
Customizing Domain Adapters for Domain Generalization

Yuyang Ji2ω, Zeyi Huang1ω, Haohan Wang2†, Yong Jae Lee1†
1University of Wisconsin-Madison 2University of Illinois Urbaba-Champaign

Abstract

In this paper, we study domain generalization, where the

goal is to develop models that can effectively generalize from

multiple source domains to unseen target domains. Differ-

ent from traditional approaches that aim to create a single,

style-invariant model, we propose a new “Customized Do-

main Adapters” method, named CDA. This method lever-

ages parameter-efficient adapters to construct a model with

domain-specific components, each component focusing on

learning from its respective domain. We focus on integrating

the unique strengths of different adapter architectures, such

as ViT and CNN, to create a model adept at handling the

distinct statistical properties of each domain. Our experi-

mental results on standard domain generalization datasets

demonstrate the superiority of our method over traditional

approaches, showcasing its enhanced adaptability and ro-

bustness in domain generalization tasks. Code is released at

https://github.com/code456-star/CDA.

1. Introduction

Domain generalization is one of the most challenging
settings in studying machine learning robustness [38]. This
concept studies the ability of algorithms to generalize from
multiple source domains to unseen target domains. A core
hypothesis behind the setting of domain generalization is
that: if the model can perform well on the collection of
training domains, it is expected to learn the “semantic” infor-
mation (i.e., the information that can be generalized across
domains) but to ignore the “style” information (i.e., the infor-
mation that is specific to a particular training domain) from
the training data, and thus the model will generalize well to
the testing domain.

Given this interesting setting and the promises of domain
generalization in studying machine learning robustness, the
community has developed a torrent of methods. As sum-
marized in previous works [34]: one branch of the methods
builds explicit regularization that pushes a model to learn
representations that are invariant to the “style” across these

ω,† equal contribution and advising.

Training Data
with Multiple Domains

Training Data
with Multiple Domains

Training Data
with Multiple Domains

(a) (b) (c)

Figure 1. (a) Existing methods share the same avenue where their
goal is to learn one model that is invariant to the “style” information
from different domains. (b) The alternative way is to learn multiple
models, and each model is only specialized in its own domain. (c)
We create a Domain Adapter Customization with different com-
ponents, and each of these components is specially designed to
learn the knowledge of one domain, and then merge the learned
information together for prediction.

domains [1, 5, 9, 12, 16, 26, 30, 31, 36, 37, 41, 44, 47, 56,
57, 60, 62, 65, 68, 70]; another branch is to perform data
augmentation that can introduce more diverse data to enrich
the data of certain “semantic” information with the “style”
from other domains [13, 20, 49, 58, 64, 69], and also aims
to train a model that is invariant to these “styles”. More
recently, there has been a line of approaches that aims to
leverage the rich knowledge from large pre-trained vision
language models to improve generalization performance
[7, 8, 23, 32, 66]. For example, [8] synthesizes diverse styles
via learnable text representations of CLIP to simulate dis-
tribution shifts. [23] distills the knowledge from the CLIP
model into small models while pushing the models to ig-
nore the “style” information in each domain through text
representations.

However, we notice that most of the existing methods
take a shared avenue in which the aim is to learn one model
that is invariant to the “style” information from each domain.
In this paper, we take another avenue that values the specifi-
cation of each domain: whether we can create a model with
different components, and each of these components is spe-
cially designed to learn the information of one domain, and
then merge the learned information together for prediction.
We believe our approach is intuitively advantageous because
it recognizes the differences between domains, building upon
an assumption that distinct domains exhibit unique statistical
properties that might not be fully captured by a single model.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

934

https://github.com/code456-star/CDA


In particular, in this paper, we leverage the power of
parameter-efficient adapters to construct a customized model
with different components. Each of the components special-
izes in learning from one domain, with different architecture
designs, and these adapters are integrated to make a predic-
tion. This method comprises two core steps: the construction
of adapter models for each domain and the effective integra-
tion of their predictions.

For the first step, building upon the distinct advantages
of ViT and CNN in learning shape or texture from image
data [40, 42], we tailor architectural choices of adapters auto-
matically by following either tried-and-tested design choices
or LLM guidance. For the second step, a domain router is
trained to dynamically assign the most suitable adapters for
prediction based on the images’ domain characteristics. We
evaluate on standard domain generalization datasets – the
results favor our method.

Unlike standard MoEs [46], whose main goal is to in-
crease model capacity without a proportional increase in in-
ference, our design focuses on learning customized adapters
that capture different domain-specific properties (e.g., pho-
tos vs. sketches). Our approach also differs from a recent
method [27] that applies MoEs to domain generalization. In
[27], each expert is indirectly expected to learn a similar
visual attribute like parts of an animal, whereas our method
explicitly enforces each adapter to learn domain-specific
properties. We find that this leads to stronger generalization
capabilities to unseen domains.

Contributions. In summary, our main contributions are:
• We propose a new “Domain Adapter Customization”

lightweight framework that synergistically combines the
inductive biases of different domain adapters. This allows
the model to adeptly handle varied distribution shifts, lever-
aging the strengths of both CNN and ViT architectures.

• We introduce a simple and effective approach for choos-
ing different architectures as different domain adapters.
By harnessing the intrinsic biases of domains, the model
achieves enhanced domain generalization performances.

• We conduct a rich set of experiments to validate the effec-
tiveness of our method on domain generalization bench-
marks and ablate the performance of each of its compo-
nents.

2. Related Work

2.1. Domain Generalization

The field of Domain Generalization has garnered consid-
erable interest in recent years, as delineated by [38]. This
area of study concentrates on the challenge of training mod-
els on data from diverse source distributions and testing on
a target distribution distinct from those used during train-
ing. The underlying premise for method development in

this domain is that a model capable of learning a represen-
tation invariant across multiple training domains should in-
herently perform well on an unseen test domain. Numerous
methodologies have been developed under this presump-
tion, striving to induce invariance in the training distribution
samples. These approaches include explicit regularization-
based methods [1, 5, 9, 12, 16, 26, 30, 31, 36, 37, 41, 44,
56, 57, 60, 62, 65, 68, 70] and data augmentation techniques
[13, 20, 49, 58, 64, 69]. Recent studies have capitalized
on large pre-trained vision-language models to enhance do-
main generalization. Notably, Domain Prompt Learning
(DPL) [66] employs a prompt adaptor to generate prompts
that capture domain-specific features from unlabeled data
automatically. Other research [7, 32] has utilized CLIP as a
foundational model to allocate suitable pre-trained models
for each sample and to reframe the domain generalization ob-
jective through mutual information. Moreover, [23] leverage
knowledge distillation using a large vision language model
as a teacher for domain generalization. [8] synthesizes a
variety of styles in a joint vision-language space via prompts
to effectively tackle source-free domain generalization.

