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Figure 1. We introduce referring to any person, a task that requires detecting all individuals in an image which match a given natural
language description, and a new model RexSeek designed for this task with strong perception and understanding capabilities that effectively
captures attributes, spatial relations, interactions, reasoning, celebrity recognition, etc.

Abstract

Humans are undoubtedly the most important participants
in computer vision, and the ability to detect any individ-
ual given a natural language description, a task we de-
fine as referring to any person, holds substantial practical
value. However, we find that existing models generally fail
to achieve real-world usability, and current benchmarks are
limited by their focus on one-to-one referring, which hin-
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ders progress in this area. In this work, we revisit this task
from three critical perspectives: task definition, dataset de-
sign, and model architecture. We first identify five aspects
of referable entities and three distinctive characteristics of
this task. Next, we introduce HumanRef, a novel dataset
designed to tackle these challenges and better reflect real-
world applications. From a model design perspective, we
integrate a multimodal large language model with an object
detection framework, constructing a robust referring model
named RexSeek. Experimental results reveal that state-
of-the-art models, which perform well on commonly used
benchmarks like RefCOCO/+/g, struggle with HumanRef
due to their inability to detect multiple individuals. In con-
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trast, RexSeek not only excels in human referring but also
generalizes effectively to common object referring, mak-
ing it broadly applicable across various perception tasks.
Code is available at https://github.com/IDEA—
Research/RexSeek.

1. Introduction

Humans are central to computer vision [4, 10-12, 16, 21,
27,28, 30, 45, 46, 63, 65, 84, 85], and the ability to identify
and detect specific individuals based on natural language
descriptions, a task we define as referring to any person, is
crucial for numerous applications, including human-robot
interaction, industrial automation, healthcare, etc.

However, we argue that progress in this area has been
hindered by unclear task definitions and a lack of high-
quality data. Our findings show that despite achieving state-
of-the-art performance on referring benchmarks RefCO-
CO/+/g [50, 75], most models remain impractical for real-
world applications, as illustrated in Figure 2. To address
this challenge, we revisit this task from three perspectives:
task definition, dataset construction, and model design.

We begin by formally defining the task of referring to any
person: given a natural language description and an input
image, the model needs to detect all individuals in the im-
age who match the description. To comprehensively capture
the scope of this task, we identify five key aspects that de-
fine how humans can be referred to: i) Attributes: Encom-
passing intrinsic characteristics such as gender, age, action,
clothing, etc. ii) Position: Describing spatial relationships
both among individuals and between individuals and their
surroundings. iii) Interaction: Accounting for human-to-
human, human-to-object, and human-to-environment inter-
actions. iv) Reasoning: Involving multi-step inference that
considers multiple objects to resolve complex expressions.
v) Celebrity Recognition: Identifying specific individuals,
whether by their real names or characters names.

Next, we identify three crucial characteristics that define
this task: i) Multi-Instance Referring: A referring expres-
sion can correspond to multiple individuals. While main-
stream referring datasets RefCOCO/+/g [50, 75] typically
assume that each expression refers to a single object, this
does not align with real-world scenarios. We find through
experiments that most models experience significant perfor-
mance degradation when tasked with identifying more than
one individual. ii) Multi-Instance Discrimination: The
image should contain multiple individuals in addition to the
target person. This setting ensures that the model fully com-
prehends the referring expression to identify the correct in-
dividual rather than simply detecting all people in the im-
age. iii) Rejection of Non-existence: If the referred person
is not present in the image, the model should refuse to gen-
erate a result rather than produce a hallucinated output.
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Figure 2. Visualization results of Qwen2.5-VL [3], InternVL-
2.5 [14], and DeepSeek-VL2 [70] on the human referring task.
Despite achieving strong results on referring benchmarks RefCO-
CO/+/g [50, 75], state-of-the-art models struggle when tasked with
identifying multiple individuals as they output an insufficient num-
ber of bounding boxes.

