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Figure 1. We propose a robust 3D scene reconstruction method from RGB-D input that effectively addresses extreme motion blur. Our
approach achieves accurate camera poses and dense point clouds, producing clearer, deblurred scenes compared to existing methods.

Abstract

We propose a splat-based 3D scene reconstruction method
from RGB-D input that effectively handles extreme motion
blur, a frequent challenge in low-light environments. Un-
der dim illumination, RGB frames often suffer from se-
vere motion blur due to extended exposure times, caus-
ing traditional camera pose estimation methods, such as
COLMAP, to fail. This results in inaccurate camera pose
and blurry color input, compromising the quality of 3D
reconstructions. Although recent 3D reconstruction tech-
niques like Neural Radiance Fields and Gaussian Splat-
ting have demonstrated impressive results, they rely on ac-
curate camera trajectory estimation, which becomes chal-
lenging under fast motion or poor lighting conditions. Fur-
thermore, rapid camera movement and the limited field of
view of depth sensors reduce point cloud overlap, limiting
the effectiveness of pose estimation with the ICP algorithm.
To address these issues, we introduce a method that com-
bines camera pose estimation and image deblurring using
a Gaussian Splatting framework, leveraging both 3D Gaus-
sian splats and depth inputs for enhanced scene represen-
tation. Our method first aligns consecutive RGB-D frames
through optical flow and ICP, then refines camera poses and
3D geometry by adjusting Gaussian positions for optimal
depth alignment. To handle motion blur, we model camera
movement during exposure and deblur images by compar-
ing the input with a series of sharp, rendered frames. Exper-
iments on a new RGB-D dataset with extreme motion blur
show that our method outperforms existing approaches,

enabling high-quality reconstructions even in challenging
conditions. This approach has broad implications for 3D
mapping applications in robotics, autonomous navigation,
and augmented reality. Both code and dataset are pub-
licly available on https://github.com/KAIST-
VCLAB/gs-extreme-motion-blur.

1. Introduction

High-quality 3D scene reconstruction is one of the most
important and challenging applications in computer vision.
The accuracy of 3D reconstruction hinges on the quality of
essential components, such as camera poses, RGB images,
and depth maps. These elements are interconnected and
influence each other; a failure in one component can ad-
versely impact the others. For example, blurry RGB images
or noisy depth maps can significantly impair camera pose
estimation, which, in turn, degrades overall reconstruction
quality. This challenge is particularly pronounced when in-
put data is captured in low-light conditions or during rapid
camera movement—common scenarios in everyday, casual
capture. Such conditions result in degraded color and depth
frames, leading to poorly estimated camera poses and re-
constructions with blurry textures and distorted or smoothed
geometry. Therefore, achieving high-quality 3D reconstruc-
tion requires clear RGB images and accurate depth maps.

The interdependence of these input components suggests
an opportunity for compensating or restoring degraded ele-
ments. However, this process presents a chicken-and-egg
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problem, complicating the reconstruction further. For in-
stance, accurate camera pose estimation requires sharp im-
ages, while deblurring motion-blurred images depend on re-
liable camera pose information. Although numerous meth-
ods [4, 41] exist for recovering sharp images from motion-
blurred ones, they often rely on supervised learning models
trained on specific datasets. Consequently, their deblurring
performance can degrade significantly when faced with new
cameras or motion blur scenarios that differ from the train-
ing data.

Recent works [35, 44, 45, 49] have made advances in ad-
dressing these challenges by optimizing camera trajectories
during exposure while simultaneously learning sharp RGB
colors. This enables simultaneous camera pose estimation
and image deblurring. However, these methods require
an initial camera pose and, when using Gaussian Splat-
ting [14], also need a sparse point cloud as input. This re-
quirement limits their applicability, especially when severe
motion blur prevents structure-from-motion (SfM) methods
like COLMAP [31] from functioning effectively, making it
impossible to start the optimization process.

