of multiple loss functions:

Ltok = ∥Î− I∥22 + ∥Ŝ− S∥22 + LP (Î, I) + LA(Î, I), (4)

where LP and LA denote the perceptual loss [22, 70] and
the adversarial loss [10, 14], respectively.

Nested spectral decoding. Different from the plain 1D
tokenization in Figure 2, we aim to represent an image as
its spectral decompositions {I′i}Li=1 for sequence causality,
which requires establishing a mapping from 1D tokens to
these sub-images. One naive way to achieve this would
be dividing S into disjoint subsets and assigning them to
model different sub-images independently. Similar to the
multi-scale tokenization [50], this strategy would inevitably
involve bidirectional interaction and diminish token effi-
ciency because sub-images with finer detail would require
increasingly more tokens to represent. In contrast, we pro-
pose a nested mapping scheme for efficient tokenization,
as shown in the bottom of Figure 3. We first construct a
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Algorithm 1: Nested Spectral Tokenization Training

1 Inputs: raw image I, initial spectral tokens S0 ∈ RN×C ;
2 Hyperparameters: spectral levels {ωi|i = 1, ..., N};
3 P = patchify(I), Ŝ = E([P;S0]), S = Q(Ŝ);
4 idx = random choice(N);
5 S′ = S[: idx], Î′ = D([M;S′]);
6 D = DCT(I), D′ = D ◦ 1ωi , I′ = DCT−1(D′);
7 loss = Ltok(Î

′, I′);
8 Return: loss for optimization;

sequence of sub-images with increasing detail by progres-
sively preserving larger regions in the spectral density D:

I′i = DCT−1(D′
i), D′

i = D ◦ 1ωi , ωi−1 < ωi, (5)

where DCT−1, ◦, 1ωi
denote the inverse DCT operation,

element-wise multiplication and a H ×W matrix with the
top-left corner of size ωi × ωi filled by ones and the re-
maining parts being zeros. Therefore, the sub-image I′i
contains all frequency components present in the sub-image
I′i−1. Based on this inclusion property, we can reuse the to-
kens representing the previous sub-image I′i−1 to represent
the next sub-image I′i. To avoid bidirectional attention, we
make L equal to N so that each token si in the sequence S
corresponds to a unique sub-image I′i:

Î′i = D([M; s1, s2, ..., si]), (6)

where Î′i is the reconstruction of sub-image I′i given the
nested 1D sequence {s1, s2, ..., si}. Nested spectral decod-
ing compresses an image into a causal 1D sequence where
each token si corresponds to a disjoint set of frequencies
and achieves token efficiency by reusing previous tokens.

Non-uniform token-frequency mapping. To further
enhance token efficiency, we introduce the non-uniform
token-frequency mapping technique. Since high-frequency
components have low magnitude and minimal impact on
the visual quality of images, we can encode them with
coarser granularity compared to the low-frequency coun-
terparts. We achieve this by reducing the interval between
ωi−1 and ωi when i is small, and increase it otherwise:

ωi − ωi−1 ≤ ωi+1 − ωi, (7)

which demonstrates the general case. This non-uniform
mapping allocates later tokens to broader frequency ranges,
enabling precise modeling of crucial low-frequency compo-
nents while efficiently representing high-frequency details.

Spectral causal mask. Although the sequence S super-
vised with (5)(6) already exhibits a certain degree of causal-
ity, the encoding and decoding processes, i.e. E and D, are
still bidirectional, which can lead to information leakage
from high-frequency to low-frequency components. There-
fore, we propose applying causal masks to the spectral to-
kens S in both the encoder E and the decoder D, as shown

Table 1. Correlation between tokens of different autoregressive
paradigms. We use linear correlation as a proxy metric for the
causality of sequences. The spectral sequence demonstrates better
causality compared with other methods.

Correlation Type Raster-scan Scale-wise Spectral

R2
avg(t2; t1) 0.471 0.889 0.916

R2
avg(t3; t1, t2) 0.366 0.953 0.977

R2
avg(t4; t1, t2, t3) 0.525 0.943 0.994

Average 0.454 0.928 0.962

0

0.002

Raster-scan Scale-wise Spectral

Figure 4. Frequency of each element having the highest cor-
relation with another one. It represents the source of reference
information for predicting the next token. The raster-scan method
exhibits excessive dependency on boundaries of image patches.

in Figure 3. This spectral causal mask restricts each token
s to only attend to tokens that represent lower frequencies,
enhancing causality from the architectural perspective. We
outline the training procedure in Algorithm 1.