Based on the task definition, we manually constructed a
novel dataset for human referring, named HumanRef. Un-
like the traditional ReferltGame [29] annotation approach,
where one annotator describes an object and another finds
it based on the description, we adopt a different annotation
methodology. Our process begins with annotators listing the
key properties of individuals in an image according to the
predefined referable entities. Next, for each person, they
determine whether these properties apply and result in a
property dictionary. Finally, a large language model [71]
composes these properties into referring expressions. Hu-
manRef comprises 103,028 referring statements, with each
expression referring to an average of 2.2 instances. We
also split a benchmark from HumanRef with 6,000 referring
expressions spanning six subsets, ensuring comprehensive
coverage across all referable properties.

From the model design perspective, we argue that a ro-
bust referring model should possess two key characteristics:
i) Robust Perception Ability: The model should be capa-
ble of detecting all individuals in an image. ii) Strong Lan-
guage Comprehension: The model should effectively in-
terpret complex language descriptions of people. To address
these requirements, we introduce RexSeek, a detection-
oriented multimodal large language model specifically de-
signed for this task. Inspired by ChatRex [25], we formu-
late referring as a retrieval-based task. RexSeek integrates a
person detector [60] as its box input, ensuring strong per-
ception capabilities while incorporating Qwen2.5 [71] as
the LLM to enhance language comprehension. We adopt a
multi-stage training approach that progressively refines both
detection and comprehension skills, equipping RexSeek
with strong referring capabilities.

Experimental results indicate that most state-of-the-art
models [3, 9, 14, 25, 49, 60, 70, 74] exhibit performance
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degradation on the HumanRef benchmark, despite achiev-
ing strong results on RefCOCQO/+/g. The primary limitation
is that these models typically detect only a single instance,
as they are trained on datasets that assume one-to-one refer-
ring. In contrast, RexSeek, trained on HumanRef, exhibits
strong referring capabilities. Additionally, benefiting from
the multi-stage training approach, RexSeek also emerges
with the ability to refer to generalized objects, extending its
applicability beyond human-centric tasks. To summarize,
our contributions are threefold:

* We introduce referring to any person with a clear defini-
tion by identifying five aspects of referable entities and
three key characteristics that distinguish this task.

* We introduce HumanRef, a novel referring dataset, and
establish a challenging benchmark to drive progress in
human-centric referring expression research.

* We propose RexSeek, a detection-oriented multimodal
large language model trained through a multi-stage pro-
cess, demonstrating strong referring capabilities for both
humans and general objects.

2. Related Work

Referring Expression Comprehension Task. Referring
Expression Comprehension (REC) [29, 36, 48, 50, 56, 72,
75,76, 76, 81] involves interpreting a natural language ex-
pression to localize specific objects within an image. Un-
like open-vocabulary object detection [15, 26, 34, 42, 52,
60, 61, 69, 73, 78] or phrase grounding [18, 23, 31, 54, 68],
which identify objects based on brief category names or
short phrases, REC requires understanding complex, free-
form descriptions. This task necessitates not only recog-
nizing object attributes and relationships but also compre-
hending spatial configurations and interactions, making it
inherently more challenging. In this work, we systemati-
cally analyze the referable entities and the critical charac-
teristics that define this task.

REC Datasets and Benchmarks. The first large-
scale Referring Expression Comprehension (REC) dataset,
ReferltGame [29], was created through a two-player game
in which one annotator describes an object, and another
selects it. This was later followed by more sophisticated
datasets [7, 13, 17, 19, 54, 55], such as RefCOCO [75],
RefCOCO+ [75], and RefCOCOg [50], which leverage
MSCOCO [37] images to provide more complex referring
expressions. Beyond these general datasets, others address
specific challenges. CLEVR-Ref+ [40] focuses on geomet-
ric object referring. RefCrowd [57] targets person detec-
tion in crowded scenes. Ref-L4 [8] handles longer and
more detailed descriptions. GRES [77] introduces multi-
target referring expression segmentation. However, exist-
ing datasets typically assume a one-to-one correspondence
between a referring expression and a single instance, which
fails to reflect real-world scenarios. To address this gap, we