Key differences: A recent work named GMoE [27] di-
rectly applies a sparse Mixture-of-Experts framework to DG
tasks. Each expert is expected to learn a similar group of
visual attributes, such as head, body, leg, etc., of an animal.
Instead, our methodology first customizes the architecture
of each adapter to align with the intrinsic characteristics of
the domain it represents. Then a domain router is trained to
guide each adapter to adeptly learn domain-specific features,
such as photos, sketches, etc.

2.2. Mixture of Experts

The Mixture-of-Experts (MoEs) models[50], renowned for
their innovative gating mechanism, have recently demon-
strated significant achievements by incorporating an exten-
sive number of parameters while maintaining a constant com-
putational cost. These models enhance overall performance
by employing an input-dependent routing mechanism that
amalgamates outputs from multiple sub-models, or ‘experts.’
This training approach has given rise to a variety of methods
applicable across a broad spectrum of fields. However, the
integration of MoEs with large-scale models inevitably leads
to increased model sizes and prolonged inference times. To
address this, Sparse MoEs have been introduced [46], fea-
turing routers that activate only a select few experts, thereby
aligning the inference time with that of standalone models.
This approach is considered a promising avenue for scaling
up vision models. Recent studies have applied the MoE ar-
chitecture to various generalization tasks [27]. For instance,
one study addressed multi-source domain adaptation in NLP
by training a classifier for each domain and employing MoEs
to ensemble these classifiers [15]. Another study explored
the issue of systematic generalization, proposing the dy-

935



namic composition of experts in MoEs rather than selecting
them [27].

Key differences: Contrary to standard MoEs, which
aim to expand model capacity without significantly increas-
ing computation, our approach centers on developing cus-
tomized adapters tailored to capture domain-specific prop-
erties. The primary differences in our implementation are:
1) Within each ViT block, the standard FFN is replaced by
an MoE layer, where each expert typically uses an FFN. Our
approach differs by incorporating lightweight adapters after
the MSA in each ViT block. 2) Standard MoE layers uti-
lize a uniform architecture for each expert. Conversely, our
method customizes each adapter to address specific domain
properties. 3) We employ a domain router loss to dynam-
ically steer incoming images to the adapter best suited to
their domain characteristics, a feature not found in traditional
MoE frameworks.

2.3. Parameter Efficient Fine-tuning (PEFT)

Existing PEFT methods can be generally divided into two
groups. The first fine-tunes a small portion of the internal
parameters, such as biases. The second adds tiny learnable
modules like Adapters [18] and LoRA [19]. Adapters and
LoRA essentially share similar architectures which both look
like a bottleneck but are installed at different places. The
Adapter is often installed at the output of a block while
LoRA is treated as residuals to the projection matrices in
a Transformer block. Another popular design in NLP is
prompt learning, which turns some text prompt tokens into
learnable vectors. Such an idea has recently been applied to
vision-language models and is also the source of inspiration
for the recently proposed VPT [24] and Visual Prompting.
Inspired by these works, we follow some popular adapter
architectures to customize our adapters.

3. Method

We first describe our notations and the standard ViT [10]
architecture. We then present how we tailor the parameter-
efficient adapters to domain generalization, before explain-
ing our design choices for the approach and the implementa-
tion of domain adapters.

3.1. Preliminaries

Notation We use (X,Y,D) to denote the training dataset
with n (data, label, domain ID) paired samples. These data
samples can be from multiple domains or distributions. Let
(x,y,d) denote one sample and f(·; ω) denote the model we
aim to train. Then, the standard empirical risk minimization
(ERM) is: ∑

(x,y)→(X,Y)

ε(f(x; ω),y), (1)

where ε(·, ·) denotes a generic loss function.

Vision Transformer (ViT) For a plain ViT with 12
blocks, each ViT block consists of a Multiheaded Self-
Attention (MSA) module and Feed-Forward Networks (FFN)
together with LayerNorm and residual connections.
3.2. Customized Domain Adapters (CDA)

Motivated by the study that CNN and ViT networks poten-
tially excel in different styles of images [40, 42], we leverage
a compact ViT adapter and CNN adapter and insert them into
the pre-trained network at fine-tuning time, hoping they can
combine the complementary strengths of CNNs and ViTs
to enhance generalization across diverse distributions. In
this section, we first introduce the architecture of the ViT
adapter and CNN adapter we use. Following this, we elabo-
rate on our strategy for effectively integrating these adapters,
harnessing their combined capabilities for enhanced perfor-
mance.

ViT Adapter We follow the widely used adapter archi-
tecture [18] for ViT to design our ViT adapter. This adapter
inserts a small number of additional parameter modules be-
tween transformer layers. As illustrated in Figure 2, the ViT
adapter employs a down-projection with Wdown → Rq↑r

to project the input h with channel dimension q to a lower-
dimensional space specified by bottleneck dimension r, fol-
lowed by a nonlinear activation function GELU f(·), and
an up-projection with Wup → Rr↑q. The ViT adapter is
surrounded by a residual connection, leading to this final
form:

h↓ ↑ h+ f(hWdown)Wup. (2)

For storage efficiency, we set the bottleneck dimension much
smaller than q, specifically r = 48 in our approach, whereas
q = 384 serves as the default parameter for ViT-Small.