3.3. Spectral Autoregressive Generation
Autoregressive modeling has gained prominence in com-
puter vision for its scalability, generalization, and effec-
tiveness across multimodal tasks [25, 49, 56]. While con-
ventional autoregressive generation follows a spatial raster-
scan order [10, 51], we propose a hierarchical coarse-to-
fine approach in the spectral domain to enhance causality,
as shown in the right side of Figure 3. We start with the
general framework of autoregressive modeling:

pi+1 = M(t1, t2, ..., ti), (8)

where T = {ti}Ni=1 is a sequence of quantized tokens, and
pi+1, M denote the probability logits for the (i+1)th to-
ken and the autoregressive model, respectively. The autore-
gressive process (8) assumes that the generation of token
ti+1 depends solely on the previous ones. The spatial au-
toregressive paradigm violates this premise because of the
equality of image pixels (as discussed in Section 1). In con-
trast, we take the spectral tokens S from the nested spec-
tral tokenziation as the autoregressive targets T. Since the
spectral tokens are trained in a nested manner to reconstruct
sub-images of increasing levels of detail as in (5)(6), each
spectral token si is expected to enhance the quality of the
sub-image I′i−1 represented by previous tokens from the
spectral domain. This progressive refinement process aligns
with human visual perception and artistic painting, both of
which start with the overall structure and gradually focus on
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Table 2. Comparison between generative models on class-conditional ImageNet 256×256 benchmark. “↓” or “↑” indicate lower or
higher values are better. “#Token”: the number of tokens used in transformer architectures. “#Step”: the number of model runs needed
to generate an image. We compute our wall-clock inference time and scale the Time for other methods accordingly. †: trained on larger
datasets including OpenImages [27]. ‡: implemented with the official tokenizer weight [66] and the scripts from VAR.

Type Model rFID↓ gFID↓ IS↑ Pre↑ Rec↑ #Token #Para #Step Time

GAN BigGAN [3] 75.24 6.95 224.5 0.89 0.38
N.A.

112M 1 −
GAN GigaGAN [23] − 3.45 225.5 0.84 0.61 569M 1 −
GAN StyleGan-XL [45] 7.06 2.30 265.1 0.78 0.53 166M 1 0.4

Diff. ADM [8] 125.78 10.94 101.0 0.69 0.63 N.A. 554M 250 235
Diff. CDM [20] − 4.88 158.7 − − N.A. − 8100 −
Diff. LDM-4-G [44] 0.27† 3.60 247.7 − − N.A. 400M 250 −
Diff. DiT-L/2 [39] 0.62† 5.02 167.2 0.75 0.57 256 458M 250 43
Diff. DiT-XL/2 [39] 0.62† 2.27 278.2 0.83 0.57 256 675M 250 63
Diff. L-DiT-3B [71] − 2.10 304.4 0.82 0.60 256 3.0B 250 >63
Diff. L-DiT-7B [71] − 2.28 316.2 0.83 0.58 256 7.0B 250 >63

Mask. MaskGIT [4] 2.28 6.18 182.1 0.80 0.51 256 227M 8 0.7
Mask. RCG (cond.) [30] − 3.49 215.5 − − − 502M 20 2.7
Mask. TiTok-B64 [66] 1.70 2.48 214.7 − − 64 177M 8 0.4

2D Scan VQVAE-2 [42] − 31.11 ∼45 0.36 0.57 N.A. 13.5B 5120 −
2D Scan VQGAN [10] 7.94 15.78 74.3 − − N.A. 1.4B 256 34
2D Scan ViTVQ [63] 1.28 4.17 175.1 − − 1024 1.7B 1024 >34
2D Scan RQTran. [29] 3.20 7.55 134.0 − − 64, 4 3.8B 68 29

VAR VAR-d16 [50]

0.90†

3.30 274.4 0.84 0.51

680

310M 10 0.6
VAR VAR-d20 [50] 2.57 302.6 0.83 0.56 600M 10 0.7
VAR VAR-d24 [50] 2.09 312.9 0.82 0.59 1.0B 10 0.8
VAR VAR-d30 [50] 1.92 323.1 0.82 0.59 2.0B 10 1.4