domain sub-domains examples
‘male, female, white man, the police officer,
person with a shocked expression, person wearing
a mask, person standing
the second person from left to right, person at
the right, person closest to the microphone,
person sitting in the chair
two people holding hands, people locked in
each other’s gaze, the person holding a gun,
person holding the certificate in hand
inner position reasoning, all the people o the right of the person closest
reasoning  outer position reasoning, 10 the glass, person wearing a lab coat but not putting
attribute i their hand on the board
Brad Pitt, Bruce Wayne, Cristiano Ronaldo,
Rihanna, Elon Musk, Albert Einstein, Donald Trump
a man in red hat, three women in a circle

gender, age, race, profession, posture,

attribute A N .
appearance, clothing and accessories, action

inner position (human to human),

osition - .
P outer position (human to environment)

inner interaction (human with human),

interaction . . . .
outer interaction (human with environment)

celebrity actor, character, athlete, entrepreneur,
recognition  scientist, politician, singer
rejection attribute, position, interaction, reasoning

Table 1. The primary annotation domains and their corresponding
sub-domains within HumanRef.

refine the referring task and introduce HumanRef, a dataset
specifically designed to support multi-instance referring and
advance research in this domain.

MLLM-based REC Methods Multimodal Large Lan-
guage Models (MLLMs) [1-3, 14, 20, 32, 33,35, 44, 47,53,
64, 66, 70, 82] have demonstrated strong capabilities in both
text and image comprehension, motivating efforts to inte-
grate referring expression understanding into these models.
A common approach involves outputting bounding box co-
ordinates as tokens [3, 9, 14, 51, 67, 70, 74, 79, 80, 83].
Alternatively, methods like Groma [49] and ChatRex [25]
frame detection as a retrieval task, where a proposal model
generates bounding boxes, and the LLM selects the index
of the relevant box based on the referring expression. While
these MLLM-based methods achieve high performance on
RefCOCO/+/g, our experiments reveal that they remain in-
adequate for practical applications due to low recall rate on
multi-instance referrings.

3. HumanRef Dataset

In this section, we present the design philosophy, data ac-
quisition process, annotation pipeline, and dataset statistics
of the proposed HumanRef dataset.

3.1. Data Design Philosophy

We define five key aspects that determine how humans can
be referred to using natural language, including attribute,
position, interaction, reasoning, and celebrity recognition.
These categories are further elaborated with definitions and
examples in Table 1. A key distinction between Human-
Ref and existing referring datasets is its focus on multi-
instance referring rather than one-to-one object referring.
Our dataset ensures that a single referring expression can
correspond to multiple individuals, providing a more realis-
tic and practical reflection of real-world scenarios.

3.2. Data Acquisition

The HumanRef dataset is designed to capture human pres-
ence across diverse contexts, including natural environ-
ments, industrial settings, healthcare, sports, films, anima-
tions, etc. To ensure dataset diversity, we sourced images
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Figure 3. Overview of the manual annotation pipeline of the HumanRef dataset.

containing humans from the web image dataset [5]. To filter
candidate images, we first retained those with a resolution
larger than 1000 x 1000 pixels to ensure high-quality con-
tent. Next, we use an open-set object detector DINO-X [60]
to detect human instances. To align with the multi-instance
discrimination requirement, we retain only images contain-
ing at least four individuals.

To assist the annotator in writing properties, we prompt
the QwenVL-2.5 [3] model to create a structured property
dictionary for each person in the image, capturing details
such as gender, clothing, actions, etc. Ultimately, this phase
produced image, person box, and person description triples
used for further annotation.