Conv Adapter As depicted in Figure 2, the Conv adapter
comprises three convolutional layers: a 1 ↓ 1 convolution
reducing channels, a 3↓3 convolution maintaining the same
channel count for both input and output, and a final 1 ↓
1 convolution that expands the channels. Given that ViT
converts the image into a 1D token sequence, we first revert
to a 2D structure before 3 ↓ 3 convolution. We treat [cls]
token as an image and add zero padding to [cls] token to
make it a 2D structure before 3x3 convolution. The Conv
adapter is integrated within a residual connection, expressed
as:

h↓ ↑ h+ Conv1x1(f(Conv3x3(f(Conv1x1(h))))), (3)

where f(·) represents the nonlinear activation function
GELU. For storage efficiency, we define the bottleneck chan-
nel size for the 3↓ 3 convolution as c. To ensure c ↔ q, we
set c = 8 in our method.

It is worth noting that the Conv adapter module is similar
to the residual bottleneck blocks of ResNet [17]. By embed-
ding the Conv adapter within the transformer structure, we
aim to leverage the inherent visual inductive bias of CNNs

936



Domain 1

Domain 2

Domain 3

Router

Domain 1
Adapter

Domain 2
Adapter

Domain 3
Adapter

+

Norm

MSA

Norm

MLP

Router

Domain 1 
Conv Adapter

Domain 3
Conv Adapter

+
Domain 2

ViT Adapter

Domain Router

Customized Adapters

Customized Domain Adapters

Wdown

Wup

Nonlinear

ViT
Adapter

Conv
Nonlinear

Nonlinear

Conv

Conv

Conv
Adapter

Conv
Nonlinear

Nonlinear

Conv

Conv

Conv
Adapter

Figure 2. Pipeline of our method. In the first stage “Customized Adapters”, we train two models separately, one with a ViT adapter and the
other with a CNN adapter, and evaluate them across various domains. The domain is then automatically assigned to the adapter—ViT or
CNN—that performs better in that specific domain. The ViT adapter is optimized for domains with less color or texture, while the Conv
adapter excels in color and texture-rich domains. In the second stage “Domain Router”, the domain router is trained to classify the specific
domain to which each training image belongs. In inference, it dynamically routes images to the most fitting adapter based on their domain
characteristics.

during the fine-tuning process. Furthermore, the local re-
ceptive field of the 3 ↓ 3 convolution’s 2D neighborhood
structure offers a complement to the MSA’s global receptive
field.

Domain Adapter Customization In our network archi-
tecture, we integrate both ViT and Conv adapters within the
ViT blocks, enabling each adapter to specialize in domain-
specific characteristics. This configuration transforms the
traditional transformer layers into a synergistic ensemble of
transformers and ResNet-like CNNs.

A key consideration is selecting the appropriate ViT and
Conv adapters for each domain in the dataset. We customize
the adapter type to align with the domain’s inherent prop-
erties. Typically, ViT-based adapters are preferable for do-
mains lacking color or texture detail, as they excel in global
structural analysis. Conversely, CNN-based adapters are
ideal for texture-rich domains due to their proficiency in
capturing detailed textural features [40, 42]. In practice, we
adopt two methods to determine the most effective adapter

for each domain. The first method involves randomly sam-
pling one image from each domain, feeding it to GPT-4, and
prompting GPT-4 to assign an adapter based on its world
knowledge: “Analyze the domain characteristics of the given

image and identify the most suitable neural network adapter:

either a ViT-based or CNN-based adapter.” The second
method trains two separate models: one with a single ViT
adapter and the other with a single CNN adapter. Each model
is evaluated on various domains, and the adapter is chosen
based on which model performs better in a specific domain.
This empirical approach ensures the best adapter match but is
more time-consuming compared to the GPT-4-based method,
which, while faster, may not guarantee optimal matches. Em-
pirically, both methods achieve comparable results and out-
perform most state-of-the-art approaches, as demonstrated
in the experiment section. Users can choose the appropriate
method based on their practical requirements. Our ablation
study details the adapter assignments for each dataset, reveal-
ing that Conv adapters excel in color-rich domains, while

937



ViT adapters perform better in less colorful domains.
Domain Router and Loss Function We define the num-

ber of adapters N to be equal to the number of domains in
our training data. This allows each adapter to specialize in
a single domain, potentially improving the model’s perfor-
mance on domain-specific tasks. Therefore, for D domains,
we have N = D adapters. Each adapter Ei is trained to
learn domain-specific features from domain i. Denoting the
output of the MSA as z, the output of the CDA layer with N
adapters is given by

fCDA(z) =
N∑

i=1

G(z)i · Ei(z) =
N∑

i=1

Softmaxi(Wz) · Ei(z),

(4)

where N is equal to the number of training domains D, W
denotes the learnable parameters for the gate G. We hope
this design allows the model to benefit from the strengths
of all the training domains, thus improving its ability to
generalize to unseen visual domains.

The router plays a crucial role in dynamically assigning
an incoming image to the most suitable adapter based on its
domain characteristics. The router, a trainable component of
our architecture, analyzes each input image and computes a
set of weights that determine the contribution of each adapter
for that specific image. To ensure that the router accurately
discerns the domain of each image, we employ a router loss
function. ∑

(x,d)→(X,D)

ε(Wz,d), (5)

where W is the learnable parameter for the gate, z is the
output embedding of the MSA, and ε(·, ·) denotes a generic
loss function. This function is designed to penalize the
router when it incorrectly predicts the domain of an image.
During training, the router loss guides the router in learning
to identify the distinguishing features of each domain. We
analyze the router’s ability to accurately distribute weights
to adapters for test images in the ablation study. The overall
loss for our method is:

∑

(x,y,d)→(X,Y,D)

ε(f(x; ω),y) + ϑε(Wz,d), (6)

where ϑ is the weight to balance the ERM and domain router
loss. In this model, the cross-entropy loss is employed for
ε(·, ·). Detailed investigations into the configuration of the
domain adapters layer and their placement within the ViT
block are presented in supplementary.

4. Experiments

In this section, we evaluate our customized domain adapters
on learning domain-specific knowledge for domain general-
ization. We compare state-of-the-art domain generalization
methods and perform ablation studies to analyze the various
components of our model.

