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Abstract

Multimodal geo-localization methods can inherently over-
come the limitations of unimodal sensor systems by lever-
aging complementary information from different modali-
ties. However, existing retrieval-based methods rely on a
comprehensive multimodal database, which is often chal-
lenging to fulfill in practice. In this paper, we introduce a
more practical problem for localizing drone-view images by
collaborating multimodal data within a satellite-view refer-
ence map, which integrates multimodal information while
avoiding the need for an extensive multimodal database.
We present MMGEO that learns to push the composition
of multimodal representations to the target reference map
through a unified framework. By utilizing a comprehensive
multimodal query (image, point cloud/depth/text), we can
achieve more robust and accurate geo-localization, espe-
cially in unknown and complex environments. Additionally,
we extend two visual geo-localization datasets GTA-UAV
and UAV-VisLoc to multi-modality, establishing the first
UAV geo-localization datasets that combine image, point
cloud, depth and text data. Experiments demonstrate the
effectiveness of MMGEO for UAV multimodal composi-
tional geo-localization, as well as the generalization capa-
bilities to real-world scenarios. The code and dataset are
at https://github.com/Yux1angJi/MMGeo.

1. Introduction

Vision-based geo-localization technology enables UAVs
with autonomous localization capabilities in GNSS-denied
environments. Existing global localization methods rely on
cross-view visual place recognition (VPR) [6, 9, 16, 20, 38,
43, 49]. Given an aerial image from drone-view, the task is
to retrieve well-matched images from a pre-processed geo-
tagged cross-view database (e.g., satellite-view) to estimate
the approximate location, facilitating more precise subse-
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Figure 1. The overview of our proposed MMGEO.

quent localization. Some studies on visual representations
achieve significant results by using self-supervised [3] or
contrastive learning [10, 20, 51] on paired samples to push
paired image representations closer, thereby enabling re-
trieval. However, such vision-based single-sensor systems
struggle in scenarios where a single modality alone is diffi-
cult to recognize.

Recently, multimodal research demonstrates more pre-
cise retrieval capabilities in the field of information re-
trieval by leveraging the complementary strengths of dif-
ferent modalities [1, 4, 14, 25, 37, 48, 54]. These works
achieve a more comprehensive understanding of data by
modeling multiple modalities. In such a joint modality rep-
resentation space, some matching samples are more eas-
ily pushed together as Fig. 2. Despite these advantages,
applying multimodal approaches to UAV geo-localization
still presents unique challenges. Existing multimodal place
recognition paradigm [13, 22, 33, 35, 42, 45] typically ne-
cessitate that the query and database share the same modal-
ity (e.g., Image+Point-cloud → Image+Point-cloud), which
means a comprehensive multimodal retrieval database is
needed. Another category of methods [8, 46, 47] is based
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Figure 2. The advantage of multimodal compositional representa-
tion space over unimodal representation.

on cross-modal approaches (e.g., Text → Image), but such
methods are not well-suited for handling dense sampling,
fine-grained localization tasks with low distinguishability.

In this paper, we consider a multimodal geo-localization
task of localizing a drone-view compositional query
(Image, Point-cloud/Depth/Text) within a satellite-view ref-
erence map database (Image) as shown in Fig. 1. We
use multimodal information as auxiliary data for the query
while retaining the image retrieval database in VPR, thus
incorporating multimodal information without requiring
a comprehensive multimodal database. Compared to
multimodal-to-multimodal retrieval, this compositional re-
trieval task is more application-friendly.

From this setting, we present MMGEO, which uses a
unified architecture to learn a joint representation space
across three types of multimodal retrieval. According to dif-
ferent modalities, we adopt different pretrained models to
extract meaningful features for composition, allowing our
method to avoid the need for large-scale modality alignment
training. We use an adapter-based fine-tuning approach to
preserve the strong pretrained representation capabilities of
different modalities while learning retrieval-relevant infor-
mation. To compensate for the absence of the retrieval tar-
get (satellite-view) modality, we employ a special learn-
able token [SUB] to enable bi-directional symmetric learn-
ing, facilitating the alignment of both the query and tar-
get into the joint modality representation space. By train-
ing on three types of multimodal retrieval targets (I+P→I,
I+D→I, I+T→I), MMGEO enables learning and retrieval in
the multimodal joint compositional representation space, as
shown in the Fig. 2. Through this compositional retrieval,
we achieve more precise multimodal geo-localization for
UAVs with a limited amount of multimodal data (compared
to large-scale multimodal alignment training).