3.3. Manual Annotation

For attribute, position, interaction, and reasoning subsets,
we adopt manual annotation. This annotation process con-
sists of three main steps: property listing, property assign-
ment, and referring style rewriting. Given an image, along
with the corresponding person boxes and pre-labeled prop-
erty dictionary, the annotation system will randomly select
one annotation type from attribute, location, interaction, and
reasoning to assign to the annotator. The following annota-
tion process is then carried out:

Property Listing: The annotator examines all individu-
als in the image, considering both their visual appearance,
action, position, interaction, and the pre-labeled property
dictionary. Based on these observations, the annotator com-
piles a list of properties. To enhance dataset richness, anno-
tators are encouraged to label attributes shared by multiple
individuals while avoiding those common to all. Addition-
ally, we monitor the word frequency of labeled referring
expressions and restrict the use of high-frequency words to
improve data diversity.

Property Assignment: Once the properties are listed,
annotators systematically assign them to the correspond-

ing individuals. This interactive process involves select-
ing a property value and clicking on the associated bound-
ing boxes to link it to the correct person. The final out-
put is a structured dictionary, where keys represent property
names and values contain lists of bounding box indices cor-
responding to the individuals possessing each property.

Referring Style Rewriting: In the final step, we prompt
Qwen2.5-14B [71] to reformulate the structured attribute
dictionary into short, natural language referring expres-
sions. The final annotated data also undergoes a thorough
review process to ensure its quality.

3.4. Automatic Annotation

For celebrity recognition and rejection referring, we employ
two efficient and effective automatic annotation pipelines.

Celebrity Recognition: We first categorize celebrities
into seven distinct fields: actors, film characters, athletes,
singers, entrepreneurs, scientists, and politicians. For each
field, we identify the most well-known individuals, compil-
ing a final list of 636 names, which we then used as prompts
to retrieve images via the Bing Search API. The collected
images include both individual and group photos, necessi-
tating a method to accurately associate each celebrity name
with the correct person in the image. To achieve this, we
first use the DINO-X [60] model to detect all human faces
and persons, linking each detected face to its correspond-
ing person box based on overlap measurements. If an im-
age contains only one person, we assume this individual is
the target celebrity. For images featuring multiple individ-
uals, we use a Python face recognition library, leveraging a
single-person image as a recognition template to match and
identify the same person in such images.

Rejection Referring: The objective of this sub-dataset
is to ensure that when a referring description targets a per-

https://www.microsoft.com/en-us/bing/apis
https://github.com/ageitgey/facerecognition
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Figure 4. Visualization of the six subsets in the HumanRef Benchmark.

son who does not exist in the input image, the model rejects
the referring request instead of hallucinating and outputting
an incorrect bounding box. To construct this dataset, we
first extract referring expressions from the attribute, posi-
tion, interaction, and reasoning subsets. We then prompt
Qwen2.5 [71] to modify these descriptions, transforming
them into similar but semantically altered versions. For in-
stance, a description such as “the person wearing a blue
hat” may be changed to “the person wearing a red hat”. To
validate the generated descriptions, we prompt Molmo [20]
to detect the modified referring expression. If no matching
object is found in the output, the data is retained.

3.5. HumanRef Benchmark

To construct the HumanRef Benchmark, we sample 1,000
referring expressions from each of the four manually anno-
tated subsets. Additionally, for the celebrity and rejection
subsets, we conduct a separate manual annotation process
to create 1,000 new referring expressions for each category,
ensuring high-quality and challenging evaluation data. To
further support advancements in referring expression seg-
mentation, we utilize SAM2 [59] to generate masks for
each ground truth bounding box. Figure 4 presents exam-
ple cases from the HumanRef Benchmark, illustrating the
diversity and complexity of the dataset.