4.1. Experiment Setup

We follow the setting in [14, 63] to evaluate our domain
generalization approach. This includes consistent model se-
lection criteria, dataset splitting, and using the same network
backbone for comparability. To ensure a fair comparison
with other methods reported on DomainBed, we select the
ViT-S/16 model, following [27]. This model aligns closely
with ResNet-50 in terms of parameter count and runtime
memory usage. The ViT-S/16 features an input patch size of
16!16, 6 heads in its multi-head attention layers, and com-
prises 12 transformer blocks. Following DomainBed [14]
and Ood-bench [63], we choose datasets that cover as much
variety as possible from the various OOD research areas
for our experiments. We conduct experiments on five OOD
datasets: Terra Incognita [3], OfficeHome [55], VLCS [53],
PACS [28] and DomainNet [43].

To be consistent with existing line of work, we use the
training-validation protocol for model selection: given N
domains, it uses 80% the amount of data in N ↗ 1 domains
for training, the other 20% for validation, selects the best
model based on the validation result, tests the model on the
held-out domain and reports this result. The experiments are
averaged over 3 runs.

There is one hyperparameter for our method – the weight
of the router loss ϑ; we set the hyperparameter search space
of our method as ϑ → [0.01, 0.1]. We adopt the same hyper-
parameter search protocol used in [14, 63].

4.2. Main Results

We compare to recent top DG algorithms, using both ViT-
Small/16 (21.7M parameters) and ResNet50 (25.6M param-
eters) pre-trained on ImageNet-1k as the backbone. The
results in Table 1 demonstrate that our domain adapter mod-
ule, trained with ERM, surpasses leading DG algorithms on
nearly all datasets. Specifically, even using the smaller back-
bone ViT-S/16, our method achieves improvements of 0.7%,
0.8%, 1.9%, and 1.6% over the Best SoTA Competitors on
the PACS, VLCS, OfficeHome, and DomainNet benchmarks,
respectively. The term “Best SoTA Competitor" refers to
the highest performance in the literature within the standard
DG experimental protocol. In our following ablation study,
we explore how our model effectively utilizes the expertise
of individual adapters and adapts to images with charac-
teristics spanning multiple domains, thereby enhancing its
generalization performance on unseen domains.

4.3. Ablation on Model Design

In this section, we study the impact of each component in
our model design. We evaluate our method with a ViT-S/16
backbone on the popular DG benchmark, such as PACS, and
DomainNet to conduct the following experimental analyses.
We observed that fully finetuning all network parameters
outperforms finetuning only custom domain adapters and

938



Algorithm Backbone PACS VLCS OfficeHome TerraInc DomainNet
ERM [54] RN50 85.7 ± 0.5 77.4 ± 0.3 67.5 ± 0.5 47.2 ± 0.4 41.2 ± 0.2
IRM [2] RN50 83.5 ± 0.8 78.5 ± 0.5 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8
Mixup [61] RN50 84.6 ± 0.6 77.4 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1
RSC [21] RN50 85.2 ± 0.9 77.1 ± 0.5 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5
CDANN [30] RN50 82.6 ± 0.9 77.5 ± 0.1 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3
DANN [11] RN50 84.6 ± 1.1 78.7 ± 0.3 68.6 ± 0.4 46.4 ± 0.8 41.8 ± 0.2
CORAL [52] RN50 86.0 ± 0.2 77.7 ± 0.5 68.6 ± 0.4 46.4 ± 0.8 41.8 ± 0.2
MLDG [29] RN50 84.9 ± 1.0 77.2 ± 0.4 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1
AND-mask [48] RN50 84.4 ± 0.9 78.1 ± 0.9 65.6 ± 0.4 44.6 ± 0.3 37.2 ± 0.6
MMD [30] RN50 85.0 ± 0.2 76.7 ± 0.9 67.7 ± 0.1 42.2 ± 1.4 39.4 ± 0.8
Fish [51] RN50 85.5 ± 0.3 77.8 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2
SagNet [39] RN50 86.3 ± 0.2 77.8 ± 0.5 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1
SelfReg [25] RN50 85.6 ± 0.4 77.8 ± 0.9 67.9 ± 0.7 47.0 ± 0.3 42.8 ± 0.0
mDSDI [4] RN50 86.2 ± 0.2 79.0 ± 0.3 69.2 ± 0.4 48.1 ± 1.4 42.8 ± 0.1
SWAD [6] RN50 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1
Fishr [45] RN50 85.5 ± 0.2 77.8 ± 0.2 68.6 ± 0.2 47.4 ± 1.6 41.7 ± 0.0
MIRO [7] RN50 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2
PCL [59] RN50 88.7 - 71.6 52.1 47.7
ERM [27] ViT-S 86.2 ± 0.1 79.7 ± 0.0 72.2 ± 0.4 42.0 ± 0.8 47.3 ± 0.2
GMoE [27] ViT-S 88.1 ± 0.1 80.2 ± 0.2 74.2 ± 0.4 48.5 ± 0.4 48.7 ± 0.2
CDA w GPT (Ours) ViT-S 89.3 ± 0.2 80.7 ± 0.1 75.5 ± 0.2 50.8 ± 0.6 50.1 ± 0.4
CDA (Ours) ViT-S 89.4 ± 0.3 81.0 ± 0.2 76.1 ± 0.1 51.3 ± 0.4 50.3 ± 0.4

Table 1. Results of recent top DG algorithms, using both ViT-Small/16 (21.7M parameters) and ResNet50 (25.6M parameters) pre-trained
on ImageNet-1k as the backbone with train-validation selection criterion. The experiments are averaged over 3 runs. The best result is
highlighted in bold. Our method achieves the best performance on PACS, VLCS, OfficeHome, and DomainNet, and second best on TerraInc.
Note, “CDA w GPT” indicates using GPT to assist in adapter assignment. This approach achieves results comparable to the tried-and-tested
design choice but is significantly more time-efficient. Users can choose the appropriate method based on their practical requirements.

