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Figure 1. Using only 4D range-Doppler-azimuth-elevation data from a radar with a 3x4 antenna array – equivalent to a 0.26-
megapixel camera, we trained (separate) radar transformers on 24 hours (1M radar-lidar-camera samples) of data to predict Bird’s Eye
View 2D occupancy (left), 3D occupancy (center), semantic segmetation (right), and Ego-Motion.

Abstract

mmWave radars are compact, inexpensive, and durable sen-
sors that are robust to occlusions and work regardless of
environmental conditions, such as weather and darkness.
However, this comes at the cost of poor angular resolution,
especially for inexpensive single-chip radars, which are typ-
ically used in automotive and indoor sensing applications.
Although many have proposed learning-based methods to
mitigate this weakness, no standardized foundational mod-
els or large datasets for the mmWave radar have emerged,
and practitioners have largely trained task-specific models
from scratch using relatively small datasets.

In this paper, we collect (to our knowledge) the largest
available raw radar dataset with 1M samples (29 hours)
and train a foundational model for 4D single-chip radar,
which can predict 3D occupancy and semantic segmenta-

tion with quality that is typically only possible with much
higher resolution sensors. We demonstrate that our Gener-
alizable Radar Transformer (GRT) generalizes across di-
verse settings, can be fine-tuned for different tasks, and
shows logarithmic data scaling of 20% per 10× data. We
also run extensive ablations on common design decisions,
and find that using raw radar data significantly outperforms
widely-used lossy representations, equivalent to a 10× in-
crease in training data. Finally, we roughly estimate that
≈100M samples (3000 hours) of data are required to fully
exploit the potential of GRT.

1. Introduction
As a compact, inexpensive [27], and robust solid-state sen-
sor, mmWave radars are ideal for sensing applications rang-
ing from simple automatic door openers [58] to autonomous

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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drones [11] or vehicles [53, 62]. mmWave radars are
rich sensors which can directly measure range and velocity
while capturing a unique range of material properties [18];
however, this comes at the cost of poor angular resolution
typically on the order of 15◦ – orders of magnitude worse
than cameras or lidars [59].

Radar data are typically processed into radar point
clouds (Fig. 2) derived using Constant False Alarm Rate
(CFAR) peak detectors [36, 52] combined with Angle-of-
Arrival estimation techniques [60]. However, this is a sub-
stantially lossy process: while raw radar data suffers from
unique noise patterns such as “bleed” and side lobes [25],
weak reflectors and other signals can be hidden in this noise,
which would ordinarily be filtered out.

On the other hand, raw spectrum (4D range-Doppler-
azimuth-elevation data cubes [50]) can be unintuitive and
difficult to interpret compared to lidar point clouds or cam-
era images, and include properties such as specularity and
Doppler which lack straight-forward Cartesian interpreta-
tions [18]. As such, many machine learning methods have
been proposed [24, 45, 69] to exploit 4D radar data from
single-chip radars, achieving remarkable performance on
2D scene understanding tasks. However, due to the dom-
inance of CFAR point clouds in radar processing, as well
as the high data rate of raw mmWave radar data, most radar
toolchains only process point-cloud data. Tooling for raw
I/Q (in-phase/quadrature) data is often brittle, poorly docu-
mented, and largely unsupported by radar vendors, severely
limiting the availability and scale of both raw mmWave
datasets and the models which operate on raw data.

To rectify this limitation, we develop an open-source
toolchain and associated large dataset specifically for 4D
mmWave radar data. Training a radar-to-lidar model and
fine-tuning for a range of other tasks, we demonstrate the
surprising effectiveness of mmWave radar models trained
at scale (Fig. 1). Going further, just as large foundational
models [4] have greatly accelerated the pace of innovation
in computer vision and natural language processing, we
believe that a foundational model for raw mmWave radar
trained at even larger scale could similarly supercharge the
advancement of radar sensing techniques.