3.6. Statistics

We first present the basic statistics of the HumanRef dataset
and its subsets in Table 2, and then illustrate the charac-
teristics of multi-instance referring and multi-instance dis-
crimination in HumanRef in Figure 5. Additionally, Table 3
compares the HumanRef Benchmark with widely used re-
ferring benchmarks, including RefCOCO, RefCOCO+, and
RefCOCOg. A key distinction of HumanRef is its higher

HumanRef Train

type attribute  position interaction reasoning celebrity rejection total
images 8,614 7,571 1,632 4474 4,990 7,519 34,806
referrings 52,513 22,496 2,911 6,808 4,990 13,310 | 103,028
avg. boxes/ref 29 1.9 3.1 3.0 1.0 0 22
HumanRef Benchmark

type attribute  position interaction reasoning celebrity rejection total
images 838 972 940 982 1,000 1,000 5732
referrings 1,000 1,000 1,000 1,000 1,000 1,000 6,000
avg. boxes/ref 2.8 2.1 2.1 2.7 1.1 0 22

Table 2. Main statistics of the HumanRef dataset, including the
number of images, the number of referring expressions, the aver-
age word count per referring expression, and the average number
of instances associated with each referring expression.

. avg. avg. avg. avg.
Datasets 1mages refs vocabs sizge person/}i;mage wordf/ref boxesg/ref
RefCOCO [75] 1,519 10,771 1,874 593x484 572 3.43 1
RefCOCO+[75] 1,519 10,908 2,288 592x484 572 3.34 1
RefCOCOg [50] 1,521 5253 2479 585x480 2.73 9.07 1
HumanRef 5732 6,000 2,714 1432x1074 8.60 6.69 2.2

Table 3. Comparison of the HumanRef Benchmark with RefCO-
CO/+/g. For a fair comparison, we present only the statistics re-
lated to human referring in RefCOCO/+/g.

Distribution of Ground Truth
Boxes per Referring
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Persons per Image
1000

1000 31

100

il Hﬂﬂmﬂmﬂﬂﬂﬂ e

10 20 30 0
Number of Ground Truth Boxes
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25 30 35

10
Number of Persons

Figure 5. Distribution of the number of individuals per image and
the number of individuals referenced by each referring expression.

image resolution and larger number of individuals per im-
age, requiring models to precisely identify all correct indi-
viduals among multiple people. Unlike traditional bench-
marks, where each referring expression corresponds to a
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Figure 6. Overview of the RexSeek model. RexSeek is a retrieval-
based model built upon ChatRex [25]. By integrating a person
detection model, RexSeek transforms the referring task from pre-
dicting box coordinates to retrieving the index of input boxes.

single person, HumanRef supports multi-instance referring,
offering a more realistic and challenging evaluation setting
for referring expression comprehension.

4. RexSeek Model
4.1. Model Design Philosophy

From a model design perspective, we argue that a robust
referring model should have two essential capabilities: i)
robust perception ability, where the model can reliably
detect all individuals in an image, and ii) strong language
comprehension, where the model can accurately interpret
complex natural language descriptions of people.

For the first capability, modern object detection mod-
els [26, 41, 60, 61] are highly effective at identifying peo-
ple within images. However, these models often lack the
necessary language comprehension abilities to process intri-
cate and nuanced referring expressions. On the other hand,
while MLLMs are proficient in understanding natural lan-
guage, they often struggle with fine-grained object detec-
tion tasks. Inspired by ChatRex [25], we propose a hybrid
framework, RexSeek, which integrates the strengths of both
object detection models and LLMs. RexSeek combines a
high-performance detection model with a multimodal LLM
to achieve both accurate detection and effective language
understanding.

4.2. Architecture

Following ChatRex, we formulate the referring task as a
retrieval-based process [25, 49]. As illustrated in Figure
6, RexSeek consists of three main components: vision en-
coders, a person detector, and a large language model.
Given an input image, we first pass it through a dual vision
encoder module used in ChatRex. This module consists of a
CLIP [58] to extract low-resolution image features F,,, and
a ConvNeXt [43] to extract high-resolution image features
Fhigh- We adjust the input resolutions for both vision en-

coders to ensure they generate the same number of tokens
at the last scale. The final vision tokens F is obtained by
concatenating these features at the channel dimension:

F = Concat(Fiow, Fhigh)

Next, we prompt DINO-X [60] to get the bounding boxes
of persons {B;}X , in the image. For each bounding box,
we extract its Rol features C; and add their positional em-
beddings to generate object tokens O;, which capture both
the content and spatial context of each detected person:

Oi::Ci+fPE(Ba

Specifically, the Rol feature is extracted from the high-
resolution vision features using a multi-scale Rol Align op-
eration [24]. The positional embedding is computed by en-
coding the bounding box coordinates (x, y, w, h) using a si-
nusoidal encoding function and concatenating the encoded
values along the channel dimension.