To validate our proposed method and address the lack of
datasets for multimodal UAV geo-localization, we extend
two visual UAV geo-localization datasets, GTA-UAV [20]
and UAV-VisLoc [44] into multimodal datasets (GTA-UAV-
MM and UAV-VisLoc-MM) by equipping point cloud, depth
map, and text description for each drone-view image. We

evaluate the performance of the state-of-the-art (SoTA) uni-
modal image-to-image method and MMGEO on these two
datasets. The experimental results demonstrate that mul-
timodal compositional retrieval improves localization met-
rics across the board, while also showing better robustness
in scenarios with data degradation.

2. Related Work

2.1. Visual Geo-Localization
Visual geo-localization utilizes cross-view query and refer-
ence image pairs to recognize the geo-information from a
global database [29, 41]. Such a global localization task
could be referred as a special case of visual place recogni-
tion [2]. Through metric learning between positive match-
ing images, the deep architecture could learn to represent an
entire image into a compact single descriptor. Recent visual
place recognition research leverages the representational
power of vision foundation models (e.g., DINOv2 [34]) to
obtain generalized, high-quality image descriptors through
lightweight fine-tuning methods [19, 21, 31].

In the context of UAV geo-localization, the satellite-
view is commonly used as the reference imagery due
to its extensive coverage and ease of access [3, 5, 15,
16, 50]. DenseUAV [9] utilizes a siamese vision trans-
former (ViT) [11] to learn shared representations between
drone-view and satellite-view images for low-altitude UAV
positioning. Sample4Geo [10] adopts the recent pre-
training approach used in vision-language work Contrastive
Language-Image Pre-Training (CLIP) [36], applying sym-
metric contrastive learning to cross-view data. Further,
Game4Loc [20] proposes the weighted-InfoNCE to address
the more practical partial matching drone-satellite image
pairs. These purely vision-based approaches exhibit poor
stability when imaging quality is degraded, and we provide
examples of this in the experimental section.

2.2. Multimodal Geo-Localization
Including multimodal information in place recognition is
considered an effective way to overcome the weakness
of individual sensors [53]. CrossLoc [45] includes RGB,
depth, semantic information for cross-modal visual repre-
sentation localization on synthetic data. Wang et al. [42],
LCPR [53] and AdaFusion [23] combine multimodal (im-
age, depth, LiDAR) features to generate a multi-modal
descriptor of the environment for place recognition. Al-
though these methods achieve better performance compared
to unimodal approaches, their reliance on large-scale mul-
timodal database makes them less suitable for UAV geo-
localization scenarios, which require a broader retrieval
range. On the other hand, some studies explore cross-modal
retrieval for localization or navigation tasks. LIP-Loc [39]
applies the CLIP paradigm for LiDAR-image pretraining.
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DGLSNet [27] directly matches the LiDAR point cloud
and satellite images through coarse and fine levels training.
GeoText-1652 [8] and CVG-Text [47] attempt to perform
image retrieval for localization by directly using textual de-
scriptions. However, due to the large modality gap, these
cross-modal retrieval methods struggle to distinguish highly
similar regions, making them unsuitable for fine-grained lo-
calization.

2.3. Multimodal Composite Retrieval
Multimodal composite retrieval utilizes the complementary
strengths of various data types to enhance retrieval perfor-
mance [28]. Some studies explore retrieving the desired tar-
get image using a reference image and customized modifier
text [7, 24, 30]. The primary approach involves using an
image-text compositor to combine the two modalities and
leveraging metric learning to learn paired representation re-
lationships. Specifically, CASE [26] introduces a learnable
special token [REV] to involve Reverse-Query training for
augmentation. LAVIMO [48] proposes a three-modality
integrating framework to enhance the alignment between
modalities. It is worth mentioning that our task is struc-
turally similar to multimodal composite retrieval, while the
additional multimodal information complements the query
(drone-view) rather than directly pointing to the retrieval
target (satellite-view).

3. Problem and Dataset
3.1. Problem Definition
Let Qimage

d = {qimage
1 , qimage

2 , ..., qimage
nd } denote the set of

Image query from drone-view, and Qm
d = {qm1 , qm2 , ..., qmnd

}
denote the set of auxiliary query from drone-view in modal-
ity m ∈ {Point-cloud,Depth,Text}, where each of them
corresponds one-to-one and composed into a complete mul-
timodal query. Let Rimage

s = {rimage
1 , rimage

2 , ..., rimage
ns } de-

note the set of target reference Image tiles from satellite-
view map covering all areas visible from the drone-view, as
well as some unknown regions. The drone-view query and
satellite-view reference are paired based on the Intersection
over Union (IoU) of their covered regions across the two
viewpoints, where the reference with the IoU greater than
0.39 is considered a positive sample for retrieval.
Definition. Given a drone-view multimodal query pair
(Qimage

d ,Qm
d ) and a reference database Rimage

s , the goal is
to retrieve the satellite-view image r ∈ Rimage

s that best
matches the query.
Approach. Let κ(., .) denote the similarity kernel, which
we implement as a dot product between inputs. Our tar-
get is to learn a compositional representations between
the multimodal query and unimodal reference, denoted by
g(qimage, qm; Θ) and g(rimage; Θ), by maximizing

max
Θ

κ((g(qimage, qm; Θ), g(rimage; Θ))), (1)