Contributions In this paper, we develop a full stack1 for
collecting data, training, and evaluating a transformer for
4D single-chip radar to quantify both the potential costs and
benefits of training a foundational model at scale. To sum-
marize our contributions:
(1) We develop a compact, lightweight multimodal data

collection system (Sec. 3.1) capable of collecting syn-
chronized raw radar, Lidar, and camera data which can
be operated as a handheld device. Our system can be

1Our data collection system, dataset, code, and model can be found via
our project site: https://wiselabcmu.github.io/grt/.
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Figure 2. While a transformer can generate Lidar-like depth and
bird’s eye view images, traditional CFAR point clouds are noisy,
and have poor angular resolution – especially in the elevation axis.

easily replicated using off-the-shelf components, 3D
printed parts, and our open-source software.

(2) Using this data collection system, we collect a dataset,
I/Q-1M (One Million IQ Frames), consisting of 29
hours of data – 8× longer than the next largest pub-
licly available raw radar dataset – split between in-
door, outdoor-handheld, and bike-mounted settings,
each with different radar configurations (Sec. 3.2).

(3) Finally, using our dataset, we train a Generalizable
Radar Transformer (GRT), which can output depth
maps and segmentation images with quality which is
typically only possible with much higher resolution
radars. Using GRT, we then run ablations on common
design choices (Sec. 5.1), quantify the scalability of
GRTs with increasing dataset and model size (Sec. 5.2,
5.4), and demonstrate that our GRT can be readily fine-
tuned for other tasks and settings (Sec. 5.3), including
obtaining state-of-the-art performance on the Coloradar
[23] dataset with 30-minutes of fine-tuning.

Key Findings We summarize our key findings as follows:
• Radar models can generalize to different settings and

radar configurations (Sec. 5.2), as well as across objec-
tives (with some fine-tuning). This suggests great po-
tential for a cross-domain foundational model to improve
and accelerate the development of new radar models.

• Using raw data yields outsized performance gains,
equivalent to more than a 10× increase in training data
(Sec. 5.1). While existing datasets largely focus on CFAR
point clouds or other processed representations, we be-
lieve that more emphasis should be placed on making raw
data available for research.

• Existing mmWave radar datasets are vastly under-
sized. 24 hours of training data is not enough to saturate
even a 4M parameter model! Our analysis suggests that
at least 100× more data is required to exploit the full
potential of radar transformer models (Sec. 5.4).
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Figure 3. Our data collection rig in its handheld (right) and bike-
mounted (left) configurations; see App. A for additional images.

Limitations Despite its size compared to previous
datasets, I/Q-1M is quite small compared to the datasets
used to train modern vision transformers, which can exceed
billions of samples [68]. I/Q-1M also only includes daylight
conditions and fair weather, and lacks the scale to capture
“edge cases” that would be represented in a larger dataset
[22]. Finally, since I/Q-1M uses a single type of radar, we
cannot evaluate generalization across different antenna con-
figurations — only radar configurations.

2. Related Work
4D Solid State Radar Excluding mechanical radars,
which perceive the world as lidar-like 2D heatmaps [3, 5,
54] via a rotating antenna, solid-state mmWave radars oper-
ate by transmitting and receiving a sequence of frequency-
modulated “chirps” from an array of transmit (TX) and re-
ceive (RX) antenna [19]; this data is typically (losslessly)
transformed to a 4D range-Doppler-azimuth-elevation data
cube using a 4D FFT [50], whose resolutions are con-
strained by bandwidth, form factor, and the integration win-
dow. We focus on single-chip radars which have compact
form factors – and thus poor angular resolution.

Learning and Datasets for 4D Radar Most radar pro-
cessing methods use point clouds extracted from the 4D
cubes [36, 52] as inputs [1, 7, 32, 44, 55, 56], allowing them
to re-use popular Lidar architectures or even pre-trained
models such as PointNet [46]. However, since this discards
much of the information contained in a 4D radar cube, many
competing approaches propose to directly interpret the 4D
radar cube using methods and architectures such as feedfor-
ward convolutional architectures [9, 38, 43, 49, 69], multi-
view convolutional networks across different tensor axes
[13, 34, 40], U-Nets [26, 39, 45], diffusion models [70],
and transformers [2, 15, 21, 21].

These prior machine learning-based approaches rely on
publicly available datasets with 4D radar data, including

Table 1. Comparison with other single-chip mmWave radar
datasets; a frame refers to the number of unique radar-sensor sam-
ples. For comparisons with datasets using other types of radar, see
App. A.3. Our dataset is significantly larger than previous single-
chip radar datasets, enabling us to explore scaling up models.