Finally, the vision tokens JF, object tokens O, and text
tokens 7 are projected using different MLPs and then fed
into the LLM. By default, we use Qwen2.5 [71] as the LLM.
The LLM decodes the input to produce the corresponding

box indices Z:
I =LLM(F,O,T)

The output Z consists of object indices that correspond to
the bounding boxes of the target persons corresponding to
the referring. This sequence is structured as follows:

<g>referring</g><o><objm>...<objn></o>

Here, <objm> and <objn> refer to specific object index
tokens that correspond to the detected persons. The spe-
cial tokens <g>, </g>, <o>, and </o> are used to format
the output, linking the referring expression with the relevant
object indices.

4.3. Four Stage Training

Similar to other VLMs, we adopt a pretraining followed
by supervised fine-tuning approach [39]. Our training pro-
cess consists of four stages. In the first stage, we align the
visual and textual modalities using image-captioning data.
In the second stage, we focus on perception training with
detection-oriented data, enabling the model to retrieve rele-
vant objects from input bounding boxes. In the third stage,
we incorporate multimodal data to enhance the model’s
general understanding abilities. Finally, in the fourth stage,
we fine-tune the model using the HumanRef dataset, result-
ing in the final RexSeek model. The data, task, and trainable
modules for each stage are shown in Table 5.

5. Experiments

In this section, we first introduce the evaluation metrics used
in our study and assess the performance of multimodal mod-
els on HumanRef. We perform a comprehensive analysis to
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Method ‘ Attribute ‘ Position ‘ Interaction ‘ Reasoning ‘ Celebrity ‘ Average ‘ Rejection

‘ R P DF1 ‘ R P DF1 ‘ R P DF1 ‘ R P DF1 ‘ R P DF1 ‘ R P DF1 ‘ Score

Baselinef 100.0 372 242 | 100.0 285 159 | 100.0 325 19.4 | 100.0 426 303 | 100.0 144 49 | 100.0 31.0 18.9 0.0
DINOX [60] 595 288 209 | 788 281 17.6 | 673 285 189 | 762 321 222 | 941 480 370 | 752 33.1 233 36.0
InternVL-2.5-8B [14] 235 390 27.1 | 230 280 243 | 278 401 313 | 175 228 189 | 574 593 580 | 29.8 37.8 319 54.9
Ferret-7B [74] 279 444 304 | 302 362 298| 308 41.8 31.2| 197 337 228 | 632 60.0 575 | 344 432 343 2.0
Groma-7B [49] 675 478 38.6 | 632 431 372 | 666 48.1 40.6 | 59.1 414 348 | 732 633 59.1 | 659 487 421 0.0
ChatRex-7B [25] 443 780 518 | 480 66.7 525 | 49.6 748 565 | 36.6 651 428 | 737 765 742 | 504 722 55.6 0.0
Qwen2.5-VL-7B [3] 49.1 713 544 | 502 617 528 | 482 663 532 | 346 612 403 | 803 819 80.1 | 525 685 562 7.1
DeepSeek-VL2-small [70] | 52.3 78.0 57.7 | 564 66.1 58.1 | 554 757 60.7 | 46.6 617 50.1 | 8.9 743 70.7 | 593 712 595 3.1
Molmo-7B-D* [20] 827 864 763 | 780 80.6 724 | 699 777 66.1 | 72.1 804 655 | 859 875 829 | 777 825 726 68.6
RexSeek-7B ‘ 872 86.8 815 ‘ 86.1 863 838 848 846 807 ‘ 878 847 815 ‘ 834 865 842 859 858 823 ‘ 54.1

Table 4. Benchmarking multimodal models on HumanRef Benchmark. R, P, and DF1 represent Recall, Precision, and DensityF1, respec-
tively. T A simple baseline that uses the bounding boxes of all persons in the image as results, simulating a person detection model that
does not follow the referring description. *Molmo-7B-D predicts point coordinates as output and use point-in-mask evaluation criteria.