Dataset Image Depth Text Point Cloud

University [51] ✓
DenseUAV [9] ✓
VPair [38] ✓ ✓
GeoText-1652 [8] ✓ ✓
CVG-Text [47] ✓ ✓

Ours ✓ ✓ ✓ ✓

Table 1. Comparison of the proposed dataset with existing UAV
geo-localization datasets.

where Θ denotes all the model parameters.

3.2. Dataset Construction

We extend two visual UAV geo-localization datasets GTA-
UAV [20] and UAV-VisLoc [44] into multimodality by
equipping each drone-view image with Point cloud, Depth
map, and Text description. The processed datasets en-
compass diverse scenes and flight altitudes, making them
highly valuable for evaluation. Compared to existing visual
and multimodal UAV geo-localization datasets as shown in
Tab. 1, our proposed datasets extend to more modalities.
This allows us to explore the impact of different modalities
on geo-localization tasks more comprehensively and design
various localization task scenarios.
Point cloud. For GTA-UAV, we utilize the DeepGTA-
PreSIL [17] plugin to simultaneously capture camera im-
ages and point cloud while simulating UAV flights in the
game environment. By controlling the Field of View (FoV)
of the simulated image and point cloud, we could obtain
paired RGB images and point clouds Qpc

d = {qpc | qpc ∈
Rn×3} with matching FoVs. The per-pixel ground resolu-
tion of RGB images ranges from 0.08m to 0.23m, while
the simulated point clouds are set with an angular resolu-
tion of 0.09◦ and 0.42◦ for horizontal and vertical direc-
tions respectively. For UAV-VisLoc, we leverage the high
overlapping characteristics of the data to perform 3D re-
construction of two regions through Structure from Motion
(SfM) and Surface-from-Volumetric Mapping (SVM). We
compute the corresponding viewing frustums based on the
reconstructed camera poses and their respective FoV to ex-
tract the relevant point clouds Qpc

d from the entire 3D model.
Depth map. We project the obtained point cloud Qpc

d
into a top-down sparse depth map and apply a K × K
weighted convolution kernel to each pixel for neighbor-
hood summation, resulting in a dense relative depth map
Qdepth

d = {qdepth | qdepth ∈ [0, 1]w×h}.
Text description. For each drone-view image, we ask the
visual language model (GPT-4o [18]) with unified prompts
to obtain both detailed and holistic descriptions of the image
Qtext

d = {This image..., ...}.
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Figure 3. The overview of our proposed MMGEO pipeline. The image encoder parameters are fully trainable, while the other multimodal
encoder parameters are frozen except for the inserted adapters and projection layer. By employing contrastive learning between drone-view
queries and satellite-view references, MMGEO establishes correspondences in the multimodal compositional representation space.

4. Method
In this section, we present MMGEO, a multimodal compo-
sitional approach designed to composite information from
different modalities for more precise retrieval and geo-
localization. As shown in Fig. 3, MMGEO consists of three
parts: (a) multimodal encoders, (b) multimodal compositor,
and (c) modality substitution tokens.

4.1. Multimodal Composition
Multimodal encoders. Since image is the shared modality
for both queries and references in our proposed multimodal
compositional geo-localization task, we adopt vision as the
primary modality of the model. We employ the ViT [11]
initialized from Game4Loc [20] as the visual encoder. Fol-
lowing Uni3D [52], we replace the patch embedding layer
in ViT with a specific point tokenizer and use it as the point
cloud encoder, with the parameters also initialized from it.
The depth map is replicated three times along the channel
dimension to align with the RGB image. The text descrip-
tion is padded or truncated to a fixed length (e.g., 77) before
being fed into the text encoder. The text encoder is initial-
ized from OpenAI CLIP [36].
Adapter fine-tuning. Compared to general modality align-
ment training [14, 36, 52, 54], the multimodal data used for
UAV geo-localization training is several orders of magni-
tude smaller. Therefore, to preserve the pre-training capa-
bility of each modality encoder and enable efficient learn-
ing, we apply adapter-based fine-tuning to all modality en-
coders except the image encoder. Following SelaVPR [32],
we add two adapters in each transformer block of multi-
modal encoders as Fig. 4. Each adapter is composed of two
MLPs, where the input is first down-projected to a lower-