To overcome these limitations, we introduce a robust ap-
proach for 3D scene reconstruction that effectively compen-
sates for severe motion blur and addresses the challenges of
camera pose estimation without relying on a precise initial
pose. Our method leverages RGB-D inputs and incorpo-
rates both optical flow and depth information to align cam-
era poses accurately, even in the presence of challenging
motion blur and lighting conditions. We first perform a
global alignment between consecutive frames using optical
flow and the ICP algorithm, which enables effective local
alignment of point clouds generated from the depth maps.

After this initial alignment, we refine the camera poses
and 3D geometry by integrating them into a Gaussian Splat-
ting pipeline. This approach allows us to initialize dense
3D Gaussians from depth maps, which we scale to ensure
a detailed representation of the scene geometry. Our refine-
ment process iteratively adjusts both camera poses and the
positions of 3D Gaussians, achieving global consistency by
minimizing a depth alignment loss that compares rendered
depth maps with input depth measurements. Through this
adjustment, we eliminate loop-closure artifacts and reduce
the drift that often accumulates in traditional SLAM-based
methods.

For scenes with significant motion blur, we further opti-
mize the deblurring process by modeling the camera poses
at the start and end of each frame’s exposure. This temporal
modeling allows us to simulate the effects of motion during
the exposure period, which we incorporate into our Gaus-
sian Splatting framework. We minimize the difference be-
tween the observed motion-blurred image and the average
of a set of sharp images rendered from multiple viewpoints
along the exposure trajectory, resulting in more accurate,

geometrically consistent deblurring. Our deblur loss func-
tion combines image alignment, structural similarity, and
depth consistency, ensuring that the final reconstructions re-
tain sharpness and fidelity to the original scene structure.

Through extensive evaluation on a newly constructed
RGB-D dataset featuring extreme motion blur, we demon-
strate that our approach significantly outperforms existing
methods in both accuracy and robustness. By addressing the
key challenges of pose estimation, depth alignment, and im-
age deblurring, our method provides a versatile and effec-
tive solution for high-quality 3D reconstruction under real-
world capture conditions, such as low light and fast motion.
The proposed method holds promising applications in areas
requiring reliable 3D mapping and reconstruction, includ-
ing robotics, autonomous navigation, and augmented real-
ity. We will make both our dataset and implementation pub-
licly available to foster further research and development in
this field.

2. Related Work

RGB-D scene reconstruction. A popular approach to 3D
geometry reconstruction defines a 3D voxel grid and con-
structs a signed distance function (SDF) volume by ac-
cumulating depth estimates captured by sensors. Kinect-
Fusion [27] uses a Kinect camera to capture RGB-D im-
ages, then estimates relative camera poses between adjacent
frames with the ICP algorithm. Next, it constructs and up-
dates a truncated signed distance function (TSDF) volume,
enabling real-time 3D reconstruction of objects. Niessner
et al. [28] improve memory efficiency by combining hash-
ing algorithms to store and update SDF values only where
needed, thus reducing memory requirements.

Several methods [8, 11, 20, 22] adopt memory-efficient,
hierarchical data structures for depth fusion. BundleFu-
sion [6] simultaneously refines camera poses and geome-
try using bundle adjustment, improving reconstruction ac-
curacy and addressing the loop closure problem caused by
accumulated camera pose and depth estimation errors. Elas-
ticFusion [47] builds a map with surfels—point primitives
containing position, normal, and radius—and updates the
map through a deformation graph to minimize error and per-
form loop closure. Other methods [13, 33, 38] directly fuse
depth estimates into point clouds, optimizing memory use.
However, these methods generally require slow camera mo-
tion to capture sharp images and accurately estimate camera
transformations.

Simultaneous localization and mapping (SLAM) meth-
ods [3, 15, 25, 32, 46] track camera motion and con-
struct a map in real-time by extracting visual features
from input images to establish 3D point correspondences.
CodeSLAM [2] and DeepTAM [50] use neural networks
to combine depth maps with color images, while Azinović
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Figure 2. Overview of our method pipeline. We begin with global alignment by comparing optical flow and reprojected pixel differences
between adjacent RGB-D image pairs, followed by local estimation of relative camera poses using ICP. Each depth map and camera pose is
then used to initialize 3D Gaussians. By fixing the scale of the Gaussians and optimizing with depth and opacity losses, we achieve global
refinement of camera poses and geometry. Finally, we deblur the scene texture by minimizing the deblur loss between the input image and
averaged virtual images.

et al. [1] train multi-layer perceptrons (MLP) to learn SDF
and color values for scene reconstruction. Their approach
also optimizes camera transformation correction variables
during training to refine poses. However, these methods
struggle with input images that contain motion blur. Nice-
SLAM [51], Point-SLAM [30], and DROID-SLAM [42]
use neural networks to track camera poses. SplaTAM [12]
and MonoGS [21] introduced SLAM solutions based on 3D
Gaussian Splatting. However, these methods are not de-
signed to handle motion blur.