Dataset 4D Data Cube Dataset Size

I/Q-1M (Ours) Yes 29 hours (1M frames)
MilliPoint [7] No (3D Points) 6.3 Hours (545k frames)
RaDICal [29] Yes 3.6 Hours (394k frames)
CRUW [63] No (2D Map) 3 hours (400k frames)

Coloradar [23] Yes 2.4 hours (82k frames)
RadarHD [45] Yes 200k frames

CARRADA [41] No (3D Cube) 21 Minutes (13k frames)
RADDet [69] Yes 10k frames

from both cascaded [42, 49] and single-chip [23, 29, 69]
radars; however, existing datasets are relatively small, with
3.6-hour RaDICal [29] and 2.4-hour Coloradar [23] as the
largest (Table 1). Due to the success of powerful but data-
hungry [68] transformer models [61] in computer vision
[12], we believe that limited data availability imposes a sub-
stantial bottleneck on learning for 4D radar.

High-resolution Imaging from Low-Resolution Radar
Due to the low angular resolution of single-chip radars, ex-
tracting high-resolution angular information can be chal-
lenging; as a result, prior work focuses on recovering 2D
spatial information [15, 45, 70]. Thus, while prior methods
can extract 3D information using high-resolution cascaded
radars [10], 3D imaging from single-chip radars generally
requires additional information such as structured motion or
multiple views, for example segmentation and maps using a
rotating single-chip radar [24], a 3D occupancy map using
multiple views [18], or high resolution images from fixed
trajectories using Synthetic Aperture Radar [14, 35, 66, 67].
Instead, we show that by leveraging a sufficiently large
dataset, even single frames are sufficient to recover dense
angular resolution in both azimuth and elevation.

3. Data Collection System and Dataset
Dataset scale is key to training and evaluating potential
foundational models. As such, we developed a scalable data
collection system (Fig. 3), which we used to collect a large
raw mmWave radar dataset, consisting of 1M radar-lidar-
camera samples over 29 hours (Table 1). For additional de-
tails on our dataset and data collection rig, see App. A.

3.1. Data Collection System
Our data collection system, red-rover, was built around
a TI AWR1843 Radar, Lidar, Camera, and IMU which can
be easily operated via a simple web app on a mobile phone.
Our system records all data to a single hot-swappable ex-
ternal drive via a single linux computer which handles time
synchronization, minimizing turnaround time.
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Table 2. Key specifications for each setting. Settings have vary-
ing max Doppler Dmax and range Rmax; all traces used a fixed res-
olution of 64 Doppler and 256 range bins.

Setting Size Length Average Speed Dmax Rmax

indoor 310k 8.9h 1.0m/s 1.2m/s 11.2m
outdoor 372k 10.7h 1.4m/s 1.8m/s 22.4m
bike 333k 9.3h 5.4m/s 8.0m/s 22.4m

Table 3. Transformer sizes. Layers indicates the number of
encoder + decoder layers; Speed indicates the (batched) in-
ference throughput of each model on a single RTX 4090.

Size Layers Dimension Params Speed

pico 2 + 2 256 (4 heads) 3.9M 750 fps
tiny 3 + 3 384 (6 heads) 12.7M 320 fps
small 4 + 4 512 (8 heads) 28.9M 170 fps
medium 6 + 6 640 (10 heads) 69.4M 84 fps
large 9 + 9 768 (12 heads) 149M 44 fps

We also designed our data collection system to have a
compact, battery-operated form factor to allow for a vari-
ety of collection modalities, including handheld and bicy-
cle mounted. This also allows us to collect data relevant
for tasks such as indoor sensing and localization, which are
underrepresented in existing datasets, while still collecting
automotive-like data by mounting our system to an E-bike.

3.2. Collected Data
We collected three roughly equally sized splits (Table 2)
from indoor handheld, outdoor handheld, and bike-mounted
settings on the CMU campus and Pittsburgh area:
• indoor: inside buildings at a slow to moderate walking

pace, visiting multiple floors and areas within each.
• outdoor: neighborhoods ranging from single family

detached to high density commercial zoning at a mod-
erate to fast walking pace.

• bike: bike rides in different directions from a set starting
point with a moderate biking pace.