Trainable
Stage Modules Task # Samples Datasets
Stagel | MLPs Image Captioning 976K |  ALLAVA-4V-Caption [6]
. 3 b
Stage2 ML.PS +LLM + ‘Groundmg & ) 207M COCO [37], LVIS [22], )
Vision Encoders ~ Region Understanding 0365 [62], Rexverse-2M [25]
MLPs+ LLM +  Ccneral Knowledge & LLAVA-665K [38]
Stage3 - Grounding & 2.15M -
Vision Encoders . . Rexverse-2M [25]
Region Understanding
Stage4 MLPs + LLM + Referring 103K HumanRef

Vision Encoders

Table 5. Data, task, and trainable modules for each stage.

explore the challenges faced by existing models in handling
the referring task. Additionally, we perform ablation exper-
iments on RexSeek for model design choices.

5.1. Metrics

We evaluate the referring task using Precision, Recall, and
DensityF1 Score. Given a referring expression, the model
predicts one or more bounding boxes, and a prediction is
considered correct if its IoU with any ground truth box
exceeds a predefined threshold. Following the evalua-
tion protocol in COCO [37], we report the average per-
formance across IoU thresholds from 0.5 to 0.95 in incre-
ments of 0.05. For models that only output points, such as
Molmo [20], a prediction is considered correct if the pre-
dicted point falls within the mask of the corresponding in-
stance. However, this evaluation is less strict than the IoU-
based metric, as point-in-mask criteria impose looser spatial
constraints, making direct comparisons less fair. For the re-
jection subset, we calculate the number of referring expres-
sions that the model does not predict any boxes and divide
it by the number of total expressions.

To penalize models that indiscriminately detect all per-
sons in an image to achieve a high F1 score through high
recall, we introduce the DensityF1 Score, which modifies
the standard F1 Score with a density-aware penalty:

Precision; x Recall;
Precision; + Recall;

N
, 1
DensityF1 = — ; 2 x D; (1)

Precision by Number of Instances Recall by Number of Instances
0 0

10
—=- RexSeek-7B (Box)

Molmo-7B-D-0924 (Point),
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Figure 7. Visualizing the trend of recall and precision variations
across different models as the number of instances corresponding
to each referring expression increases.

where D; is the density penalty factor, defined as:

GT Count;

D; =min(1.0, ——————
Predicted Count;

) )

Here, GT Count is the total number of persons in an im-
age, and Predicted Count is the number of predicted boxes
for a given referring expression. This penalty discourages
over-detection by reducing the score when the predicted box
count significantly exceeds the ground truth count.

5.2. Benchmarking on HumanRef

In Table 4, we evaluate the performance of various multi-
modal models on the HumanRef benchmark. While these
models perform well on the widely used RefCOCO, Ref-
COCO+, and RefCOCOg benchmarks, their performance
significantly degrades on HumanRef. Our analysis reveals
two common issues among these models:

Low Recall for Multi Instance: We observe a common
issue among most models: when a referring expression cor-
responds to multiple instances, recall drops significantly, as
shown in Figure 7. This suggests that when multiple ob-
jects need to be detected, most models tend to predict only
a few bounding boxes, limiting their applicability in real-
world scenarios. A key factor contributing to this behavior
is the nature of the training data. Most multimodal mod-
els are trained on RefCOCO, RefCOCO+, and RefCOCOg,
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Model ‘ With Rejection Data  Rejction Score

RexSeek-7B No 0
RexSeek-7B Yes 541

Table 6. Rejection score comparison under different model scales
with and without rejection data during training.