1D AR TiTok-B64-d16‡ [66] 1.70 6.30 190.1 0.85 0.47 64 310M 64 1
1D AR SpectralAR-d16 4.03 3.02 282.2 0.81 0.55 64 310M 64 1
1D AR SpectralAR-d20 4.03 2.49 305.4 - - 64 600M 64 1.2
1D AR SpectralAR-d24 4.03 2.13 307.7 - - 64 1.0B 64 1.4
1D AR SpectralAR-d16-p4 4.03 3.13 276.1 - - 16×4 310M 16 0.4

details. This similarity qualitatively validates the rationale
for performing causal autoregressive generation in the spec-
tral domain. We further provide some quantitative analysis
through a toy experiment in Section 4.2.

Potential applications. The frequencies represented by
the token si become higher as i increases, while its influ-
ence on the image quality diminishes accordingly (check
Section 3.1 for details). Therefore, we can control the vi-
sual quality of sampled images by adjusting the length of
generated sequences, similar to the image compression al-
gorithms [55]. In addition, we can achieve super-resolution
by dividing images into disjoint parts smaller than H ×W ,
and conducting individual spectral autoregressive genera-
tion on each part. We provide further results in Section 4.4.

4. Experiments
4.1. Dataset and Implementation Details
We train and evaluate our SpectralAR on the ImageNet-
1K [7] benchmark, which contains 1,281,167 and 50,000

images for training and validation, respectively. We train
the tokenizer and generator on the training split. We eval-
uate the reconstruction performance on the validation set
with reconstruction Fréchet inception distance [17] (rFID),
and the generation results with generation FID (gFID) using
pre-computed statistics and scripts from ADM [8].

For tokenizer training, we follow the exactly same set-
tings of TiTok [66] for a fair comparison. We also employ
the two-stage training strategy with proxy codes [4, 66]. We
use the ViT-B [9] as the encoder and decoder, and set the
number of spectral tokens as N = 64 in our main experi-
ments and the sequence ωs for 256× 256 images as:

ωi =

 i, if i ∈ (0, 32],
2i− 32, if i ∈ (32, 48],
12i− 512, if i ∈ (48, 64].

(9)

For generator training, we adopt the same architecture and
training recipe as VAR [50], which leverages a GPT-2-like
transformer architecture [40] for autoregressive modeling.

15847



Figure 5. Visualizations of generated 256×256 samples on ImageNet-1K. These samples cover a wide range of categories and styles,
demonstrating the ability of SpectralAR to generate both diverse and high-quality images.

4.2. Proof of Concept

We conduct a proof-of-concept experiment to validate the
causality of images in the spectral domain. We use the val-
idation set of the CIFAR-100 dataset [26] as a proxy for
the distribution of natural images, which contains 10,000
32×32 images from 100 semantic classes. We aim to mea-
sure the linear correlation (R2) [38] between one token ti
and its previous ones {tj}i−1

j=1 as a metric for the causality
of the sequence T. We consider three typical autoregressive
paradigms, including raster-scan [10], scale-wise [50] and
spectral methods which construct sequence T in different
ways. Specifically, we divide each image spatially into four
patches of size 16×16 and rearrange them in raster-scan
order for the first variant. For the scale-wise method, we

downsample each image into sizes of 8×8, 16×16, 24×24
and 32×32, respectively. We set the frequency thresholds
to 8, 16, 24, 32 and generate the sub-images following (5)
for the spectral sequence. Since each token t is a high di-
mensional tensor, we calculate R2 between every element
of ti and every element of {tj}i−1

j=1. For each element of ti,
we then find the element in {tj}i−1

j=1 with the highest corre-
lation, and take an average as the final measurement:

R2
avg = AVG

m
(max

n
R2

m,n), (10)

where m, n denote element number of ti and {tj}i−1
j=1, re-

spectively, and R2
m,n is the correlation between the mth and

nth elements. We report the quantitative results in Table 1,
where the scale-wise and spectral sequences demonstrate
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Table 3. Applications of SepctralAR. Super-reso., Trunc. repre-
sent super-resolution and truncated, respectively.

App. Type Model FID↓ IS↑

Super-reso.
Upsample 3.09 286.6
SpectralAR-Stride 2.93 276.4
SpectralAR-Patch 14.76 170.0

Trunc.
SpectralAR-Trunc.5 3.34 271.5
SpectralAR-Trunc.10 6.65 211.4
SpectralAR-Trunc.15 27.69 91.69
SpectralAR-Trunc.0 3.02 282.2

considerably higher correlation than the raster-scan coun-
terpart. This could be attributed to the coarse-to-fine nature
of the former two paradigms, while the raster scan method
lacks adequate reference information to predict the next im-
age patch, as shown in Figure 4.