Each setting features a mobile observer, with radar modu-
lation parameters tuned for typical speeds. For sample data
from each setting, see App. A.4.

4. Methodology
Using a transformer architecture (Sec. 4.1), we train our
Generalizable Radar Transformer (GRT) for a range of dif-
ferent tasks (Sec. 4.2-4.3), and evaluate it on our dataset
using a rigorous statistical methodology (Sec. 4.4).

4.1. Model Architecture
While many architectural refinements exist for vision trans-
formers [30, 48], as well as for radar specifically [15, 26],
we use a direct adaptation (Fig. 4) of the original Trans-
former [61] and Vision Transformer [12] to focus on mea-
suring the fundamental properties of Radar transformers.

Radar Processing From the (slow time, TX, RX, fast
time) I/Q stream, we perform a 4-Dimensional FFT to ob-
tain (range, Doppler, azimuth, elevation) dense 4D radar
data cubes of size (256, 64, 8, 2), which we provide to
the model as two channels consisting of the amplitude and
phase angle. This data cube is patched along the range and
Doppler dimensions into patches of size 4 × 2(×8 × 2),
yielding an initial set of 64× 32 = 2048 patch tokens.

Transformer Architecture Crucially, unlike a vision
transformer [12], radar models take inputs that have differ-
ent spatial axes than their outputs, with vastly different rela-
tive resolutions where they overlap. As such, we use a stan-
dard transformer with a decoder [61], with varying layers
and widths (Table 3); for a full specification of our trans-
former architecture and training procedure, see App. B.1.

Decoder Query To handle the “change of basis” between
the input and output space, we use an architecture based
on Perceiver I/O [20]. We start by concatenating a (learned)
output token to the encoder (similar to standard vision trans-
former [8]). The encoder output corresponding to the output
token is then tiled into the desired decoder shape with a 3D
sinusoidal positional encoding applied and is used as the
input to the decoder, which attends to the encoder outputs.

4.2. Base Task: 3D Occupancy Classification
An ideal foundational model training task should be easy
to gather data for (e.g., using self-supervised learning) and
closely aligned with a wide range of potential downstream
tasks. As such, since we are primarily concerned with un-
derstanding the spatial relationship between 4D radar data
and 3D space, we use 3D (polar) occupancy classification –
predicting the occupancy of 64× 128× 64 range-azimuth-
elevation cells – as a base task, with Lidar as a ground truth.
Our task uses a binary cross entropy objective, with some
weighting to correct for cell sizes; see App. B.3 for details.

Notably, in addition to being fully self-supervised, this
task covers all three possible output dimensions (range, az-
imuth, and elevation), meaning that downstream tasks such
as range-azimuth classification or azimuth-elevation seg-
mentation can be cast as 2D slices of this 3D output. This
enables us to fine-tune for tasks, even if they have different
spatial dimensions, simply by replacing the output head and
modifying the output positional encoding queries.

4.3. Other Tasks
In order to evaluate GRT’s suitability as a foundational
model for downstream fine-tuning, we use three additional
tasks, each representing different output dimensions:
• Bird’s Eye View (BEV) Occupancy: Similarly to [15,

45], we classify the 256× 1024 range-azimuth polar oc-
cupancy using Lidar as a ground truth, with the range nor-
malized to the radar’s range resolution.
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Figure 4. The GRT architecture. 4D radar cubes are patched with a linear projection, and a sinusoidal positional encoding is added.
A transformer architecture is then used, with a transformer decoder for dense outputs and a MLP decoder for Ego-Motion estimation;
different output encodings are used depending on the output axes and resolution.

• Semantic Segmentation: Similar to [24], we train our
GRT to output 640×640 azimuth-elevation class labels.
Since radars cannot feasibly identify many classes (e.g.,
poster vs. sign vs. wall) which a camera could, we use
eight coarse categories: person, sky, vehicle, flat, nature,
structure, ceiling, and object.

• Ego-Motion Estimation: Since radars can “natively”
measure velocity2, we predict the velocity of the radar
relative to its current orientation. Since ego-motion es-
timation does not require a dense output, we replace
the transformer decoder with a multi-layer-perceptron de-
coder head with 3 layers of 512 units.

For more detail about each task, see App. B.3.