Adapter type Router Loss Adapter# / Acc(PACS) Adapter# / Acc(DomainNet)
ViT adapter w/o 2 / 87.9 ± 0.2 2 / 48.3± 0.3
ViT adapter w/o 3 / 88.0 ± 0.1 5 / 48.7± 0.3
ViT adapter w 3 / 88.5 ± 0.3 5 / 49.4± 0.4
Conv adapter w/o 2 / 88.1 ± 0.3 2 / 48.8± 0.2
Conv adapter w/o 3 / 88.3 ± 0.2 5 / 49.0± 0.4
Conv adapter w 3 / 88.7 ± 0.4 5 / 49.6± 0.4
Customized adapter w/o 2 / 88.9 ± 0.3 2 / 49.3± 0.3
Customized adapter w/o 3 / 88.9 ± 0.1 5 / 49.6± 0.5
Customized adapter w 3 / 89.4 ± 0.3 5 / 50.3± 0.4

Table 2. Analysis of router loss and ViT and Conv adapter cus-
tomization. Note that since the PACS and DomainNet have three
and five training domains respectively, we only apply router loss
when the number of adapters is equal to the number of training
domains. “Customized adapter" means combining the ViT and
Conv adapter according to our method in Section 3.2.

classifier with 1.2% on the PACS dataset in our experiments.
This likely stems from the relatively small size of our pre-
trained network, where a fine-tune-only adapter may not
suffice for downstream tasks. Consequently, we employ full
fine-tuning strategies in all our experiments.

Impact of router loss and customization of ViT and Conv

adapters We first examine the contribution of domain
router loss in Table 2. For example, in PACS, whenever
the adapters are trained without router loss, the performance
drops by 0.5%, 0.4%, and 0.5% for 3 ViT adapters, 3 Conv

adapters, and customized adapters, respectively. We next
study the effect of combining the ViT and Conv adapters.
The integration of varied adapter types consistently yields a
performance increase of at least 0.6%. For example, combin-
ing a single ViT adapter and a single Conv adapter results
in an 88.9% accuracy-a gain of 1.0% and 0.8% compared
to their individual performances without router loss, which
are 87.9% and 88.1%, respectively. Lastly, we study the
effect of adding more adapters of the same type. It reveals
a marginal benefit, with a maximum performance gain of
0.2% across all three adapter types examined in Table 2. The
same trend can also be found in the larger DomainNet bench-
mark. In summary, our findings highlight the significance
of the router loss and strategic incorporation of customized
adapters in the design of our module. Conversely, increasing
the number of identical adapters appears to have a minimal
effect on performance.

Analysis of Using CLIP Pretrained Weights To further
assess the effectiveness of our CDA, we apply it to CLIP
pretrained weights. In Table 3, CDA achieves competitive
performance across all benchmark datasets, including PACS,
VLCS, and OfficeHome. Notably, CDA outperforms pre-

939



Method Backbone PACS VLCS OfficeHome
DPL [67] CLIP ViT-B16 97.3 84.3 84.2
MIRO [7] CLIP ViT-B16 95.6 82.2 82.5
CAR-FT [35] CLIP ViT-B16 96.8 85.5 85.7
SIMPLE+ [33] Model Pool 99.0±0.1 82.7±0.4 87.7±0.4
CDA(Ours) CLIP ViT-B16 98.6±0.1 84.0±0.3 91.2±0.1

Table 3. Analysis of Using CLIP Pretrained Weights: To further
evaluate the effectiveness of our CDA, we apply it to CLIP pre-
trained weights. Our results demonstrate that even when using
CLIP pretrained weights, CDA continues to deliver SOTA perfor-
mance, highlighting its adaptability.

Method Backbone Param / Acc(PACS) Param / Acc(DN) Latency(ms)
ERM [54] ResNet50 25.6M / 85.7 ± 0.5 25.6M / 41.2 ± 0.2 16.7
ERM [27] ViT-S/16 21.7M / 86.2 ± 0.1 21.7M / 47.3 ± 0.2 16.9
GMoE [27] ViT-S/16 33.8M / 88.1 ± 0.1 33.8M / 48.7 ± 0.2 65.6
CDA(Ours) ViT-S/16 23.9M / 89.4 ± 0.3 24.5M / 50.3± 0.4 20.5 / 28.7
ERM [54] ViT-B/16 85.8M / 88.8 ± 0.4 85.8M / 50.6± 0.4 17.5
GMoE [27] ViT-B/16 133.4M / 89.4 ± 0.1 133.4M / 51.3 ± 0.1 160.2
CDA(Ours) ViT-B/16 90.9M / 90.1 ± 0.8 91.4M / 54.5± 0.3 25.3 / 31.8

Table 4. Analysis of scaling up architecture and inference cost. Our
approach achieves notable performance improvements with a small
impact on inference speed.

vious methods like DPL [67] and CAR-FT [35] on Office-
Home, with a significant margin of 5.5% over CAR-FT.
Moreover, while SIMPLE+ [33] shows slightly better results
on PACS, CDA maintains a consistent balance of high per-
formance across all domains, demonstrating its robustness
and generalization capabilities. These findings underscore
CDA’s ability to leverage powerful pretrained weights like
CLIP effectively, adapting them to diverse domain general-
ization tasks.

Scaling up architecture and inference cost We inves-
tigate whether similar performance improvements are ob-
served with larger architectures in Table 4. Our Customized
Domain Adapter consistently enhances ViT backbones
across different scales. Specifically, in the PACS benchmark,
CDA adds an extra 2.2M parameters and achieves a 3.2% per-
formance increase for ViT-S, and adds 5.1M parameters for
a 1.3% boost in ViT-B. Furthermore, we assessed the addi-
tional inference costs introduced by our CDA method. CDA
incurs an additional 3.5ms for ViT-S and 8ms for ViT-B,
significantly lower than the GMoE’s added 45ms for ViT-S
and 140ms for ViT-B. Latency measurements are conducted
on an 24GB Nvidia RTX 3090 GPU. Similar patterns are
observed in the DomainNet benchmark. In conclusion, our
approach achieves notable performance improvements with
minimal impact on inference speed.

Orthogonal to other DG algorithms Our method lies in
an orthogonal direction with most DG algorithms – the de-

Method Acc(PACS) Acc(DomainNet)
CDA 89.4 ± 0.3 50.3± 0.4
SWAD [6] 88.1 ± 0.1 48.2 ± 0.2
SWAD [6] + CDA 90.3 ± 0.2 51.0 ± 0.3
W2D [22] 86.6 ± 0.4 47.8 ± 0.4
W2D [22] + CDA 89.9 ± 0.5 50.7 ± 0.5

Table 5. Analysis of complementarity to other DG algorithms. Our
CDA is an effective network architecture for other kinds of DG
algorithms.