dimensional space and then up-projected. The two adapters
are inserted into the transformer block through series and
parallel configurations respectively. The forward process of
the modified transformer block could be formulated as:

x′
l = SerialAdapter(Attn(Norm(xl−1))) + xl−1 (2)

xl = MLP(Norm(x′
l))+s·ParallelAdapter(Norm(x′

l))+x′
l,

(3)
where s is a scaling factor. The [CLS] tokens from these
multimodal encoders are projected to the final multimodal
tokens by an MLP. All parameters except for the adapters
and the final projection layer are frozen during the whole
training.
Multimodal compositor. Finally, these multimodal tokens
are combined through a compositor and projected to a mul-
timodal compositional representation space. To achieve
unified compatibility across modalities, we directly adopt
a cross-attention block as the compositor. By given the im-
age tokens ximage and the tokens from other modalities xm,
we use the image token as the Query and the other modality
tokens as the Key and Value to obtain the final compositional
descriptors D = Pool(Attn(Q,K, V )), with

Q = W
(i)
Q · ximage,K = W

(i)
K · xm, V = W

(i)
V · xm. (4)

4.2. Modality Substitution Alignment
The common training approach for retrieval and geo-
localization tasks uses a contrastive loss object with paired
samples as positive [20, 24, 26, 51]. This objective is typ-
ically symmetric in unimodal tasks (e.g., I ↔ I) and cross-
modal tasks (e.g., I ↔ T). However, in our proposed mul-
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Figure 4. The architecture of transformer block with adapters.

timodal compositional geo-localization task, the satellite-
view image target reference is modality-missing compared
to the multimodal query (e.g., I+P → I). This asymmet-
ric relationship hinders the alignment of the multimodal
joint representation space and loses the natural regulariza-
tion provided by bi-directional retrieval. To maintain this
bi-directional symmetry, we propose the additional learn-
able tokens [SUB] to substitute the missing modalities from
satellite-view. For each modality m ∈ M = {P ,D, T , ...},
we have a corresponding fixed-length token [SUB]. Then
we could have the descriptors from satellite-view as

Dsatellite = Pool(Attn(ximage, [SUB], [SUB])). (5)

By employing modality substitution token, we could
align the modalities from two views and maintain the sym-
metric learning relationship as I+M ↔ I+[SUB]. This fa-
cilitates the learning of data between two views in the mul-
timodal joint representation space.

4.3. Training Target
Through multimodal compositor and modality substitu-
tion alignment, we could place the drone-view query and
satellite-view reference in a shared multimodal composi-
tional space for learning. We extend the current SoTA
method weighted-InfoNCE [20] to the multimodality as

L
(
{qi, ri, α+

i }
N ; g(., .; Θ)

)
=

− 1

2N

N∑
i

(
α+
i

(
log

(
exp(sii)∑N
j exp(sij)

)
+ log

(
exp(sii)∑N
j exp(sji)

))
︸ ︷︷ ︸

InfoNCE

+ (1− α+
i )

1

N

N∑
j

(
log

(
exp(sij)∑N
k exp(sik)

)
+ log

(
exp(sji)∑N
k exp(ski)

))
︸ ︷︷ ︸

uniform-InfoNCE

)

(6)
where the similarity score sij is measured by dot product
κ(., .) of two multimodal descriptors

sij = κ(g(qimage
i , qmi ), g(rimage

j , [SUB])) (7)

and the weighted parameter α+
i is calculated by

α+
i = σ(k, IOUi) =

1

1 + exp(−k × IOUi)
(8)