Image deblurring. Motion blur occurs when camera
motion during the exposure time changes the projected
pixel coordinates of rays on the camera sensor. Early
studies [7, 16, 36] tackle this issue by developing ker-
nels to restore blurry images. Convolutional neural net-
works (CNNs) demonstrate powerful performance in learn-
ing deblur kernels [34, 40], and deep learning techniques
such as ResNet with skip connections and multi-scale net-
works further improved restoration quality [26, 39]. SRN-
DeblurNet [41] adopt recurrent networks [10, 37] and com-
bine them with an encoder-decoder network structure, while
NAFNet [4] simplify the network structure, extracting only
essential components and proposing a nonlinear activation-
free network. However, since these methods rely on curated
datasets like the GoPro dataset [26], they struggle to effec-
tively deblur images with extreme motion blur or those cap-
tured on different cameras.

There are NeRF-based approaches [24] that tackle mo-
tion blur in input images. Deblur-NeRF [19] and DP-
NeRF [17] use a set of motion-blurred images along with
camera poses estimated by COLMAP as input to restore
sharp images through NeRF optimization. BAD-NeRF [44]
enhances this by jointly optimizing virtual camera poses
and radiance fields during exposure. The latest approaches
utilize Gaussian Splatting [14], which offers faster train-
ing times than NeRF by rendering a set of 3D Gaussians
with a dedicated rasterizer rather than optimizing a neu-
ral network. Gaussian Splatting-based deblurring meth-

ods [35, 45, 49] optimize the virtual camera trajectory and
minimize differences between input blurry images and the
average of rendered images at each virtual camera position.

All of these methods rely on initial camera poses, typi-
cally obtained from COLMAP, and for Gaussian Splatting-
based methods, a sparse point cloud as well. How-
ever, structure-from-motion methods like COLMAP often
fail with blurry inputs—such as images captured by fast-
moving cameras or in low-light conditions that require long
exposure times. Even with dense depth inputs, ICP requires
acceptable global alignment, and recent point cloud match-
ing methods [9, 18] cannot accurately determine relative
camera transformations between two point clouds if they
consist mainly of planar structures.

To address these issues, we propose an effective cam-
era pose estimation algorithm tailored for RGB-D image
sequences that jointly refines both the camera trajectory
and the reconstructed 3D point cloud, resulting in improved
sharpness in 3D reconstruction.

3. Method

Overview. In datasets with significant motion blur, using
COLMAP to estimate camera poses becomes impractical.
Additionally, rapid camera motion and the limited field of
view of depth sensors further complicate this task, mak-
ing ICP registration less effective. To address these chal-
lenges, we first perform global alignment using both RGB
and depth images, which establishes sufficient initial align-
ment for the ICP algorithm to operate effectively. After
achieving this global alignment, we apply ICP again to re-
fine and accurately estimate the camera poses. However,
estimating camera poses by analyzing only two consecutive
frames in a sequence can result in accumulated errors, lead-
ing to drift over time. To resolve this issue, it is crucial to
adjust the 3D geometry and align the camera poses across
the entire sequence so that depth maps and camera views
from all perspectives remain well-aligned. We accomplish
this through bundle adjustment, optimizing the positions of
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Figure 3. The illustration of our pose initialization loss. When pi

is reprojected to pj using the depth value, it is considered geomet-
rically consistent if PiHi equals PjHj .

3D Gaussians and camera poses within the Gaussian Splat-
ting pipeline. Finally, to account for motion blur, we ap-
proximate the camera trajectory over time and optimize the
movement during exposure, enabling effective deblurring.
See Figure 2 for an overview.