Method Backbone PACS OfficeHome VLCS Memory
ERM [27] ViT-S/16 2722s 3102s 3635s 5.8GB
GMoE [27] ViT-S/16 6013s 6996s 6841s 7.6GB
CDA(Ours) ViT-S/16 6585s 7614s 8235s 6.8GB
ERM [27] ViT-B/16 8167s 8742s 9233s 11.6GB
GMoE [27] ViT-B/16 14724s 16404s 15804s 14.7GB
CDA(Ours) ViT-B/16 13182s 14831s 14283s 13.0GB

Table 6. Comparison of runtime (in seconds) and memory usage (in
GB) across PACS, OfficeHome, and VLCS datasets for different
methods. Our approach demonstrates competitive performance
with manageable memory overhead.

sign of the backbone architecture. This suggests that integrat-
ing DG algorithms could further enhance the performance of
our CDA. In this section, we investigate whether our method
complements other DG plug-in strategies, such as the data
augmentation method W2D [22] and the model ensemble
method [6], as shown in Table 5. The results confirm that
CDA serves as an effective architecture, synergizing with
these methods to yield significant performance gains of 2.2%
and 3.3% for SWAD and W2D on PACS, and 2.8% and 3.1%
on DomainNet, respectively.

Further analysis of the domain router The domain router
is essential for dynamically assigning incoming images to
the most suitable adapter based on domain characteristics.
In Table 7, we evaluate the router’s ability to accurately
distribute weights to adapters for each image by averaging all
router output weights during inference on the PACS dataset.
For instance, in tests within the art domain, routers tend to
allocate higher weights to the photo domain due to its color
richness and similarity to the art domain, while significantly
less weight is given to the sketch domain adapter. These
findings confirm the domain router’s effectiveness in guiding
images to their optimal adapters based on domain traits.
Additionally, Figure 3 presents the predicted weights for test
samples from PACS across different domains, illustrating
this process.

Result of domain adapter customization for each bench-

mark Our method, detailed in Section 3.2, centers on
choosing the right ViT and Conv adapters for each domain

940



Figure 3. Predicted router weights for four PACS test samples
across different domains. For instance, in the test image from the
art domain (bottom left), routers tend to assign higher weights to
the photo router due to the similarity to the art domain.

Test domain Art
Weight

Cartoon
Weight

Photo
Weight

Sketch
Weight

Art - 0.29 0.67 0.04
Cartoon 0.24 - 0.31 0.45
Photo 0.83 0.14 - 0.03
Sketch 0.06 0.92 0.02 -

Table 7. Further analysis of the domain router. We assess the
router’s capability in allocating weights to adapters for each test
image by calculating the average of all router output weights during
inference across the four test domains of the PACS dataset. For
a sanity check, we reported the average router weights for the
validation set to assess if the router accurately predicts weights
for samples similar to the training distribution. With weights of
0.91, 0.91, 0.92, and 0.92 for the photo, art, cartoon, and sketch
domains respectively, this demonstrates the router’s effectiveness
in allocating weights to adapters for iid and OoD samples.

in a tried-and-tested design manner. We train separate mod-
els with a single ViT and a single CNN adapter, evaluate
them across training domains, and pair each domain with
the adapter that shows better performance. This approach
ensures effective domain-adapter matching, enhancing our
method’s accuracy and efficiency. The adapter paired with
each domain for all benchmarks is listed in Table 8. The
GPT guided adapter selection is listed in Table 12. No-
tably, domains with limited color information, like the sketch
domain in the PACS dataset, tend to be paired with ViT
adapters, while more colorful domains such as photo and
art are matched with Conv adapters. In the TerraInc dataset,
where all domains comprise photos captured under vary-
ing brightness levels, our customization strategy pairs each
domain with a Conv adapter. We believe this decision is
primarily driven by the Conv adapter’s better ability to dif-
ferentiate brightness variations compared to the ViT adapter.

Further analysis of the ensemble effect of ViT and Conv

adapter Our empirical findings highlight the benefits of in-
tegrating diverse adapter types. Delving into each domain’s
performance, Table 9 reveals that ViT and Conv adapters

Dataset Domain
1

Domain
2

Domain
3

Domain
4

Domain
5

Domain
6

PACS photo art cartoon sketch - -
adapter Conv Conv ViT ViT - -
VLCS VOC LABEL CAL SUN - -
adapter Conv Conv Conv ViT - -
OfficeHome clip art real product - -
adapter ViT ViT ViT ViT - -
Terra L38 L43 L46 L100 - -
adapter Conv Conv Conv Conv - -
DomainNet clip Info paint quick real sketch
adapter ViT Conv Conv ViT Conv ViT

Table 8. Domain adapter customization for five benchmarks. To
customize the right ViT and Conv adapters for each domain, we
train separate models with a single ViT and a single CNN adapter,
evaluate them across training domains, and pair each domain with
the adapter that shows better performance.

excel in distinct domains-Conv adapters in color-rich ones
like photo and art, and ViT adapters in less colorful domains
such as sketch. By synergistically combining these adapters,
our customized strategy demonstrates better or comparable
performance across all domains. This aligns with our hy-
pothesis that a mix of Conv and ViT adapters leverages the
strengths of both, validating our method’s effectiveness.

Adapter Type photo art cartoon sketch Ave

ViT adapter 99.1 91.5 82.6 80.9 88.5
Conv adapter 99.3 92.8 82.8 79.7 88.7
Customized adapter 99.3 93.5 83.2 81.5 89.4

Table 9. Further analysis of the ensemble impact of ViT and Conv
adapter on each domain in PACS. For consistency in comparison,
all the conducted experiments here employ three adapters alongside
router losses.

5. Conclusion

In this paper, we introduced a Customized Domain Adapter
network architecture framework for domain generalization.
Our approach, leveraging the distinct strengths of ViT and
CNN architectures, effectively addresses varied distribution
shifts inherent in different domains. By employing a sim-
ple method for selecting domain-specific adapter architec-
tures, our model demonstrated enhanced generalization ca-
pabilities across standard datasets. Our experimental results
underscored the superiority of this approach over existing
methods.

Limitations Our method for selecting domain adapters,
while effective, may not generalize to all scenarios. How-
ever, we show that GPT performs well in domain adapter
assignment, reducing the reliance on domain IDs. Moreover,
the complexity of the model increases with the number of
domains, potentially leading to scalability issues for datasets
with a large number of diverse domains. Future work could
explore more adaptive and scalable approaches to domain
representation even without domain ID information.