5. Experiment
5.1. Experiment Setup
Implementation details. In our experiments, the ViT-Base
with Rotary Position Embedding (RoPE) [40] is adopted as
the image encoder, where the weights are initialized from
Game4Loc [20]. We use the Uni3D [52] pretrained model
EVA02-Base [12] with a specialized point tokenizer as the
point cloud encoder. The depth encoder is treated as a stan-
dard image encoder ViT-Base pretrained on ImageNet. For
the text encoder, we employ the commonly used OpenAI
CLIP-ViT-Base [36]. Except for the image encoder and
adapters, the parameters of the other modality encoders are
frozen during the whole training process. Both the image
and depth inputs are resized to 384×384 before feeding into
the model. For the point cloud input, we sample 4096 points
without color. For the text input, we use fixed-length tok-
enization of 77 to pad and truncate both short and long texts.
We set the length of the learnable token [SUB] to 500 if
not specified. Following Game4Loc [20], we set the hyper-
parameter k = 5 for the multimodal weighted-InfoNCE.
We use the Adam optimizer with a initial learning rate of
0.0001 and a cosine learning rate scheduler for all trainable
parameters. The training for each dataset setting takes 10
epochs with the batch size of 64.
Evaluation metrics. For each drone-view query (I,M),
the top-K satellite-view results {I}K with the highest sim-
ilarity would be considered as the retrieval results. Fol-
lowing the previous works [9, 20, 51], we evaluate the
geo-localization task by Recall@K (R@K), average preci-
sion (AP), spatial distance metric SDM@K, and distance
Dis@1. For each dataset, we consider two settings. (i)
Same-area setting: both the training and the testing data
pairs are sampled from the same area, reflecting applica-
tions where the flight area data is available. (ii) Cross-area
setting: the training and testing data are separated by dif-
ferent areas, reflecting the model’s generalization ability in
unknown environments.

5.2. Main Results
GTA-UAV-MM. In Tab. 2, we show the performance of the
proposed MMGEO and other SoTA methods on the con-
structed dataset GTA-UAV-MM. The three SoTA methods
for general visual place recognition (VPR) tasks that rely
on DINOv2 [34] pretraining AnyLoc [21], SelaVPR [32],
and SALAD [19] exhibit significant performance variance
in GTA-UAV-MM. Among them, SALAD [19] performs
better after training. Game4Loc [20] yields the best per-
formance in vision-based retrieval, outperforming other
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Query Drone-view Image + Modality MMGeo (Ours) Game4Loc AnyLoc SelaVPR SALAD TransGeo

This image is a top-down aerial
view of a city street scene. The 
street is divided into two lanes, 
with a bus stop on the left side 
and a basketball court on the right 
side. The basketball court is 
surrounded by green grass and has a 
blue court surface. The buildings
on either side of the street have 
multiple stories and are painted in 
various colors. There are palm 
trees and other greenery along …
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Figure 5. Qualitative comparisons between MMGEO (with different modality input) and other vision-based SoTA methods on GTA-UAV-
MM cross-area setting. (positive matched, semi-positive matched, wrong matched)

Table 2. State-of-the-art comparisons on the constructed GTA-UAV-MM test set. † denotes which models using InfoNCE training. ∗
denotes which models are tested in zero-shot setting.

Method Modality Cross-Area Same-Area

Drone/Sate. R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓ R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
AnyLoc∗ [21] I→I 22.63% 45.15% 30.79% 46.86% 1233.76m 21.40% 44.16% 29.11% 45.91% 1341.15m
TransGeo† [55] I→I 36.71% 59.92% 46.53% 71.13% 532.65m 65.34% 90.48% 75.76% 87.25% 203.28m
Sample4Geo† [10] I→I 45.72% 69.68% 54.48% 73.84% 457.89m 69.80% 94.56% 78.73% 89.19% 161.20m
SelaVPR† [32] I→I 18.26% 40.41% 29.80% 59.78% 816.93m 55.13% 86.62% 63.24% 87.51% 267.07m
SALAD† [19] I→I 29.12% 58.02% 41.86% 66.92% 606.15m 59.63% 88.98% 65.70% 87.76% 244.17m
Game4Loc [20] I→I 52.03% 77.04% 64.39% 77.20% 365.65m 76.22% 97.59% 84.35% 90.73% 106.40m

I+P→I 54.75% 81.32% 66.08% 78.75% 317.55m 77.40% 98.12% 86.53% 93.28% 69.14m
I+D→I 53.95% 81.92% 65.83% 79.39% 297.45m 77.70% 97.74% 86.37% 93.24% 77.78mOurs

(multimodal) I+T→I 55.34% 80.78% 66.11% 78.66% 311.12m 77.93% 97.98% 86.05% 92.83% 72.28m

(b) Attention on Point cloud (c) Attention on Text(a) Query Image patches (c) Attention on Depth

Figure 6. Visualization of the attention values on each modality.