3.1. Local Pose Estimation

To estimate relative camera transformations, we select con-
secutive frames from the input RGB-D image sequence.
Our approach begins with global alignment using optical
flow, followed by local alignment of the two-point clouds
using the ICP algorithm. For each consecutive RGB im-
age and depth map pair at times t and t + 1, we optimize
the transformation ξ ∈ se(3) between the frames. Here,
ξt→t+1 = [x⊺,ω⊺]⊺, where x represents the translation
vector between the two camera origins, and ω is the rota-
tion element of se(3). We ultimately calculate a camera-to-
world transformation matrix ξt for each timestamp t.

To achieve this, we first compute the difference between
the estimated optical flow and the reprojected pixel from the
camera at time t to t + 1 using the depth estimate for each
pixel in the depth map Dt and the intrinsic matrix K. A
pixel pi in the depth map is backprojected to 3D space as:
Pi = π−1(K,pi, Dt(pi)). We then project this 3D point
to the camera at t+ 1: pj = π(K, exp(ξ∧t→t+1)Pi), where
π and π−1 represent the projection and backprojection op-
erators, respectively. The pixel movement from pi to pj is
then compared with the estimated optical flow Ft→t+1(pi)
to compute the optical flow loss:

LF =
∑
i

Mt(pi)Mt+1(pj)∥Ft→t+1(pi)− (pj − pi)∥2.

In this formulation, Mt is a mask indicating valid depth
values in Dt at pixel pi. The mask Mt dynamically updates
during optimization, as pj depends on the transformation ξ:
Mt(pi) = Dt(pi) > 0.

We employ a state-of-the-art pretrained optical flow esti-
mation model [48] designed hierarchically to produce reli-
able optical flow even from two blurry input images. Next,
we calculate the photometric loss between color values at

pixel pi in image It and pixel pj in image It+1:

LI =
∑
i

Mt(pi)Mt+1(pj)∥It(pi)− It+1(pj)∥1.

To ensure geometric consistency, we introduce a depth
consistency loss by using the two depth maps captured by
the depth camera to optimize relative poses. Specifically, as
illustrated in Figure 3, we compute and compare the vertical
components PiHi and PjHj based on the baseline vector
OtOt+1 between the two cameras. We calculate PiHi as
follows:

PiHi = ∥Pi∥2 sin
(
cos−1

(
Pi · x

∥Pi∥2∥x∥2

))
.

Similarly, we compute PjHj as:

PjHj = ∥Pj∥2 sin
(
cos−1

(
Pj ·(−exp(ω)⊺x)

∥Pj∥2∥−exp(ω)⊺x∥2

))
.

This depth consistency loss is calculated as follows:

LC =
∑
i

Mt(pi)Mt+1(pj)
∥∥PiHi −PjHj

∥∥, (1)

where exp() is the exponential mapping operator in Lie al-
gebra, which helps maintain alignment. Our final loss func-
tion combines these terms with weighted coefficients:

Lpose = LF + λILI + λCLC . (2)

We start optimization with λI = 0 and λC = 0, allow-
ing only the flow loss LF to guide the relative pose align-
ment with global optical flow. After initial convergence, we
increase weights to λI = 75 and λC = 25 and continue
optimization to a second convergence.

Finally, we apply a point-to-plane ICP algorithm on
the two globally aligned point clouds to estimate camera
poses accurately. Since optical flow estimation between two
blurry images introduces some errors, this final camera pose
estimation relies exclusively on depth maps.

3.2. Global Pose Estimation/Geometry Refinement
Starting from the initial camera poses and point clouds ob-
tained in the previous step, we merge them into a global
point cloud within the world coordinate system (Figure 4).
To manage memory efficiently, we downsample the point
cloud with a specified voxel size s. However, due to accu-
mulated errors in the initial camera poses, these poses may
not align well with the global point cloud, leading to seam
artifacts at image boundaries and a drifting phenomenon
that creates loop-closure issues. To resolve this, we refine
both the camera poses and 3D point cloud positions simul-
taneously within the Gaussian Splatting pipeline, ensuring
global and geometric consistency.
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Figure 4. Reconstructed initial point clouds from the RGB-D im-
age sequence. Our method achieves accurate camera poses and
generates a dense, high-quality point cloud.