941



Acknowledgments. This work was supported in part by
NSF IIS2404180, Microsoft Accelerate Foundation Models
Research Program, and Institute of Information & communi-
cations Technology Planning & Evaluation (IITP) grants
funded by the Korea government (MSIT) (No. 2022-0-
00871, Development of AI Autonomy and Knowledge En-
hancement for AI Agent Collaboration) and (No. RS-2022-
00187238, Development of Large Korean Language Model
Technology for Efficient Pre-training).

References

[1] Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo. Ad-
versarial invariant feature learning with accuracy constraint
for domain generalization. arXiv preprint arXiv:1904.12543,
2019.

[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint

arXiv:1907.02893, 2019.
[3] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition

in terra incognita. In ECCV, 2018.
[4] Manh-Ha Bui et al. Exploiting domain-specific features to

enhance domain generalization. NeurIPS, 2021.
[5] Fabio M Carlucci, Paolo Russo, Tatiana Tommasi, and Bar-

bara Caputo. Agnostic domain generalization. arXiv preprint

arXiv:1808.01102, 2018.
[6] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho,

Seunghyun Park, Yunsung Lee, and Sungrae Park. Swad:
Domain generalization by seeking flat minima. NeurIPS,
2021.

[7] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk
Chun. Domain generalization by mutual-information regular-
ization with pre-trained models. In ECCV, 2022.

[8] Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang,
and Suha Kwak. Promptstyler: Prompt-driven style genera-
tion for source-free domain generalization. In Proceedings of

the IEEE/CVF International Conference on Computer Vision,
pages 15702–15712, 2023.

[9] Yu Ding, Lei Wang, Bin Liang, Shuming Liang, Yang
Wang, and Fang Chen. Domain generalization by learn-
ing and removing domain-specific features. arXiv preprint

arXiv:2212.07101, 2022.
[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020.
[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal

Germain, Hugo Larochelle, François Laviolette, Mario Marc-
hand, and Victor Lempitsky. Domain-adversarial training of
neural networks. The journal of machine learning research,
17(1):2096–2030, 2016.

[12] Songwei Ge, Haohan Wang, Amir Alavi, Eric Xing, and Ziv
Bar-Joseph. Supervised adversarial alignment of single-cell
rna-seq data. Journal of Computational Biology, 2021.

[13] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. Dlow:
Domain flow for adaptation and generalization. In CVPR,
2019.

[14] Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization. arXiv preprint arXiv:2007.01434,
2020.

[15] Jiang Guo, Darsh J Shah, and Regina Barzilay. Multi-source
domain adaptation with mixture of experts. arXiv preprint

arXiv:1809.02256, 2018.
[16] Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster,

Michael R Zhang, and Jimmy Ba. Learning domain invari-
ant representations in goal-conditioned block mdps. arXiv

preprint arXiv:2110.14248, 2021.
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.
[18] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna

Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine

Learning, pages 2790–2799. PMLR, 2019.
[19] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,

Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint

arXiv:2106.09685, 2021.
[20] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.

Fsdr: Frequency space domain randomization for domain
generalization. In ICCV, 2021.

[21] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang.
Self-challenging improves cross-domain generalization. In
Computer Vision–ECCV 2020: 16th European Conference,

Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16,
pages 124–140. Springer, 2020.

[22] Zeyi Huang, Haohan Wang, Dong Huang, Yong Jae Lee, and
Eric P Xing. The two dimensions of worst-case training and
their integrated effect for out-of-domain generalization. In
CVPR, 2022.

[23] Zeyi Huang, Andy Zhou, Zijian Ling, Mu Cai, Haohan Wang,
and Yong Jae Lee. A sentence speaks a thousand images:
Domain generalization through distilling clip with language
guidance. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 11685–11695, 2023.
[24] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,

Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In Computer Vision–ECCV 2022: 17th

European Conference, Tel Aviv, Israel, October 23–27, 2022,

Proceedings, Part XXXIII, pages 709–727. Springer, 2022.
[25] Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim,

and Jaekoo Lee. Selfreg: Self-supervised contrastive regu-
larization for domain generalization. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pages 9619–9628, 2021.

[26] Kyungmoon Lee, Sungyeon Kim, and Suha Kwak. Cross-
domain ensemble distillation for domain generalization. In
ECCV, 2022.

942



[27] Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren,
Tong Che, Jun Zhang, and Ziwei Liu. Sparse mixture-of-
experts are domain generalizable learners. arXiv preprint

arXiv:2206.04046, 2022.
[28] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M

Hospedales. Deeper, broader and artier domain generalization.
In ICCV, 2017.

[29] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales.
Learning to generalize: Meta-learning for domain general-
ization. In Proceedings of the AAAI conference on artificial

intelligence, 2018.
[30] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot.

Domain generalization with adversarial feature learning. In
CVPR, 2018.

[31] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang
Liu, Kun Zhang, and Dacheng Tao. Deep domain generaliza-
tion via conditional invariant adversarial networks. In ECCV,
2018.

[32] Ziyue Li, Kan Ren, Xinyang Jiang, Bo Li, Haipeng Zhang,
and Dongsheng Li. Domain generalization using pretrained
models without fine-tuning. arXiv preprint arXiv:2203.04600,
2022.

[33] Ziyue Li, Kan Ren, Xinyang Jiang, Yifei Shen, Haipeng
Zhang, and Dongsheng Li. Simple: Specialized model-
sample matching for domain generalization. In The Eleventh

International Conference on Learning Representations, 2023.
[34] Haoyang Liu, Maheep Chaudhary, and Haohan Wang. To-

wards trustworthy and aligned machine learning: A data-
centric survey with causality perspectives. arXiv preprint

arXiv:2307.16851, 2023.
[35] Xiaofeng Mao, Yufeng Chen, Xiaojun Jia, Rong Zhang, Hui

Xue, and Zhao Li. Context-aware robust fine-tuning. In-

ternational Journal of Computer Vision, 132(5):1685–1700,
2024.