. HumanRef Average
Loading Stage R P DF1
stagel 739 735 68.2
stage2 77.0 713 722
stage3 779 78.0 73.0

Table 7. Ablation experiments on multi-stage training by loading
models from different training stages and fine-tuning them on the
HumanRef dataset. We Qwen2.5-3B as the base LLM.

Method RefCOCOg
val test
Shikra-7B [9] 823 822

InternVL2-8B [14] 82.7 827
Grounding DINO-L [42] | 86.1 87.0
Qwen2.5-VL-7B [3] 872 872

MM1.5-7B [82] - 87.1
ChatRex-7B [25] 88.8 88.6
RexSeek-7B 84.0 844

Table 8. Zero-shot evaluation of RexSeek on RefCOCOg. We use
the open-set detector DINOX to detect the subject object in the
image and use the detected bounding box as input to RexSeek.

where referring expressions rarely correspond to multiple
instances. As a result, these models become biased toward
single-instance predictions. In contrast, RexSeek has been
trained on datasets that explicitly include multi-instance re-
ferring expressions, demonstrate a significantly improved
ability to handle these real-world cases.

Hallucination Issue: On the rejection subset, we ob-
serve that most models perform poorly with low rejection
score. This indicates that regardless of whether the referred
object is actually present in the image, these models tend
to predict a bounding box, exhibiting a severe hallucination
issue. In real-world referring applications, such as referring
in video streams, it is crucial for models to accurately deter-
mine whether the specified object exists in the image. Addi-
tionally, we find that the rejection capability can be signifi-
cantly improved by incorporating appropriate training data.
As shown in Table 6, when trained without the rejection
data in HumanRef, RexSeek also demonstrates strong hal-
lucination tendencies. This highlights the critical role of
dataset design in the referring task, as inadequate dataset
construction can lead to overconfident predictions.

5.3. Ablations on RexSeek

Ablation of Multi-stage Training: We analyzed the im-
pact of the four-stage training approach used in RexSeek.
As shown in Table 7, we conducted supervised fine-tuning
on the HumanRef dataset after each training stage. The re-

plgeons on the sky

contamer that says MAERSK

Figure 8. RexSeek can refer to arbitrary objects beyond person.

sults demonstrate that the model achieves its best perfor-
mance after undergoing SFT with general multimodal data
(LLaVA-665K [38]). We attribute this improvement to the
model acquiring richer general knowledge from multimodal
data, which enhances its ability to accurately refer to per-
sons in complex scenarios.

Generalization to Any Object Referring: Although
RexSeek is trained exclusively on human-related referring
data, we find that it also demonstrates the ability to refer
to arbitrary objects. We first evaluate the performance of
RexSeek on RefCOCOg. Given a referring expressions, we
apply DINO-X to detect the main object in the image, using
the detected bounding box as input to RexSeek. As shown
in Table 8, RexSeek achieves competitive performance on
RefCOCO/+/g, despite not being explicitly trained on gen-
eral object referring. Additionally, Figure 8 presents visu-
alizations illustrating that RexSeek can also detect multi-
ple instances even for non-human objects. We attribute this
generalization ability to our multi-stage training approach,
where perception and multimodal understanding training
develop object comprehension, and fine-tuning on Human-
Ref effectively extends it to arbitrary objects.

6. Conclusion

In this work, we identify the fundamental limitations of
existing referring datasets and models, demonstrating
that they fail to meet real-world application demands,
particularly in multi-instance referring. To address this, we
introduce HumanRef, a large-scale benchmark reflecting
real-world complexity, and propose RexSeek, a retrieval-
based detection MLLM integrating person detection with a
language model. Our multi-stage training approach equips
RexSeek with strong generalization capabilities, allowing it
to excel in human-centric referring while extending effec-
tively to arbitrary object referring. Extensive evaluations
highlight the struggles of state-of-the-art models with multi-
instance detection and hallucination, underscoring the im-
portance of dataset design and training strategies for more
reliable and generalizable referring expression models.
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