4.4. Evaluation

Due to the cost of scaling foundational models, false posi-
tives can result in significant wasted resources, especially if
associated with a costly methodological change. As such,
since our dataset cannot be treated as having an “infinite
sample size”, we calculate upper-bounded uncertainty esti-
mates wherever possible. In order to ensure these results are
statistically accurate, we take the following steps:
• Geo-Split: Within each setting, ≈1.5 hours of data was

reserved as a test set, which we ensured to be geographi-
cally disjoint from the training set to prevent leakage [28].

• Sample Size correction: Time series signals – e.g. radar-
lidar-video tuples – cannot be viewed as independent
samples; as such, the effective sample size, which we ob-
tain from an autocorrelation-based estimate [51], must be
used when calculating the standard error.

• Paired z-Test: Using the fact that models are evaluated
on the same test traces, we use a paired z-test on the rela-
tive performance of each model with respect to a baseline.

We report each metric relative to its specified baseline by
default, along with error bars for a two-sided 95% con-
fidence interval; using our procedure and dataset, we can
measure differences of 1-2% (App. B.4).

2Sensors which provide “absolute” pose, e.g. Lidars and Cameras,
must differentiate, while IMUs must integrate.

Validation Split and Data Size Sampling. We used the
last 10% of each training trace for validation (separate from
the test set), with the first 90% used for training. When
training on reduced dataset sizes, we use the first 9%, 18%,
and 45% of each trace for training for 10%, 20%, 50%
dataset sizes respectively; to reduce the variance of our ex-
periments, we always 10% of each trace for validation.

5. Results
Using our dataset, we first ran extensive ablation (Sec. 5.1),
scaling (Sec. 5.2), and fine-tuning (Sec. 5.3) experiments
which show the efficacy, scalability, and generalizability of
GRT. Our experiments took 874 RTX 4090-hours3 of train-
ing time, with the GRT-smallmodel taking 22 RTX 4090-
hours to train.

Model Performance Despite the low resolution (only 3
TX × 4 TX antenna) of our radar, GRT is able to pre-
dict a range of outputs with remarkable quality (Fig. 5);
we show additional examples in App. C.1. We also evalu-
ated common metrics for each objective as an absolute ref-
erence (App. C.2); GRT achieves a 3D chamfer distance
of 4.9 range bins, corresponding to 0.66m indoors, 1.6m
outdoors, and 1.5m on bike.

5.1. Ablation Studies
Using our dataset and GRT, we performed ablation studies
on several parameters that are independent of the underly-
ing architecture and the task (Table 4). In particular, we find
that several common practices – omitting Doppler informa-
tion, using Angle-of-Arrival Estimates, and applying CFAR
thresholding – result in degraded performance equivalent to
more than a 10× reduction in training data.

Input Representation Our models use complex 4D radar
cubes that losslessly capture all information measured by a
radar; however, the common practice in radar models and
data sets is to use processed higher-level representations.
We benchmark three common approaches:

3Our experiments were run on a range of different machines with vary-
ing compute capacity, which we normalize with respect to a single RTX
4090. We only tracked training and validation time, with testing excluded.
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Figure 5. Training with more data and fine tuning instead of starting from scratch lead to much higher performance. 3D occupancy
maps are less noisy as seen in rendered depth images (left), semantic segmentation is cleaner (center left), bird’s eye view occupancy is
sharper (center right), and velocity estimation is more accurate (right). However, scaling model size (left) does not have a large impact.

• Real (amplitude-only) 4D data cubes are not signifi-
cantly different from complex data, indicating that the
“leftover” phase from a Doppler FFT carries little addi-
tional information. Since using complex data has negligi-
ble compute overhead, we default to complex inputs.

• Angle of Arrival Estimates can be used to replace dense
antenna measurements. Since our radar has only 2 ele-
vation bins, we reduce the azimuth axis (8 bins) into an
AoA estimate. This discards a substantial amount of in-
formation, leading to a 28.0% loss increase, equivalent to
more than a 10× decrease in the size of the dataset.

• Constant False Alarm Rate (CFAR) processing re-
moves weak or noisy reflectors based on local estimates
of background noise [36]; this ablation uses a p-value
threshold of 0.05, and zeros out rejected points. This
leads to an even higher 31.5% loss increase.