We initialize the Gaussian Splatting pipeline by loading
the point cloud along with the estimated camera poses. To
capture every depth value per pixel from the dense depth
maps, we initialize 3D Gaussians, fixing their sizes and set-
ting their scale to s/2. This dense arrangement of 3D Gaus-
sians provides a detailed geometric representation. We then
train only the camera poses, 3D positions, and opacities of
the Gaussians by comparing a rendered depth map D̃ with
the input depth map D.

During training, we randomly select camera viewpoints
from among the trainable camera pose variables to render
each depth map. For a depth value D̃t(pi) at pixel pi in the
rendered map, we calculate the depth loss as:

LD =
∑
i

Mt(pi)
∥∥∥Dt(pi)− D̃t(pi)

∥∥∥
1
. (3)

We also initialize each 3D Gaussian’s opacity oj to 0.5, op-
timizing them to values of 0 or 1:

Lopacity =
∑
j

o2j (1− oj)
2
. (4)

This optimization aims to retain only Gaussians with an
opacity of 1, pruning others to reduce ambiguity for the
subsequent deblurring stage. We prune Gaussians with an
opacity less than 0.8 and reset opacity with 0.5 again ev-
ery certain amount of iteration. As iterations progress, the
rendered depth maps increasingly align with the input depth
maps, indicating that all 3D Gaussian positions and camera
poses are globally well-aligned (Figure 5).

The final refinement loss is a weighted combination of
the depth and opacity losses:

Lrefinement = λDLD + λoLopacity. (5)

3.3. Image Deblur
Motion blur caused by camera movement can generally be
approximated as:

I(t) ≈ B(t) =
1

k

k∑
i=0

Ci(t) (6)

Iteration 100 Iteration 700 Iteration 20000

Figure 5. The refinement process corrects misaligned 3D Gaus-
sians by updating camera poses and geometry, with effectiveness
demonstrated in Table 3.

Here, B(t) represents the motion-blurred image, which we
model as the average of k sharp images Ci(t) rendered from
the 3D Gaussians at k virtual camera poses interpolated be-
tween the camera poses at the start and end of the exposure
time period ξst and ξet . This approximation allows B(t) to
closely match the input image I(t).

Using the refined camera poses and point cloud from the
previous step, we incorporate depth information to achieve
geometrically accurate deblurring, following the approach
in recent work [49]. Specifically, we minimize the differ-
ence between the input image I(t) and the averaged ren-
dered image B(t), as shown below:

LB =
∑
t

∑
i

∥It(pi)−Bt(pi)∥1. (7)

The final deblur loss function integrates this alignment loss
with additional terms for structural similarity and depth
consistency:

Ldeblur = (1− λB)LB + λBLD-SSIM + λDLD. (8)

This combined loss helps ensure that the deblurred output
aligns well with both the input image and depth structure,
leading to sharper and more geometrically consistent re-
sults.

4. Results

Dataset preparation. We prepare both synthetic and real-
world datasets to evaluate our method’s performance. In the
absence of an RGB-D dataset with extreme motion blur, we
generate a synthetic reference dataset by rendering directly
from 3D models. We create RGB-D image sequences and
record per-frame camera trajectories to evaluate our pose
estimation and deblurring accuracy. The sequences, rang-
ing from 50 to 150 frames, are captured along simulated
trajectories that include rapid translations, 360-degree ro-
tations, and human movement paths (using Blender’s Walk
Navigation feature). The RGB and depth images have a res-
olution of 640×480, and motion blur is applied by enabling
Blender’s motion blur setting. The 3D models are sourced
from the McGuire archive [23] and the Blender archive [43].
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Figure 6. Qualitative comparison of deblurring performance from a novel view. Our method excels in restoring high-frequency details,
whereas several methods, including COLMAP [31], fail under severe motion blur conditions (see Section 4.1). The corresponding quanti-
tative results are provided in Table 2.