4.3. Main Results
We report the performance of SpectralAR on the class-
conditional ImageNet-1K [7] 256×256 generation bench-
mark in Table 2. We also implement an autoregres-
sive version of TiTok [66] by using the official tokenizer
weight and scripts from VAR [50] for a fair comparison.
The reconstruction performance of SpectralAR (4.03 rFID)
is inferior compared with TiTok because SpectralAR re-
quires to reconstruct the sub-images corresponding to dif-
ferent frequencies with different lengths of tokens, which
is much more difficult compared with the overall recon-
struction target in TiTok. Despite the lower reconstruc-
tion score, SpectralAR-d16 still outperforms TiTok-B64-
d16 and VAR-d16 in autoregressive generation with a clear
margin due to better sequence causality which eases autore-
gressive learning. Furthermore, SpectralAR also achieves
better or comparable performance against VAR under the
d20 and d24 settings, respectively. In addition, SpectralAR
uses only 64 tokens in both reconstruction and genera-
tion, demonstrating superior token efficiency compared to
VAR [50] and 2D scan-based methods. We also visualize
the generated samples in Figure 5, which shows the diver-
sity and quality of the generation process of SpectralAR. In
addition, Figure 1 highlights the hierarchical coarse-to-fine
refinement of the images, while SpectralAR generates more
tokens in an autoregressive way.

4.4. Applications
In this section, we provide a quantitative analysis for the
potential applications of SpectralAR. For super-resolution,
we conduct our experiments based on the 256×256 images
generated by SpectralAR-d16 in Table 2, and directly up-
sample them to 512×512 as the baseline. We construct
4 sub-images using strided and patch-based methods for
SpectralAR-Stride and -Patch, respectively. We then up-
sample the 4 sub-images to 256×256 and use SpectralAR

Table 4. Ablation on design choices. Spectral Supervision
means using sub-image supervision across diffirent frequency
bands. Causal Mask and non-uniform mapping refers to the spec-
tral causal mask and the frequency-token mapping, respectively.

Spectral
Supervision

Causal
Mask

Non-uniform
Mapping FID↓ IS↑

× × × 6.30 190.1
✓ × × 5.64 255.1
✓ ✓ × 3.49 222.6
✓ ✓ ✓ 3.02 282.2

to refine them in the spectral domain, and finally reassem-
ble them to generate the final result. According to Table 3,
SpectralAR can indeed serve as a spectrum completer for
the super-resolution task. In addition, we also experiment
with truncated autoregressive generation, where we discard
the last few tokens. For example, we discard the last 5
tokens in SpectralAR-Trunc.5 in Table 3. The generation
performance worsens slowly when the number of truncated
tokens is fewer than 10, and therefore it is possible to fur-
ther improve token efficiency through truncation according
to the requirement for generation quality.

4.5. Ablation Study
We conduct ablation study to validate the effectiveness of
our design choices in Table 4. The first row corresponds to
the baseline TiTok implementation for autoregressive gen-
eration. Note that the spectral supervision alone could im-
prove FID compared with the TiTok counterpart. This is
because the spectral design enhances sequence causality
compared with the overall reconstruction target which ig-
nores the correlation between tokens and thus complicates
the autoregressive modeling process. The spectral causal
mask further enhances performance by improving causal-
ity in the encoding and decoding architecture. And the
non-uniform token-frequency mapping technique guides
the model to focus more on the crucial low-frequency com-
ponents while representing the high-frequency components
efficiently, thus further improving performance.

5. Conclusion
In this paper, we have proposed the spectral autoregressive
visual generation method for both causal and efficient au-
toregressive modeling of image data. Specifically, we first
convert images into 1D sequences with nested spectral to-
kenization. In addition, we have adopted causal masks for
spectral tokens in the encoder and decoder to further en-
hance causality from the architectural perspective. We have
also designed a non-uniform token-frequency mapping with
emphasis on the low-frequency components in order to im-
prove token efficiency. On the ImageNet-1K generation
benchmark, our SpectralAR achieves superior performance
compared with other autoregressive generation methods.
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