methods by a noticeable margin. We also attempt cross-
modal retrieval (e.g., P→I, T→I), but the results are un-
satisfactory. This is due to the significant modality gap
on one hand and the limited amount of data available for
UAV geo-localization on the other. Under our multimodal
compositional retrieval-based approach, MMGEO demon-
strates overall improvements compared to unimodal meth-
ods. Specifically, the I+T→I method shows the greatest im-
provements in R@1, achieving an 3.31% increase. Com-
pared to the image-based retrieval method Game4Loc [20],
MMGEO achieves more precise matching, as shown in
Fig. 5, where all semi-positive matches are refined into pos-

itive matches.
UAV-VisLoc-MM. To evaluate MMGEO’s performance on
a limited amount of real-world data, we conducted exper-
iments on the extended version of the real UAV dataset,
UAV-VisLoc-MM. The results in Tab. 3 show that the
zero-shot method AnyLoc [21] performs well on a limited
amount of data, even surpassing many training-based meth-
ods. MMGEO still achieves a certain improvement com-
pared to image-based methods. As shown in Fig. 7, lever-
aging the more fine-grained expression of the multimodal
compositional query, MMGEO can retrieve matching pairs
that are difficult to distinguish even by the human eye.
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Query Drone-view Image + Modality MMGeo (Ours) Game4Loc AnyLoc SelaVPR SALAD TransGeo
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The image depicts an aerial view of 
a large industrial complex. The 
complex consists of multiple 
buildings and structures, likely 
part of a manufacturing or 
industrial facility. The buildings 
are constructed with metal 
frameworks and are surrounded by 
various industrial equipment and 
machinery. There are several cranes
and other construction equipment 
visible, indicating ongoing …

Figure 7. Qualitative comparisons between MMGEO (with different modality input) and other vision-based SoTA methods on UAV-
VisLoc-MM cross-area setting. (positive matched, semi-positive matched, wrong matched)

Table 3. State-of-the-art comparisons on the constructed UAV-VisLoc-MM test set. † denotes which models using InfoNCE training. ∗
denotes which models are tested in zero-shot setting.

Method Modality Cross-Area Same-Area

Drone/Sate. R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓ R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
AnyLoc∗ [21] I→I 33.68% 56.94% 45.51% 46.61% 1409.79m 25.36% 47.10% 36.67% 43.06% 1341.39m
TransGeo† [55] I→I 25.00% 42.36% 32.84% 41.17% 1816.26m 60.14% 94.20% 74.62% 78.46% 242.49m
Sample4Geo† [10] I→I 39.23% 60.24% 50.30% 54.31% 1267.87m 80.43% 97.83% 88.39% 86.40% 159.69m
SelaVPR† [32] I→I 3.82% 8.33% 6.71% 19.79% 3736.93m 10.14% 25.36% 19.03% 40.67% 1547.40m
SALAD† [19] I→I 19.79% 42.01% 30.47% 41.98% 1919.31m 56.52% 89.86% 71.52% 79.80% 198.53m
Game4Loc [20] I→I 47.56% 70.83% 56.99% 56.96% 1038.59m 89.86% 100.00% 94.47% 87.55% 143.56m

I+P→I 52.78% 77.08% 62.68% 59.71% 817.78m 94.20% 99.28% 96.54% 88.30% 113.09m
I+D→I 52.43% 72.92% 61.37% 58.29% 843.42m 91.30% 100.00% 95.23% 88.37% 114.35mOurs

(multimodal) I+T→I 53.47% 75.00% 62.54% 59.06% 821.33m 92.03% 100.00% 95.77% 88.86% 81.67m

5.3. Ablation Study
Free lunch from multimodal training. When we test
the model trained with multimodal data while only with
image input during testing, replacing the missing modal-
ities with [SUB] tokens, we observe an intriguing result.
As shown in Tab. 4, even without multimodal input, the
model trained with multimodalities still shows improved
performance compared to unimodal results. This indicates
that multimodal information helps the model build more ef-
fective descriptive capabilities in the multimodal composi-
tional representation space. Even when multimodal input is
absent, this enhanced descriptive ability remains due to the
presence of [SUB] tokens. This could inspire methods for
improving the performance of single-sensor systems using
multimodal data.
Abnormal scenario. Considering that our method is built
on multimodal inputs, a significant advantage is its robust-
ness to single-modality data. We simulate abnormal imag-
ing scenarios, including partial occlusion, pixelation, and
salt&pepper noise, which correspond to regions of miss-
ing data, low-quality images, and transmission corruption

Table 4. Ablation studies on the multimodal training. The experi-
ment is performed on GTA-UAV-MM cross-area setting.