[36] Rang Meng, Xianfeng Li, Weijie Chen, Shicai Yang, Jie Song,
Xinchao Wang, Lei Zhang, Mingli Song, Di Xie, and Shiliang
Pu. Attention diversification for domain generalization. In
ECCV, 2022.

[37] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gian-
franco Doretto. Unified deep supervised domain adaptation
and generalization. In ICCV, 2017.

[38] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf.
Domain generalization via invariant feature representation. In
ICML, 2013.

[39] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon,
and Donggeun Yoo. Reducing domain gap by reducing style
bias. In CVPR, 2021.

[40] Muhammad Muzammal Naseer, Kanchana Ranasinghe,
Salman H Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Intriguing properties of vision transform-
ers. Advances in Neural Information Processing Systems, 34:
23296–23308, 2021.

[41] A Tuan Nguyen, Toan Tran, Yarin Gal, and Atılım Güneş Bay-
din. Domain invariant representation learning with domain
density transformations. arXiv preprint arXiv:2102.05082,
2021.

[42] Namuk Park and Songkuk Kim. How do vision transformers
work? arXiv preprint arXiv:2202.06709, 2022.

[43] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-

national conference on computer vision, pages 1406–1415,
2019.

[44] Mohammad Mahfujur Rahman, Clinton Fookes, and Sridha
Sridharan. Discriminative domain-invariant adversarial
network for deep domain generalization. arXiv preprint

arXiv:2108.08995, 2021.
[45] Alexandre Rame, Corentin Dancette, and Matthieu Cord.

Fishr: Invariant gradient variances for out-of-distribution gen-
eralization. In International Conference on Machine Learn-

ing, pages 18347–18377. PMLR, 2022.
[46] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim

Neumann, Rodolphe Jenatton, André Susano Pinto, Daniel
Keysers, and Neil Houlsby. Scaling vision with sparse mix-
ture of experts. Advances in Neural Information Processing

Systems, 34:8583–8595, 2021.
[47] Mattia Segu, Alessio Tonioni, and Federico Tombari. Batch

normalization embeddings for deep domain generalization.
Pattern Recognition, 135:109115, 2023.

[48] Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj
Laleh, Mojtaba Faramarzi, Kartik Ahuja, and Irina Rish. Sand-
mask: An enhanced gradient masking strategy for the discov-
ery of invariances in domain generalization. arXiv preprint

arXiv:2106.02266, 2021.
[49] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha

Chaudhuri, Preethi Jyothi, and Sunita Sarawagi. Generalizing
across domains via cross-gradient training. arXiv preprint

arXiv:1804.10745, 2018.
[50] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy

Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outra-
geously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[51] Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni
Hannun, Nicolas Usunier, and Gabriel Synnaeve. Gradi-
ent matching for domain generalization. arXiv preprint

arXiv:2104.09937, 2021.
[52] Baochen Sun and Kate Saenko. Deep coral: Correlation

alignment for deep domain adaptation. In ECCV, 2016.
[53] Antonio Torralba and Alexei A Efros. Unbiased look at

dataset bias. In CVPR, 2011.
[54] Vladimir Vapnik. Principles of risk minimization for learning

theory. Advances in neural information processing systems,
4, 1991.

[55] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In CVPR, 2017.

[56] Haohan Wang, Aaksha Meghawat, Louis-Philippe Morency,
and Eric P Xing. Select-additive learning: Improving gener-
alization in multimodal sentiment analysis. 2017.

[57] Ruoyu Wang, Mingyang Yi, Zhitang Chen, and Shengyu
Zhu. Out-of-distribution generalization with causal invariant
transformations. In CVPR, 2022.

[58] Zhuo Wang, Zezheng Wang, Zitong Yu, Weihong Deng, Jia-
hong Li, Tingting Gao, and Zhongyuan Wang. Domain gen-
eralization via shuffled style assembly for face anti-spoofing.
In CVPR, 2022.

943



[59] Qiyu Wu, Chongyang Tao, Tao Shen, Can Xu, Xiubo Geng,
and Daxin Jiang. Pcl: Peer-contrastive learning with diverse
augmentations for unsupervised sentence embeddings. arXiv

preprint arXiv:2201.12093, 2022.
[60] Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Lili Ju, and Song

Wang. Siamdoge: Domain generalizable semantic segmenta-
tion using siamese network. In ECCV, 2022.

[61] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie
Wang, Qi Tian, and Wenjun Zhang. Adversarial domain
adaptation with domain mixup. In Proceedings of the AAAI

conference on artificial intelligence, pages 6502–6509, 2020.
[62] Xufeng Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi

Sun, Ran Chen, Ruiyu Li, and Bei Yu. Pcl: Proxy-based con-
trastive learning for domain generalization. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7097–7107, 2022.
[63] Nanyang Ye, Kaican Li, Lanqing Hong, Haoyue Bai, Yiting

Chen, Fengwei Zhou, and Zhenguo Li. Ood-bench: Bench-
marking and understanding out-of-distribution generalization
datasets and algorithms. arXiv preprint arXiv:2106.03721,
2021.

[64] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto
Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing Gong.
Domain randomization and pyramid consistency: Simulation-
to-real generalization without accessing target domain data.
In ICCV, 2019.

[65] Jian Zhang, Lei Qi, Yinghuan Shi, and Yang Gao. Mvdg: A
unified multi-view framework for domain generalization. In
ECCV, 2022.

[66] Xin Zhang, Shixiang Shane Gu, Yutaka Matsuo, and Yusuke
Iwasawa. Domain prompt learning for efficiently adapting
clip to unseen domains. arXiv e-prints, pages arXiv–2111,
2021.

[67] Xin Zhang, Shixiang Shane Gu, Yutaka Matsuo, and Yusuke
Iwasawa. Domain prompt learning for efficiently adapting
clip to unseen domains. Transactions of the Japanese Society

for Artificial Intelligence, 38(6):B–MC2_1, 2023.
[68] Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu,

and Dacheng Tao. Domain generalization via entropy regu-
larization. NeurIPS, 2020.

[69] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao
Xiang. Deep domain-adversarial image generation for domain
generalisation. In AAAI, 2020.

[70] Wei Zhu, Le Lu, Jing Xiao, Mei Han, Jiebo Luo, and Adam P
Harrison. Localized adversarial domain generalization. In
CVPR, 2022.

944