Impact of Doppler With limited angular resolution, GRT
is highly dependent on Doppler information, which can cap-
ture higher resolution geometry [18]. We find that removing
the Doppler FFT from our processing pipeline (i.e. treating
each 4D radar cube as a time series of 64 3D frames [45])
leads to a 22.5% loss increase. As an additional ablation, we
also shuffle the slow-time axis to fully destroy any Doppler
information; this does not lead to a futher significant loss
increase, suggesting that off-the-shelf transformers cannot
easily learn FFTs. Finally, we observe worse performance
at low speeds since less Doppler information is available at
slow speeds (App. C.3).

Table 4. Test loss for each ablation (smaller is better) relative to
GRT-small trained on our full dataset, along with 95% confi-
dence intervals for the relative differences.

Ablation Relative Test Loss

Inputs Amplitude Only +0.04± 0.85%
Angle of Arrival +28.0± 2.12%
CFAR Thresholding +31.5± 2.38%

Doppler Without Doppler FFT +22.5± 1.76%
Slow Time Shuffled +23.10± 1.94%

Post-Patch Axes Doppler-Az-El +6.22± 1.11%
Range-Az-El +6.27± 1.10%
Range-Doppler-Az-El +4.18± 1.09%

Augmentations None +5.87± 1.32%
Scale, Phase, and Flip Only +3.89± 1.19%

Separate Models Indoor Data Only +5.76± 1.85%
Outdoor Data Only +5.58± 1.26%
Bike Data Only +2.77± 1.41%

Patch Axes Since 4D range-Doppler-azimuth-elevation
radar data cubes have four axes with different properties,
they do not have an obvious counterpart to the square
patches used in Vision Transformers. Benchmarking four
alternatives (App. B.1), with each resulting in 2048 total
patches, we find that Range-Doppler patching where the
azimuth and elevation axes are “patched out” (similar to
[15, 49]) is the most effective, performing ≈5% better.

Data Augmentations We develop a range of data aug-
mentations that together provide a modest but significant
performance improvement (5.87±1.32%; Table 4); we pro-
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Figure 6. Scaling laws for mmWave radar transformers across indoor, outdoor, and bike test splits. Models and confidence
intervals are measured relative to the small transformer trained on 10% of the dataset. While our models show weak scaling over model
size when trained on our dataset, we see strong log-linear scaling across dataset size of ≈20% loss decrease per 10× increase in data size.
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vide details about each augmentation in App. B.2.

5.2. Towards a Radar Foundational Model
Scalability vs. Baselines Since prior work on learning for
single-chip radar focuses on 2D outputs, we benchmark our
transformer-based approach against two prior architectures
for 2D BEV Occupancy prediction: a U-Net-based model
(RadarHD [45]), and a Swin Transformer-based model (T-
FFTRadNet [15]), with minor architecture modifications
to conform to our data dimensions (App. B.5). We find
that GRT-small outperforms both baselines at all training
splits (Fig. 7), demonstrating the suitability of transformer
architectures for scalability.

Scaling Laws Training 20 different models for 5 differ-
ent sizes (Table 3) and dataset sizes ranging from 10-100%
of our data (Fig. 6), we observe a logarithmic improve-
ment with data size of approximately 20% improvement
per 10× increase in data, similar to early observations in
computer vision [57]. This can also be seen qualitatively
(Fig. 5), where models trained on more data produce much
higher quality predictions. Similarly to vision transform-
ers [57, 68], we also observe that larger models are more
data efficient, although the magnitude of difference that we
observe is much smaller due to our limited dataset size.

Table 5. Chamfer Distance (in meters) for 2D BEV occupancy
prediction on the Coloradar dataset [23] by location; the geo-
metric mean is listed to account for the varying difficulty of each
location. A fine-tuned GRT model outperforms baselines trained
only on Coloradar, including a state of the art diffusion-based
model [70] and a U-Net based model [45].