Modality R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
I 52.03% 77.04% 64.39% 77.20% 365.65m

I + P 54.75% 81.32% 66.08% 78.75% 317.55m
I + P (train only) 53.27% 79.06% 65.48% 77.91% 341.96m

I + D 53.95% 81.92% 65.83% 79.39% 297.45m
I + D (train only) 52.44% 77.90% 64.71% 77.49% 360.93m

I + T 55.34% 80.78% 66.11% 78.66% 311.12m
I + T (train only) 53.11% 78.24% 65.03% 76.87% 369.08m

respectively. Specifically, we drop 70% of the image area
to simulate partial occlusion, shrink the image to 20% of
its original size and then enlarge it to simulate pixelation,
and add 2% of black-and-white noise to the image to simu-
late salt&pepper noise. As shown in Tab. 5, MMGEO with
image+text input retains better performance than the pure
vision-based method across different scenarios, indicating
improved robustness. This helps the UAV retain localiza-
tion capability even when the single sensor fails.
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Query Drone-view Image + Point Cloud Failure Case

(a) Invalid Information

The image depicts an aerial view of a 
coastal landscape. The foreground 
features a rugged, rocky terrain with 
sparse vegetation, including small 
trees and bushes. The middle ground 
shows a sandy beach with some rocks and 
small plants. In the background, there 
is a body of water, likely the sea, 
with a gentle slope leading to the 
beach. The overall scene suggests a 
natural, possibly coastline environment

Query Drone-view Image + Text Failure Case

(b) Misleading Information

Figure 8. Failure cases of MMGEO, mainly in two categories.

Table 5. Ablation studies on imaging abnormalities. The evalua-
tion is performed on GTA-UAV-MM cross-area setting.

Modality R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
Partial Occlusion

I 28.78% 60.91% 42.98% 69.54% 562.73m
I+T 41.03% 71.10% 53.97% 73.27% 441.57m

Pixelation

I 7.61% 20.43% 13.31% 33.76% 2244.89m
I+T 13.64% 33.24% 23.12% 42.84% 1530.16m

Salt & Pepper Noise

I 29.12% 55.96% 42.64% 61.71% 855.65m
I+T 33.30% 60.69% 46.00% 62.47% 804.24m

Table 6. Ablation studies on the learnable token. The experiment
is performed on GTA-UAV-MM cross-area setting.

Token Len. R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
Image+Point cloud

- 53.71% 79.96% 65.07% 76.27% 342.76m
50 54.33% 82.12% 66.37% 77.57% 355.06m
500 54.75% 81.32% 66.08% 78.75% 317.55m
1000 53.90% 80.43% 65.21% 77.62% 338.98m

Image+Depth

- 53.60% 79.09% 64.99% 78.48% 329.26m
50 53.02% 79.86% 64.93% 77.35% 346.17m
500 53.95% 81.92% 65.83% 79.39% 297.45m
1000 53.65% 80.44% 65.51% 78.74% 336.67m

Image+Text

- 52.88% 76.73% 64.63% 76.90% 366.62m
50 55.34% 80.78% 66.11% 78.66% 311.12m
500 54.39% 78.72% 65.90% 77.37% 345.38m
1000 53.02% 78.48% 64.91% 77.09% 352.91m

Learnable token. For the proposed learnable substitution
token [SUB], we test the impact of different token lengths
on MMGEO as shown in Tab. 6. We find that our method is
not sensitive to the token length, and different token lengths,
compared to not using the [SUB] token (as ‘-’ in the table),
most contribute positively to our multimodal compositional
learning task. Specifically, token lengths close to the cor-
responding modality encoding lengths yield better results.
For instance, the point cloud encoding length is 512 (close
to 500), the depth encoding length is 576 (close to 500), and

the text encoding length is 77 (close to 50). This suggests
that the [SUB] token learns the statistical characteristics of
these modality encodings.

5.4. Visualization
We visualize the cross-attention map corresponding to the
image query in the multimodal compositor, as shown in
Fig. 6. We could find that the compositor can identify cor-
responding attention parts in point clouds (the point patches
around the marked building), depth maps (the red regions)
and text (words of interest including aerial, rectangular
shape). This indicates that the model could successfully
establish the correct multimodal composition, which facili-
tates better learning in the multimodal space.

However, the value of multimodal data itself is not en-
tirely positive. As shown in the Fig. 8a, point clouds in
certain scenes fail to provide useful additional information
beyond vision. While in the case of Fig. 8b, the accom-
panying text may even introduce misleading cues such as
water, sea, which ultimately lead to inaccurate retrieval
and localization.

6. Conclusion and Limitation
In this paper, we set up a multimodal compositional UAV
geo-localization task, extending vision-based retrieval to a
multimodal retrieval paradigm. Our proposed MMGEO
achieves better results than vision-only methods by lever-
aging the multimodal representation space. This approach
demonstrates different advantages across various settings
(especially in imaging abnormalities and no free lunch set-
ting), opening a new avenue for future research.