For real scene evaluation, we used an Azure Kinect
RGB-D camera with a 33.3ms fixed exposure time, 5000K
fixed white balance, NFOV-2 × 2-binned depth capture
mode, and 1280 × 720 RGB resolution. We used the pro-
vided intrinsic camera parameters to undistort the images
and aligned depth maps to color images using the SDK’s
transformation functions. Depth maps were eroded three
times to remove outliers, which commonly occur along
edges.

Implementation details. Our code is based on 3D Gaus-
sian Splatting [14], with data processing partially adapted
from CF-3DGS [14]. For initial camera pose estimation,
we use the Unimatch [48] optical flow network and the
ICP [5] algorithm from Open3D as part of the optimiza-
tion process. For an input image sequence of N frames,

we prune Gaussians every 100N iterations, reset opacity to
0.5 every 200N iterations, and run a total of 600N itera-
tions (Section 3.2). The number of virtual views for deblur-
ring is set to 15 for synthetic dataset evaluation and 17 for
real-scene comparison. All experiments were conducted on
an NVIDIA RTX A6000 GPU (48GB), with initial camera
pose optimization taking 11 seconds per frame, 0.1 seconds
per iteration for pose and geometry refinement, and 0.26
seconds per iteration for deblurring at 640×480 resolution.

4.1. Quantitative Evaluation
We evaluate the camera pose accuracy and deblurring per-
formance on three synthetic scenes from our dataset, each
rendered with extreme motion blur. For pose accuracy, we
compare our method against a variety of approaches capa-
ble of generating a 3D point cloud and camera trajectory:
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Figure 7. Qualitative comparison of deblurring performance from novel views on real scenes captured with an Azure Kinect camera.
Our method effectively restores high-frequency details, outperforming other methods even when processing RGB-D sequences with large
spatial gaps between frames due to rapid camera motion and severe motion blur.

COLMAP [31], ICP with FPFH feature-based global align-
ment [29], ORB-SLAM3 [3], ElasticFusion [47], and sev-
eral RGB-D SLAM methods, including NICE-SLAM [51],
Point-SLAM [30], and DROID-SLAM [42]. Addition-
ally, we include recent Gaussian Splatting-based SLAM ap-
proaches such as MonoGS [21] and SplaTAM [12]. For
each method, we calculate absolute trajectory error (ATE)
and relative pose error (RPE) in meter and degree units, us-
ing the ground truth camera trajectories as references.

To evaluate deblurring accuracy, we modify a state-
of-the-art Gaussian Splatting-based image restoration
method [49] to operate in a depth-aware manner using
undistorted color and depth images. We select one out of
every three images as a test view and render the correspond-

ing novel view for comparison with the ground truth. For
quantitative metrics, we calculate PSNR, SSIM, and LPIPS
on the rendered images, as well as RMSE between the ren-
dered and ground truth depth maps in the inverse depth do-
main (m−1).

4.2. Ablation Study
To validate the contributions of each component in our
method, we perform an ablation study evaluating camera
pose and deblurring accuracy by selectively omitting key
elements. Specifically, we conduct experiments without fix-
ing the scale of the Gaussians (Section 3.2), without the
pose and geometry refinement process (Equation 5), and
without depth loss (Equation 8).
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Table 1. Quantitative comparison of camera pose accuracy against ground truth poses. We report scores only for methods that successfully
provide both camera poses and a point cloud (see Section 4.1). Our method achieves the best scores on RPE metrics and shows ATE
accuracy comparable to DROID-SLAM [42]. Each color highlights the best and second best results.

Bedroom Livingroom Office
ATE ↓ RPE (trans) ↓ RPE (rot) ↓ ATE ↓ RPE (trans) ↓ RPE (rot) ↓ ATE ↓ RPE (trans) ↓ RPE (rot) ↓

ElasticFusion [47] 1.303 0.079 2.218 1.014 0.056 2.777 0.479 0.038 0.480
FPFH-ICP [29] 2.760 0.118 2.310 2.028 0.092 1.213 0.139 0.009 0.167
DROID-SLAM [42] 0.059 0.044 1.212 0.050 0.014 0.317 0.011 0.011 0.245
MonoGS [21] 0.506 0.041 0.812 0.135 0.009 0.124 0.045 0.011 0.180
Ours 0.102 0.006 0.092 0.005 0.002 0.032 0.041 0.003 0.046

Table 2. Quantitative comparison of deblurring performance from novel views. Our method demonstrates high accuracy across all metrics
for both color and depth images. RMSE is calculated by comparing the rendered depth with GT depth in the inverse depth domain (m−1).