Trace GRT (Ours) Diffusion [70] RadarHD [45]

Geometric Mean 0.98 1.19 1.73
ARPG Lab 0.78 0.96 1.73

EC Hallways 1.04 1.04 1.69
Aspen 0.61 0.51 0.91

Longboard 2.63 5.47 5.40
Outdoors 1.84 2.37 3.10

Edgar 0.36 0.44 0.60

Generalizability across different settings We evaluate
the ability of GRT to generalize across different settings by
comparing a baseline model trained on combined indoor,
outdoor, and bike data with models trained on each set-
ting separately (Table 4). Despite the differences in these
settings, the jointly trained model performs significantly
better than models trained on each setting separately, con-
firming that data from different settings can be combined to
train a single, stronger model.

5.3. As a Base Model for Downstream Tasks

Dataset Fine-tuning We fine-tuned a smallGRT model
on the Coloradar [23] dataset using a BEV Occupancy
objective, and benchmarked the resulting model against
two prior approaches trained only on ColoRadar, includ-
ing a state-of-the-art diffusion model, using the same data
splits and evaluation procedure [70]. Notably, despite us-
ing a modulation and resolution (128 range × 128 Doppler)
which is not present in our dataset, GRT can be run without
any architectural modifications, such as modifying the num-
ber of upsampling stages, as would be required for a convo-
lutional architecture (App. B.5). After fine-tuning until vali-
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Figure 8. Fine tuning mmWave radar transformers to different downstream tasks. Models and confidence intervals are measured
relative to the small transformer trained (from scratch) on 10% of the dataset. Pre-training and fine tuning strongly impacts data efficiency,
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Figure 9. A linear projection of the observed logarithmic scaling
to a test loss lower bound suggests that logarithmic scaling cannot
continue beyond 100× our current dataset

dation loss convergece (≈30 minutes of training using a sin-
gle RTX 4090), GRT achieves substantially lower Chamfer
distance than baselines trained only on ColoRadar, showing
the value of easily tunable foundational models (Table 5).

Task Fine-tuning We also fine-tuned GRT-small for
each of our secondary tasks using 10-100% of our dataset,
and compared the results with models trained from scratch
on the same proportions of the dataset. Following this pro-
cedure, we find substantial performance gains equivalent to
up to a 5× increase in dataset size compared to training
from scratch (Fig. 8). This effect is especially pronounced
when less data is available, with the performance benefits of
fine tuning disappearing as the dataset is scaled for the BEV
Occupancy objective but staying more or less constant for
the Semantic Segmentation objective. We also observe this
effect as a clear qualitative difference: fine-tuned models
produce sharper and more accurate predictions than their
counterparts trained from scratch (Fig. 5).

5.4. How Much More Data is Needed?
Although we cannot directly observe performance satura-
tion, we project how much data would be required to satu-
rate a Radar Transformer using two different methods to ar-

rive at a best guess of approximately 100M samples – 100×
our current dataset.

Linear Projection of Scaling Laws To lower-bound the
possible test loss in our dataset, we trained a small model
on the test set to approximate convergence. Assuming that
the rate of improvement in model performance with in-
creased training data cannot decrease, we extend our ob-
served (Fig. 6) logarithmic scaling law to this lower bound
to, in turn, estimate an upper bound for when the logarith-
mic trend will no longer hold (Fig. 9). This yields an esti-
mate of 100× our current dataset size. For additional details
justifying our estimation of this bound, see App. C.4.

Validation Curve Trends We observe that GRTs tend
to stop improving (with respect to validation loss) after
≈10 training epochs, regardless of model or dataset size
(App. C.4); this is similar to trends observed in the train-
ing of data-constrained LLMs, which are also observed to
saturate around 10 epochs [37]. Using vision transformers,
whose scaling laws are well studied [68] due to the avail-
ability of internet data, as a reference, we expect training
saturation to occur around 102−104M samples seen. Since
each epoch in our dataset corresponds to ≈1M samples
seen, this implies that 10× to 1000× our current dataset
size is required to delay overfitting beyond this point.

6. Conclusion

In this paper, we train a Generalizable Radar Transformer
using a large, 29 hour (1M sample) dataset collected us-
ing our open-source data collection system and demonstrate
that our Radar Transformer can generalize across datasets
and settings, can be readily fine-tuned, and exhibits loga-
rithmic scaling. While we believe that substantial gains are
still possible through further data scaling, we hope that our
dataset and baseline models will enable the community to
revisit previous methods in new context and explore new
capabilities made possible by a much larger dataset.
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