However, due to the limited size of the available datasets,
the generalization of such multimodal methods has not yet
been thoroughly validated. The proposed method is still
fundamentally built upon vision-based retrieval, and its per-
formance remains dependent on the underlying image re-
trieval model. While the proposed method outperforms
purely visual baselines, it comes at the cost of introducing
modality-specific parameter sets, each comparable in size to
the visual model. From this perspective, the comparison is
not entirely fair. How to effectively leverage multimodal in-
formation in such compositional retrieval remains an open
and worthwhile research question.
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Leal-Taixé. Coming down to earth: Satellite-to-street
view synthesis for geo-localization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6488–6497, 2021. 2

[42] Zhuo Wang, Yunzhou Zhang, Xinge Zhao, Jian Ning, Dehao
Zou, and Meiqi Pei. Enhancing Visual Place Recognition
with Multi-modal Features and Time-constrained Graph At-
tention Aggregation. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pages 15914–15921,
2024. 1, 2

[43] Rouwan Wu, Xiaoya Cheng, Juelin Zhu, Yuxiang Liu, Mao-
jun Zhang, and Shen Yan. Uavd4l: A large-scale dataset for
uav 6-dof localization. In 2024 International Conference on
3D Vision (3DV), pages 1574–1583. IEEE, 2024. 1

[44] Wenjia Xu, Yaxuan Yao, Jiaqi Cao, Zhiwei Wei, Chunbo Liu,
Jiuniu Wang, and Mugen Peng. UAV-VisLoc: A Large-scale
Dataset for UAV Visual Localization, 2024. 2, 3

[45] Qi Yan, Jianhao Zheng, Simon Reding, Shanci Li, and Ior-
dan Doytchinov. CrossLoc: Scalable Aerial Localization As-
sisted by Multimodal Synthetic Data. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 17337–17347, New Orleans, LA, USA, 2022.
IEEE. 1, 2

[46] Yifan Yang, Siqin Wang, Daoyang Li, Yixian Zhang, Shuju
Sun, and Junzhou He. GeoLocator: A location-integrated
large multimodal model for inferring geo-privacy. Applied
Sciences, 14(16):7091, 2024. 1

[47] Junyan Ye, Honglin Lin, Leyan Ou, Dairong Chen, Zihao
Wang, Conghui He, and Weijia Li. Where am I? Cross-View
Geo-localization with Natural Language Descriptions, 2024.
1, 3

[48] Kangning Yin, Shihao Zou, Yuxuan Ge, and Zheng Tian. Tri-
modal motion retrieval by learning a joint embedding space.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1596–1605, 2024. 1,
3

[49] Peng Yin, Ivan Cisneros, Shiqi Zhao, Ji Zhang, Howie
Choset, and Sebastian Scherer. isimloc: Visual global local-
ization for previously unseen environments with simulated
images. IEEE Transactions on Robotics, 39(3):1893–1909,
2023. 1

[50] Wenda Zhao, Xiao Zhang, Haipeng Wang, and Huchuan Lu.
Hybrid gaussian deformation for efficient remote sensing ob-
ject detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2025. 2

[51] Zhedong Zheng, Yunchao Wei, and Yi Yang. University-
1652: A multi-view multi-source benchmark for drone-
based geo-localization. In Proceedings of the 28th ACM

25174



international conference on Multimedia, pages 1395–1403,
2020. 1, 3, 4, 5

[52] Junsheng Zhou, Jinsheng Wang, Baorui Ma, Yu-Shen Liu,
Tiejun Huang, and Xinlong Wang. Uni3D: Exploring Uni-
fied 3D Representation at Scale, 2023. 4, 5

[53] Zijie Zhou, Jingyi Xu, Guangming Xiong, and Junyi Ma.
LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fu-
sion Network for Place Recognition. IEEE Robotics and Au-
tomation Letters, 9(2):1342–1349, 2024. 2

[54] Bin Zhu, Bin Lin, Munan Ning, Yang Yan, and et. al Cui,
Jiaxi. LanguageBind: Extending Video-Language Pretrain-
ing to N-modality by Language-based Semantic Alignment,
2024. 1, 4

[55] Sijie Zhu, Mubarak Shah, and Chen Chen. Transgeo: Trans-
former is all you need for cross-view image geo-localization.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1162–1171, 2022. 6,
7

25175


	Introduction
	Related Work
	Visual Geo-Localization
	Multimodal Geo-Localization
	Multimodal Composite Retrieval

	Problem and Dataset
	Problem Definition
	Dataset Construction

	Method
	Multimodal Composition
	Modality Substitution Alignment
	Training Target

	Experiment
	Experiment Setup
	Main Results
	Ablation Study
	Visualization

	Conclusion and Limitation