Bedroom Livingroom Office
PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓

ElasticFusion [47] 18.766 0.586 0.466 1.249 13.799 0.448 0.554 0.146 19.052 0.533 0.401 0.079
FPFH-ICP [29] 20.623 0.617 0.418 0.450 18.172 0.598 0.422 0.102 22.212 0.684 0.241 0.033
DROID-SLAM [42] 21.375 0.666 0.302 0.013 21.222 0.735 0.250 0.035 25.680 0.769 0.144 0.013
MonoGS [21] 23.728 0.717 0.285 0.009 24.414 0.822 0.188 0.027 24.194 0.725 0.184 0.184
Ours 26.745 0.824 0.206 0.005 27.650 0.900 0.150 0.010 25.649 0.791 0.160 0.014

Table 3. Ablation study on the effects of the global refinement
process and fixed scale of Gaussians. Our refinement significantly
enhances deblurring and depth accuracy while fixing the scale of
the Gaussians leads to more accurate camera pose estimation.

PSNR SSIM LPIPS RMSE ATE RPE(trans) RPE(rot)
w/o scale fix 21.656 0.703 0.308 0.027 0.155 0.053 1.488
w/o refinement 22.223 0.734 0.238 0.027 0.123 0.007 0.047
w/o depth loss 25.518 0.807 0.170 0.014 0.103 0.012 0.195
Scale fix + refinement 26.681 0.838 0.172 0.010 0.103 0.012 0.195

We assess the effectiveness of these components
by performing deblurring based on results from Sec-
tion 3.1—omitting refinement of camera poses and geom-
etry—and by allowing the scale of the 3D Gaussians to be
optimized freely. Table 3 demonstrates that both the global
refinement process and fixed Gaussian scale are essential
for achieving high accuracy. Notably, during pose refine-
ment, the algorithm reduces absolute pose error even at the
expense of a slight increase in relative pose error, underscor-
ing the importance of our refinement approach for stable,
high-quality reconstruction.

Our method achieves superior RPE scores across all
scenes, as shown in Table 1, outperforming other ap-
proaches in pose and geometry estimation under severe mo-
tion blur. While our ATE scores are comparable to those of
DROID-SLAM, which uses a bundle adjustment (BA) mod-
ule, ATE alone does not correlate strongly with deblurring
quality. Our method consistently produces more accurate
and denser point clouds, which directly contributes to im-
proved deblurring performance, as evidenced by the met-
rics in Table 2. These results confirm that our integrated ap-
proach to pose estimation and deblurring is more resilient
to challenging conditions than other methods.

4.3. Qualitative Evaluation
Figures 6 and 7 present qualitative comparisons of our
method’s performance in synthetic and real scenes. The

densification capability of Gaussian Splatting provides de-
tailed scene representation even from a relatively sparse
point cloud; however, our approach, with its initially dense
and accurate point cloud generation, achieves notably su-
perior deblurring performance, especially in restoring high-
frequency details. Our method consistently demonstrates a
significant advantage in visual fidelity and detail restoration
across diverse conditions.

5. Conclusion
We have introduced a robust method for 3D scene recon-
struction from RGB-D image sequences that effectively ad-
dresses the challenges of extreme motion blur and low-light
conditions. Our approach leverages optical flow from color
images and a carefully designed geometric loss to achieve
accurate global alignment, followed by local refinement
of camera poses and geometry using ICP. By integrating
these steps into a Gaussian Splatting pipeline, we further
refine camera poses and 3D geometry by minimizing depth
and opacity losses. Additionally, fixing the scale of the
3D Gaussians ensures that the depth information from the
RGB-D input is fully utilized, allowing for precise camera
pose estimation and improved deblurring performance. Our
method demonstrates superior performance on real and syn-
thetic RGB-D scenes with significant motion blur, outper-
forming existing approaches.
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